Staphylococcus aureus from Minas Artisanal Cheeses: Biocide Tolerance, Antibiotic Resistance and Enterotoxin Genes
Abstract
:1. Introduction
2. Materials and Methods
2.1. Bacterial Strains
2.2. Determination of Biocide Tolerance
2.3. Screening for Antibiotic Resistance, Efflux Pumps and Enterotoxin Genes by PCR
2.3.1. Extraction of DNA
2.3.2. Antibiotic Resistance Genes
2.3.3. Efflux Pumps Genes
2.3.4. Staphylococcal Enterotoxin Genes
3. Results
3.1. Tolerance to Biocides
3.2. Antibiotic Resistance
3.3. Screening for Efflux Pump Genes
3.4. Staphylococcal Enterotoxin Genes
3.5. Tolerance to Biocides and Presence of Antibiotic Resistance and SE Genes
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Lee, G.Y.; Yang, S.J. Profiles of coagulase-positive and -negative staphylococci in retail pork: Prevalence, antimicrobial resistance, enterotoxigenicity, and virulence factors. Anim. Biosci. 2021, 34, 734–742. [Google Scholar] [CrossRef] [PubMed]
- Benkerroum, N. Staphylococcal enterotoxins and enterotoxin-like toxins with special reference to dairy products: An overview. Crit. Rev. Food Sci. Nutr. 2018, 58, 1943–1970. [Google Scholar] [CrossRef] [PubMed]
- Fisher, E.L.; Otto, M.; Cheung, G.Y.C. Basis of virulence in enterotoxin-mediated staphylococcal food poisoning. Front. Microbiol. 2018, 9, 436. [Google Scholar] [CrossRef]
- Li, H.; Andersen, P.S.; Stegger, M.; Sieber, R.N.; Ingmer, H.; Staubrand, N.; Dalsgaard, A.; Leisner, J.J. Antimicrobial resistance and virulence gene profiles of methicillin-resistant and -susceptible Staphylococcus aureus from food products in Denmark. Front. Microbiol. 2019, 10, 2681. [Google Scholar] [CrossRef] [PubMed]
- Meade, E.; Slattery, M.A.; Garvey, M. Biocidal Resistance in Clinically Relevant Microbial Species: A Major Public Health Risk. Pathogens 2021, 10, 598. [Google Scholar] [CrossRef]
- Ortega-Morente, E.; Fernández-Fuentes, M.A.; Grande-Burgos, M.J.; Abriouel, H.; Pulido, R.P.; Gálvez, A. Biocide tolerance in bacteria. Int. J. Food Microbiol. 2013, 162, 13–25. [Google Scholar] [CrossRef]
- Michalak, I.; Chojnacka, K. Biocides. In Encyclopedia of Toxicology, 3rd ed.; Wexler, P., Ed.; Academic Press: Cambridge, MA, USA, 2014; pp. 461–463. ISBN 9780123864550. [Google Scholar] [CrossRef]
- Elekhnawy, E.; Sonbol, F.; Abdelaziz, A.; Elbanna, T. Potential impact of biocide adaptation on selection of antibiotic resistance in bacterial isolates. Future J. Pharm. Sci. 2020, 6, 97. [Google Scholar] [CrossRef]
- Paul, D.; Chakraborty, R.; Mandal, S.M. Biocides and health-care agents are more than just antibiotics: Inducing cross to co-resistance in microbes. Ecotoxicol. Environ. Saf. 2019, 174, 601–610. [Google Scholar] [CrossRef]
