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Abstract: Insects use dynamic articulation and actuation of their abdomen and other appendages
to augment aerodynamic flight control. These dynamic phenomena in flight serve many purposes,
including maintaining balance, enhancing stability, and extending maneuverability. The behaviors
have been observed and measured by biologists but have not been well modeled in a flight dynamics
framework. Biological appendages are generally comparatively large, actuated in rotation, and serve
multiple biological functions. Technological moving masses for flight control have tended to be
compact, translational, internally mounted and dedicated to the task. Many flight characteristics
of biological flyers far exceed any technological flyers on the same scale. Mathematical tools that
support modern control techniques to explore and manage these actuator functions may unlock new
opportunities to achieve agility. The compact tensor model of multibody aircraft flight dynamics
developed here allows unified dynamic and aerodynamic simulation and control of bioinspired
aircraft with wings and any number of idealized appendage masses. The demonstrated aircraft
model was a dragonfly-like fixed-wing aircraft. The control effect of the moving abdomen was
comparable to the control surfaces, with lateral abdominal motion substituting for an aerodynamic
rudder to achieve coordinated turns. Vertical fuselage motion achieved the same effect as an elevator,
and included potentially useful transient torque reactions both up and down. The best performance
was achieved when both moving masses and control surfaces were employed in the control solution.
An aircraft with fuselage actuation combined with conventional control surfaces could be managed
with a modern optimal controller designed using the multibody flight dynamics model presented
here.

Keywords: dynamic phenomena; multibody; flight dynamics; biomimetic; micro-aerial vehicle;
optimal control; insect flight; attitude control

1. Introduction

The potential applications of small unmanned aerial vehicles (SUAVs) for both military
and civil applications continue to drive interest in their design. Insect-inspired maneuver-
ability and agility are desirable characteristics for small SUAVs that might be expected to
operate in cluttered environments [1].

Reproductive efficiency and the survival of many animals depends on locomotion for
migration, territorial defense, predation and escape [2]. During aerial locomotion, animals
actively change their body posture, and hence mass distribution, to produce forces and
moments for propulsion and control [3,4]. Active maneuvering, therefore, relies on the
ability of the animal to optimize the benefits of three main physical mechanisms to control
posture: aerodynamic lift and drag on wings and body [5,6], control of the center of body
mass and thus distance to aerodynamic force vectors [3,7], and body moments of inertia
quantities and rates through active changes in body shape [8].

For mass-distribution modification, air and space craft have used internally moving
masses as an addition to, or replacement of, traditional aerodynamic and moment gener-
ating actuators. Moving masses generate moments due to gravity or change the inertia
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properties for the purpose of controlling the motion of the vehicle. Most efforts have
focused on employing movement of internal masses for trim, attitude, stability margin,
detumbling of spinning spacecraft, trajectory, orbit, glide path and depth control.

The biological systems exploiting moving masses have similarities to technological
examples and substantial differences. In addition, existing formulations of flight dynamics
do not adequately capture the effect of comparatively large swinging appendages (masses)
observed in insect flight. A convenient mathematical representation appropriate to aero-
dynamic systems connected to comparatively large, possibly numerous, mass elements
connected by joints will be presented. This formulation allows modern multiple-input-
multiple-output (MIMO) control techniques to be implemented to manage winged craft
with actuated joints and weighted appendages.

1.1. Related Work

This study draws together two specific parts of the literature. One part replicates
mechanisms and control paradigms that have application to small aircraft in the vicinity
of insect scale. Another part involves developing flight dynamics and control models
for aircraft, using conventional nomenclature and extensions of established technique, to
simulate operation and use modern control methods.

1.1.1. Moving Masses in Insect Flight

In recent years, there has been an increased interest in the development of insect-
inspired micro-aerial vehicles (MAVs), but biological research into insect flight has a long
history. The development of bioinspired systems requires the understanding of the physics
of biological systems and behaviors, not just copying the external shape [9].

Prior research on the importance of body appendages for force and moment generation
in actively flying animals was largely done on insects, including fruit flies [10–12], house
flies [13], orchid bees [14], moths [15,16], honeybees [17] and butterflies [18]. Several videos
by Rüppell show dragonfly abdominal movements during flight [19]. The study conducted
by Bode-Oke [20] also found some abdominal movement from kinematic analysis of
dragonfly flight. This theory was tested using visual stimulation that mimicked yaw
rotations, in which flying tethered flies bent their rear legs and abdomen horizontally to
the inside of the intended turn [10,11,13,21]. In contrast, visual stimulation that mimicked
body-pitching caused the abdomen to bend upward during upward motion of the visual
pattern [22–24]. Abdominal steering is adequate for maintenance of body posture in the
hawkmoth, according to mathematical models [15,16,22,25]. Some insects, such as desert
locusts, flex their abdomens in response to changing air flow conditions in addition to the
visual stimulus [26]. This behavior is said to resemble an aerodynamic rudder that aids the
animal in orienting itself into the direction of the wind during flight [27,28]. In the flight of
monarch butterflies, abdomen undulation has been shown to improve stability, and reduce
energy and power consumption [29,30].