- Moretro, T.; Schirmer, B.C.T.; Heir, E.; Fagerlund, A.; Hjemli, P.; Langsrud, S. Tolerance to quaternary ammonium compound disinfectants may enhance growth of Listeria monocytogenes in the food industry. Int. J. Food Microbiol. 2017, 241, 215–224. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rodríguez-López, P.; Rodríguez-Herrera, J.J.; Vázquez-Sánchez, D.; Cabo, M.L. Current knowledge on Listeria monocytogenes biofilms in food-related environments: Incidence, resistance to biocides, ecology and biocontrol. Foods 2018, 7, 85. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Duze, S.T.; Marimani, M.; Patel, M. Tolerance of Listeria monocytogenes to biocides used in food processing environments. Int. J. Food Microbiol. 2021, 97, 103758. [Google Scholar] [CrossRef] [PubMed]
- Ortiz, S.; López, V.; Martínez-Suárez, J.V. The influence of subminimal inhibitory concentrations of benzalkonium chloride on biofilm formation by Listeria monocytogenes. Int. J. Food Microbiol. 2014, 189, 106–112. [Google Scholar] [CrossRef] [PubMed]
- Tezel, U.; Pavlostathis, S.G. Quaternary ammonium disinfectants: Microbial adaptation, degradation, and ecology. Curr. Opin. Biotechnol. 2015, 33, 296–304. [Google Scholar] [CrossRef] [PubMed]
- Yu, T.; Jiang, X.; Zhang, Y.; Ji, S.; Gao, W.; Shi, L. Effect of benzalkonium chloride adaptation on sensitivity to antimicrobial agents and tolerance to environmental stresses in Listeria monocytogenes. Front. Microbiol. 2018, 9, 2906. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Olaimat, A.N.; Al-Holy, M.A.; Shahbaz, H.M.; Al-Nabulsi, A.A.; Ghoush, M.H.A.; Osaili, T.M.; Ayyash, M.M.; Holley, R.A. Emergence of antibiotic resistance in Listeria monocytogenes isolated from food products: A comprehensive review. Compr. Rev. Food Sci. Food Saf. 2018, 17, 1277–1292. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Márquez, M.L.F.; Grande Burgos, M.J.; López-Aguayo, M.C.; Pulido, R.P.; Gálvez, A.; Lucas, R. Characterization of biocide-tolerant bacteria isolated from cheese and dairy small-medium enterprises. Int. J. Food Microbiol. 2017, 62, 77–81. [Google Scholar] [CrossRef] [PubMed]
- Arqués, J.L.; Rodríguez, E.; Langa, S.; Landete, J.M.; Medina, M. Antimicrobial activity of lactic acid bacteria in dairy products and gut: Effect on pathogens. BioMed Res. Intern. 2015, 22, 584183. [Google Scholar] [CrossRef]
- Perin, L.M.; Sardaro, M.L.S.; Nero, A.; Neviani, E.; Gatti, M. Bacterial ecology of artisanal Minas cheeses assessed by culture dependent and -independent methods. Int. J. Food Microbiol. 2017, 65, 160–169. [Google Scholar] [CrossRef] [PubMed]
- Pineda, A.P.A.; Campos, G.Z.; Pimentel-Filho, N.J.; Franco, B.D.G.D.M.; Pinto, U.M. Brazilian artisanal cheeses: Diversity, microbiological safety, and challenges for the sector. Front. Microbiol. 2021, 12, 732. [Google Scholar] [CrossRef]
- Camargo, A.C.; de Araújo, J.P.A.; Fusieger, A.; de Carvalho, A.F.; Nero, L.A. Microbiological quality and safety of Brazilian artisanal cheeses. Braz. J. Microbiol. 2021, 52, 393–409. [Google Scholar] [CrossRef] [PubMed]
- Bennett, R.W.; Lancette, G.A. Staphylococcus aureus. In Food and Drug Administratrion (FDA). Bacteriological Analytical Manual Online, 8th ed.; Chapter 12; FDA: Silver Spring, MD, USA, 2001. Available online: https://www.fda.gov/food/laboratory-methods-food/bam-chapter-12-staphylococcus-aureus (accessed on 10 August 2021).
- Castellanos-Rozo, J.; Pulido, P.R.; Grande, M.; Lucas, R.; Gálvez, A. Potentially pathogenic bacteria isolated from Paipa cheese and its susceptibility profiles to antibiotics and biocides. Braz. J. Microbiol. 2021, 52, 1535–1543. [Google Scholar] [CrossRef] [PubMed]
- Strommenger, B.; Kettlitz, C.; Werner, G.; Witte, W. Multiplex PCR assay for simultaneous detection of nine clinically relevant antibiotic resistance genes in Staphylococcus aureus. J. Clin. Microbiol. 2003, 41, 4089–4094. [Google Scholar] [CrossRef] [Green Version]
- Noguchi, N.; Suwa, J.; Narui, K.; Sasatsu, M.; Ito, T.; Hiramatsu, K.; Songa, J.H. Susceptibilities to antiseptic agents and distribution of antiseptic-resistance genes qacA/B and smr of methicillin-resistant Staphylococcus aureus isolated in Asia during 1998 and 1999. J. Med. Microbiol. 2005, 54, 557–565. [Google Scholar] [CrossRef]
- Ferreira, M.A.; Bernardo, L.G.; Neves, L.S.; Campos, M.R.H.; Lamaro-Cardoso, J.; André, M.C.P. Virulence profile and genetic variability Staphylococcus aureus isolated of from artisanal cheese. J. Dairy Sci. 2016, 99, 8589–8597. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gholamzad, M.; Khatami, M.R.; Ghassemi, S.; Vaise Malekshahi, Z.; Shooshtari, M.B. Detection of Staphylococcus Enterotoxin B (SEB) Using an Immunochromatographic Test Strip. Jundishapur J. Microbiol. 2015, 8, e26793. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Monday, S.R.; Bohach, G.A. Use of Multiplex PCR To Detect Classical and Newly Described Pyrogenic Toxin Genes in Staphylococcal Isolates. J. Clin. Microbiol. 1999, 37, 3411–3414. [Google Scholar] [CrossRef] [Green Version]
- Jarraud, S.; Mougel, C.; Thioulouse, J.; Lina, G.; Meugnier, H.; Forey, F.; Nesme, X.; Etienne, J.; Vandenesch, F. Relationships between Staphylococcus aureus genetic background, virulence factors, agr groups (alleles), and human disease. Infect. Immun. 2002, 70, 631–641. [Google Scholar] [CrossRef] [Green Version]
- Lahou, E.; Uyttendaele, K. Growth potential of Listeria monocytogenes in soft, semi-soft and semi-hard artisanal cheeses after post-processing contamination in deli retail establishments. Food Control 2017, 76, 13–23. [Google Scholar] [CrossRef]
- SCENIHR (2009). Scientific Committee on Emerging and Newly Identified Health Risks. Assessment of the Antibiotic Resistance Effects of Biocides 2009, 24–25. Available online: https://ec.europa.eu/health/ph_risk/committees/04_scenihr/docs/scenihr_o_021.pdf (accessed on 10 July 2021).
- Mulder, I.; Siemens, J.; Sentek, V.; Amelung, W.; Smalla, K.; Jechalke, S. Quaternary ammonium compounds in soil: Implications for antibiotic resistance development. Rev. Environ. Sci. Biotechnol. 2018, 17, 159–185. [Google Scholar] [CrossRef] [Green Version]
- Garrido, A.M.; Burgos, M.J.; Márquez, M.L.; Aguayo, M.C.; Pulido, R.P.; Del Árbol, J.T.; Gálvez, A.; López, R.L. Biocide tolerance in Salmonella from meats in Southern Spain. Braz. J. Microbiol. 2015, 46, 1177–1181. [Google Scholar] [CrossRef] [PubMed]
- Maseda, H.; Hashida, Y.; Konaka, R.; Shirai, A.; Kourai, H. Mutational upregulation of a resistance-nodulation-cell division-type multidrug efflux pump, SdeAB, upon exposure to a biocide, cetylyridinium chloride, and antibiotic resistance in Serratia marcescens. J. Antimicrob. Chemother. 2009, 53, 5230–5235. [Google Scholar] [CrossRef] [Green Version]
- Gadea, R.; Glibota, N.; Pulido, R.P.; Gálvez, A.; Ortega, E. Adaptation to Biocides Cetrimide and Chlorhexidine in Bacteria from Organic Foods: Association with Tolerance to Other Antimicrobials and Physical Stresses. J. Agric. Food Chem. 2017, 65, 1758–1770. [Google Scholar] [CrossRef] [PubMed]