Many flight dynamics models used in studies rely upon a conventional single-body
approach [31–33] to explore limited aspects of insect flight. Yet, to adequately capture the
effects of movement of anatomical parts, the multibody modeling approach provides the
necessary insight to insect flight [34]. Various methods have been used to derive multibody
equations of motion for air vehicles including Newton–Euler [35–38], Lagrange’s energy-
based methods [29,30,39,40], D’Alembert’s principle [41,42], and Kane’s method [43,44].
Regarding insect-inspired aircraft, most of the multibody flight dynamics models in the
literature focus on the degrees of freedom associated with wing motion. Although some
strictly only consider the relative movement of the wings [35,43,45–49], a few consider
the effects of wing mass and inertia [38,50]. Fewer studies have considered the effect or
role of abdominal articulation. A nonlinear model of a dragonfly-like flapping-wing MAV
was developed by Du [51]. The study considered the effect of the head and abdomen in
developing the equations of motion of a dragonfly-like MAV; however, their movements
were not investigated with regard to their effects on flight, stabilization or control of the
model. Dhyr et al. [22] developed a model to examine the active role of the abdomen in
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the hawkmoth. However, the model was obtained using a system identification approach.
Another study by Tejaswi et al. [29,30] developed a model of the dynamics of a flapping-
wing flyer, inspired by monarch butterflies. The model was, however, developed using
Euler–Lagrange equations to examine the use of abdomen undulation to improve stability,
and reduce energy and power consumption.

Dynamic moving masses in insects are typically a relatively large part of the aircraft
mass, or have quite high moment due to length, or both. Actuation is generally in rotation
about a joint with at least two degrees of rotational freedom, or involve controlled flexibility,
or might have multiple joints along its length. Actuation can often be rapid, such that
reaction torques are also significant. The mass is generally multifunctional, serving both
anatomical and flight control functions.

1.1.2. Moving-Mass Control in Spacecraft and Aircraft

Mass distribution plays an important role in vehicle dynamics, and varying the ve-
hicle’s mass distribution affects the system’s dynamics, stability and balance [52–62]. In
the early days of aviation, pilots would modify their body posture, thus moving the air-
craft’s center of mass to accomplish control or stability [63,64]. The concept is of primary
importance in the control of hang-gliders [7].

In [65], Qin and Yang designed an attitude control system for a transatmospheric
missile using three internal moving masses. Each mass was able to move along its respective
axis to change the attitude of the missile. Simulation results showed the method was able
to effectively control the missile, achieving static stability and attitude control. Other
applications for missile control can be found in [66,67].

Rogers and Mark [68–70] developed a seven-degree-of-freedom (7DoF) flight dy-
namics model for trajectory control of a projectile with an internal translating vibrating
mass to study the potential of this control mechanism. Significant control authority was
achieved with a mass of about 1% of the total projectile mass by vibrating the mass normal
to the axis of symmetry and at the roll rate frequency. Nonlinear equations of a spinning
vehicle with two internal moving elements were derived by Wang et al. [71] to investigate
the use of linearly moving-mass actuators for trajectory control. Results showed that the
moving-mass controller was able to effectively control the vehicle’s trajectory.

Chen et al. [72] investigated a stratospheric airship with various control systems, in-
cluding traditional aerodynamic control surfaces, vector thrust, ballonet, and moving mass.
One mass moved laterally, controlling roll angle, while the other moved longitudinally to
regulate pitch angle. The results showed that moving-mass control (MMC) outperformed
control surfaces, since the moving masses had no effect on the drag of the airship.

The use of internal moving masses for flight control in SUAVs has also been demon-
strated. Ertuk [36] was able to demonstrate the use of translational internal moving masses
as a feasible alternative moment generation mechanism to conventional aerodynamic con-
trol surfaces for SUAVs. Another study by Vengate [73] showed through flight test that
without ailerons, a small unmanned airplane was able to control roll using two laterally
moving internal masses.

Moving-mass control has been implemented in rotorcraft as well. For the control
of a large quadrotor, Haus et al. [74,75] implemented four translational movable masses
in the quadrotor’s four arms to change the center of gravity and control the pitch and
roll of the craft. Bouabdallah [76] used MMC for passive roll and pitch stabilization
of an indoor coaxial helicopter. The mechanism involved the use of two semi-circular
guides for mass movement. A study presented by Bermes [77] successfully implemented
a spherical moving-mass steering mechanism to improve the passive stability of a mini-
coaxial helicopter in hover.