- Bjorland, J.; Steinum, T.; Kvitle, B.; Waage, S.; Sunde, M.; Heir, E. Widespread distribution of disinfectant resistance genes among Staphylococci of bovine and caprine origin in Norway. J. Clin. Microbiol. 2005, 43, 4363–4368. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Turchi, B.; Bertelloni, F.; Marzoli, F.; Cerri, D.; Tola, S.; Azara, E.; Longheu, C.M.; Tassi, R.; Schiavo, M.; Cilia, G.; et al. Coagulase negative Staphylococci from ovine milk: Genotypic and phenotypic characterization of susceptibility to antibiotics, disinfectants and biofilm production. Small Rumin. Res. 2020, 183, 106030. [Google Scholar] [CrossRef]
- Behiry, A.; El Schlenker, G.; Szabo, I.; Roesler, U. In vitro susceptibility of Staphylococcus aureus strains isolated from cows with subclinical mastitis to different antimicrobial agents. J. Vet. Sci. 2012, 13, 153–161. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Quadros, C.L.; Manto, L.; Mistura, E.; Webber, B.; Ritterbusch, G.A.; Borges, K.A.; Furian, T.Q.; Rodrigues, L.; Santos, L.R. Antimicrobial and Disinfectant Susceptibility of Salmonella Serotypes Isolated from Swine Slaughterhouses. Curr. Microbiol. 2020, 77, 1035–1042. [Google Scholar] [CrossRef]
- Longtin, J.; Seah, C.; Siebert, K.; McGeer, A.; Simor, A.; Longtin, Y.; Low, D.E.; Melano, R.G. Distribution of antiseptic resistance genes qacA, qacB and smr in methicillin-resistant Staphylococcus aureus isolated in Toronto, Canada, from 2005 to 2009. J. Antimicrob. Chemother. 2011, 55, 2999–3001. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vaz, S.; Lall, M. Potential Public Health Impact of the Development of Antimicrobial Resistance in Clinical Isolates of Pseudomonas aeruginosa on Repeated Exposure to Biocides In vitro. Med. J. DY Patil Vidyapeeth 2021, 14, 45–50. [Google Scholar] [CrossRef]
- Kim, M.; Weigand, M.; Oh, S.; Hatt, J.K.; Krihnan, R.; Tezel, U.; Pavlostathis, S.G.; Konstantinidis, K.T. Widely Used Benzalkonium Chloride Disinfectants Can Promote Antibiotic Resistance. Appl. Environ. Microbiol. 2018, 84, e01201–e01218. [Google Scholar] [CrossRef] [Green Version]
- Chen, B.; Han, J.; Dai, H.; Jia, P. Biocide-tolerance and antibiotic-resistance in community environments and risk of direct transfers to humans: Unintended consequences of community-wide surface disinfecting during COVID-19. Environ. Pollut. 2021, 283, 117074. [Google Scholar] [CrossRef] [PubMed]
- Capita, R.; Vicente-Velasco, M.; Rodríguez-Melcón, C.; García-Fernández, C.; Carballo, J.; Alonso-Calleja, C. Effect of low doses of biocides on the antimicrobial resistance and the biofilms of Cronobacter sakazakii and Yersinia enterocolitica. Sci. Rep. 2019, 9, 15905. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Roedel, A.; Dieckmann, R.; Brendebach, H.; Hammerl, A.; Kleta, S.; Noll, M.; Dahouk, A.; Vincze, S. Biocide-tolerant Listeria monocytogenes isolates from German food production plants do not show cross-resistance to clinically relevant antibiotics. Appl. Environ. Microbiol. 2019, 85, e01253-19. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Castro, R.D.; Pedroso, S.H.S.P.; Sandes, H.C.; Silva, G.O.; Luiz, K.C.M.; Dias, R.S.; Filho, R.A.T.; Figueiredo, H.C.P.; Santos, S.G.; Nunes, A.C.; et al. Virulence factors and antimicrobial resistance of Staphylococcus aureus isolated from the production process of Minas artisanal cheese from the region of Campo das Vertentes, Brazil. J. Dairy Sci. 2020, 103, 2098–2110. [Google Scholar] [CrossRef] [PubMed]
- Dores, M.T.; Dias, R.S.; Arcuri, E.F.; Nobrega, J.E.; Ferreira, C.L.L.F. Enterotoxigenic potential of Staphylococcus aureus isolated from Artisan Minas cheese from the Serra da Canastra—MG, Brazil. Food Sci. Technol. 2013, 33, 271–275. [Google Scholar] [CrossRef] [Green Version]
- Martins, J.M.; Galinari, E.; Pimentel-Filho, N.J.; Ribeiro, J.I., Jr.; Furtado, M.M.; Ferreira, C.L.L.F. Determining the minimum ripening time of artisanal Minas cheese, a traditional Brazilian cheese. Braz. J. Microbiol. 2015, 46, 219–230. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liu, Y.; Chen, W.; Ali, T.; Alkasir, R.; Yin, J.; Liu, G.; Han, B. Staphylococcal enterotoxin H induced apoptosis of bovine mammary epithelial cells in vitro. Toxins 2014, 6, 3552–3567. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Collignon, P.J.; McEwen, S.A. One Health—Its importance in helping to better control antimicrobial resistance. Trop. Med. Infect. Dis. 2019, 4, 22. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Gene | Primers | Sequences | Amplicon (bp) | Reference |
---|---|---|---|---|
mecA | MEC-1 MEC-2 | AAAATCGATGGTAAAGGTTGGC AGTTCTGCAGTACCGGATTTGC | 532 | [24] |
aacA-aphD | aacA-aphD-1 aacA-aphD-2 | TAATCCAAGAGCAATAAGGGC GCCACACTATCATAACCACTA | 227 | [24] |
tetK | TETK-1 TETK-2 | GTAGCGACAATAGGTAATAGT GTAGTGACAATAAACCTCCTA | 360 | [24] |
qacA/B | SEA-1 SEA-2 | GCAGAAAGTGCAGAGTTCG CCAGTCCAATCATGCCTG | 361 | [25] |
smr (qacC/D) | SEB-1 SEB-2 | GCCATAAGTACTGAAGTTATTGGA GACTACGGTTGTTAAGACTAAACCT | 195 | [25] |
Gene | Primers | Sequences | Amplicon (bp) | Reference |
---|---|---|---|---|
sea | SEA-1 SEA-2 | GAAAAAAGTCTGAATTGCAGGGAACA CAAATAAATCGTAATTAACCGAAGGTTC | 560 | [26] |
seb | SEB-1 SEB-2 | ACACCCAACGTTTTAGCAGAGAGTCA TCCTGTGCAGGCATCATGTCA | 633 | [27] |
sec | SEC-1 SEC-2 | GTAAAGTTACAGGTGGCAAAACTTG CATATCATACCAAAAAGTATTGCCGT | 297 | [26] |
sed | SED-1 SED-2 | GTGGTGAAATAGATAGGACTGC ATATGAAGGTGCTCTGTGG | 384 | [28] |
see | SEE-1 SEE-2 | CAAAGAAATGCTTTAAGCAATCTTAGGC CACCTTACCGCCAAAGCTG | 482 | [26] |
seg | SEG-1 SEG-2 | AATTATGTGAATGCTCAACCCGATC AAACTTATATGGAACAAAAGGTACTAGTTC | 642 | [29] |
seh | SEH-1 SEH-2 | CAATCACATCATATGCGAAAGCAG CATCTACCCAAACATTAGCACC | 376 | [29] |
sei | SEI-1 SEI-2 | CTCAAGGTGATATTGGTGTAGG AAAAAACTTACAGGGAGTCCATCTC | 576 | [26] |
sej | SEJ-1 SEJ-2 | TAACCTCAGACATATATACTTCTTAACG AGTATCATAAAGTTGATTGTTTTCATGCAG | 300 | [26] |
Enterotoxin Gene | Prevalence % |
---|---|
sea | 15 (11.6%) |
seb | 4 (3.1%) |
sec | 5 (3.9%) |
sed | 0 |
see | 7 (5.4%) |
seg | 97 (75.2%) |
seh | 119 (92.2%) |
sei | 35 (27.1%) |
sej | 0 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Allaion, J.R.; Barrionuevo, K.G.; Grande Burgos, M.J.; Gálvez, A.; Franco, B.D.G.d.M. Staphylococcus aureus from Minas Artisanal Cheeses: Biocide Tolerance, Antibiotic Resistance and Enterotoxin Genes. Appl. Sci. 2022, 12, 1019. https://doi.org/10.3390/app12031019
Allaion JR, Barrionuevo KG, Grande Burgos MJ, Gálvez A, Franco BDGdM. Staphylococcus aureus from Minas Artisanal Cheeses: Biocide Tolerance, Antibiotic Resistance and Enterotoxin Genes. Applied Sciences. 2022; 12(3):1019. https://doi.org/10.3390/app12031019
Chicago/Turabian StyleAllaion, Josisleine Recalde, Karina Ghougassian Barrionuevo, Maria Jose Grande Burgos, Antonio Gálvez, and Bernadette Dora Gombossy de Melo Franco. 2022. "Staphylococcus aureus from Minas Artisanal Cheeses: Biocide Tolerance, Antibiotic Resistance and Enterotoxin Genes" Applied Sciences 12, no. 3: 1019. https://doi.org/10.3390/app12031019
APA StyleAllaion, J. R., Barrionuevo, K. G., Grande Burgos, M. J., Gálvez, A., & Franco, B. D. G. d. M. (2022). Staphylococcus aureus from Minas Artisanal Cheeses: Biocide Tolerance, Antibiotic Resistance and Enterotoxin Genes. Applied Sciences, 12(3), 1019. https://doi.org/10.3390/app12031019