The most effective techniques for managing spacecraft center of mass (CoM) and
attitude trajectory are reaction forces and torques, using internal mass ejection and rotating
masses. Command torques are also generated by reaction forces that do not pass through
the CoM. As such, only propulsion, orbit and attitude control can be achieved [78]. Rotating
masses, on the other hand, produce a variation in angular momentum in any direction,
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consequently commanding a torque for attitude control [78]. The masses are rotated by
electric motors and the corresponding actuators are either fixed-axis variable-speed motors
(reaction wheels) or control moment gyros with gimbaled fixed-speed motors that may
be oriented in any desired direction. At low orbital altitudes of less than about 450 km,
spacecraft suffer from aerodynamic disturbances. Momentum generated by moving-mass
actuation has been observed to counteract the effects of these disturbances and stabilize the
spacecraft [79].

Moving masses are attractive for exo-atmospheric situations, where aerodynamic
forces are not available. Spacecraft can also suffer from wobbling. A study carried out by
Childs [80] identified the movement of astronauts (moving mass) inside the space station as
the main source of wobbling motion. Accordingly, Childs designed and implemented a mo-
mentum exchange mechanism for attitude stabilization with a single moving mass [81,82].
The mechanism was comprised of two cylindrical rigid bodies axially connected by cables
that was effective in generating torque to eliminate wobbling.

When angular velocity is high, docking and reentry of spaceships is unsafe for astro-
nauts. Accidental collisions can cause uncontrolled tumbling, which is also dangerous.
Edwards and Kaplan using a movable mass control concept, designed a mechanism to
convert tumbling motion into simple spin and demonstrated it through simulation. Re-
sults from the study showed that a large space station tumbling after collision was able to
stabilize using a movable mass of about 1% of its total mass.

Due to the low density of the upper atmosphere, aerodynamic controllers such as a
rudder may be inadequate for reentry vehicles [83]. Because aerodynamic control surfaces
are prone to ablation and degradation by hypersonic flow, internal moving-mass actuation
has been used to control reentry vehicles for decades [84]. Gao et al. [85] investigated
the combined use of moving mass and aileron control. Pitch and yaw were controlled
by moving masses along two orthogonal rails, while roll was controlled by ailerons. The
study demonstrated the benefits of combining these control methods. Su et al. [86] also
demonstrated roll control for a non-axisymmetric reentry vehicle using a moving mass.
The moving mass was able to provide robust stability and performance throughout the
flight without the need to modify controller gains. For other applications of moving mass
in air and spacecraft, see [36]. Fluid transfer is another mass-shifting mechanism that has
been used for control. For instance, because the Concorde could fly at supersonic speeds,
changing the internal mass distribution by moving fuel helps with trimming the aircraft in
transonic conditions [87–89].

For aircraft, adjustment of balance has by far been the preferred moving-mass appli-
cation. The choice of mechanism for moving the masses varies with application. Internal
solid mass actuation is done with linear motion in most applications [65,68,70,72,86,90–94]
and along a circular path in some other applications [76,77,95].

From the literature on aircraft control, it is clear that any moving-mass control is an
exception rather than the norm. For automated systems, mass movement has usually
been slow (apart from gyroscope reaction torque-based control), generally dedicated to the
function, usually linear, and typically internal.

1.1.3. Control Design for Multibody Aircraft

One of the many attributes that emerged from the application of internal moving
masses in vehicles is the concept of multiple effectors. The availability of multiple effectors
with overlapping functions introduces the problem of control allocation in an overactuated
system. Feedback control system theory forms the backbone to address the challenges
associated with MIMO systems. By comparing the reference signal to the actual response of
the system, the controller calculates the control effort required [96,97]. The response of an
aircraft system can be represented by nonlinear equations of motion with 6DoF, which can
further be divided into longitudinal and lateral–directional parts, respectively describing
pitching and rolling–yawing motions. Using the dynamics of each of these parts, individual
flight controllers can be developed. Analysis of linear systems contain concepts and tools
that facilitate control of such systems. Compared to nonlinear system-control theory, linear



Appl. Sci. 2022, 12, 1162 5 of 36

system-control theory presents a tractable solution and has been used extensively in aircraft
flight control [96]. The Proportional Integral Derivative (PID) controller is the most widely
used controller in real-world applications, and has been used for flight control as in [98–103].
However, the gain of the controller needs to be iteratively tuned, which consumes time and
effort. Of the more robust control methods, H∞ control and sliding mode control (SMC)
are some popular choices [104–108]. However, H∞ control is conceptually difficult and
challenging to implement because it requires in-depth mathematical knowledge and model
information. On the other hand, SMC is susceptible to chattering due to switching of the
high-frequency control. Dynamic inversion is another common control method used for
flight control [98,109]. Although this method is intended for nonlinear systems, estimation
of the analytical inversion of nonlinear systems online is very difficult.

Optimal control is another control design approach, which has the advantage of being
able to provide the best possible solution for a given cost function. Popular optimal control
schemes include linear quadratic regulator (LQR), linear quadratic integrator (LQI), and
model predictive control (MPC). Such schemes provide the optimal solution, and can also
include multiple loop feedback at the same time [97,102,110,111]. Control Allocation (CA)
is another strategy that has been developed to handle overactuated systems, which answers
the question of how to distribute control action among a redundant set of effectors to
achieve a control design. In control allocation, actuator selection is separated from the
controller task so that the controller only handles virtual control [112]. Common methods
for solving the control allocation problem include optimization-based CA [113–115], direct
CA [116] and daisy chaining CA [117,118]. A detailed description of these methods can be
found in [112,116,119].

1.2. A Dragonfly Biomimetic Aircraft Model

The conceptual SUAV developed in this study is inspired by the impressive flight
characteristics of the dragonfly (of order Odonata, infraorder Anisoptera) [120]. Dragonflies
can both hover and achieve high performance and efficiency in forward flight with cruise
speeds of up to 54 km/h, with some species documented to migrate up to 800 km [121].
Dragonflies have excellent glide properties, with lift-to-drag ratios ranging from 3.5 to over
10 [122–124]. They are characterized by a large head with large eyes, a dense thorax, two
pairs of independently controlled wings and a long abdomen. The abdomen of dragonflies
constitutes a significant fraction (30–35%) of the total mass compared to the wings, which
weigh less than 2% of the total mass. The dragonfly can be considered a tailless aircraft
due to the lack of conventionally arranged aileron/elevator/rudder aerodynamic control
surfaces for roll/pitch/yaw control. Most tailless aircraft are swept, with some dihedral.
Dragonflies in fixed-wing flying mode, however, operate with a nearly straight-wing (zero
quarter-chord sweep) configuration and are convenient insects for this study because they
arguably best represent conventional aircraft. In many ways, they have made the fewest
concessions to terrestrial operation, with limbs so adapted to grappling that they can
hardly be used for walking. Long, unencapsulated, permanently horizontal wings sprout
from a heavily muscled thorax, with most weight concentrated close to the line of bilateral
symmetry. This leads to an anatomical simplicity relative to other flying insects. Comparing
a mosquito to a dragonfly in Figure 1, it is apparent that the number of appendages available
for the control of a mosquito is high.



Appl. Sci. 2022, 12, 1162 6 of 36

(a) (b)
Figure 1. Comparison of a mosquito to a dragonfly: (a) Outline of a Culex mosquito—Culex quinque-
fasciatus. (b) Outline of an Australian Emerald dragonfly—Hemicordulia australiae.

1.3. Scope and Contributions

In this paper, an increased understanding of the various abdominal motions for con-
trol in insect flight is pursued through mathematical modeling and attitude control of a
dragonfly-inspired straight-wing aircraft (DISWA), augmented to include an articulated ab-
domen (see Figure 2b). The flight of some insects consists of both flapping- and fixed-wing
episodes. Since this is an isolated study of the effects of abdominal motions, the approach
used will provide insight into the use of appendage motion for control. Technological
systems have included dedicated active mass-distribution mechanisms for control, and
in most cases, the slowly moving elements have been enclosed within a craft, creating
space constraints. In the case of animals, all cases mentioned had comparatively fast,
multifunctional, rotational or telescoping, external structures with physiological as well as
control functions. This is indicative of the high level of optimization of biological systems,
presenting inspiration for the design of technology.

(a) (b)
Figure 2. Description of the DISWA: (a) Photograph of an Australian emerald dragonfly,
Hemicordulia australiae. (b) Reference points and coordinate systems of the dragonfly-inspired straight-
wing aircraft (DISWA).

The multibody nonlinear equations of motion were developed using the Newton–Euler
method. Flight dynamics involves the use of many reference frames and respective coordi-
nate systems. Changing the reference frame, for example, from inertial to body frame, is
sometimes advantageous. The change of frame is governed by Euler’s generalized transfor-
mation. Classical Euler transformation factors the change in reference frame using ordinary
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time derivatives, where additional terms appear in the equations of motion (EoMs) to account
for the time-dependent coordinate transformations. Using the classical formulation, the
resulting expression is not a tensor due to the extra terms from time-dependent changes
in coordinates, resulting in equations that are often described as complex and cumber-
some [42,50]. The formulation used in this study preserves the tensor formulation using the
rotational time derivative operator, offering a few major advantages. It is tensor-based and
compact. It is in an invariant tensor form, which is independent of any coordinate system
and therefore allows us to derive the mathematical model first without consideration of
coordinate systems. Points and frames are used instead of classical radius vectors and
coordinate systems.

Since the fore and hind wings are combined to form single wings with elevons, the
equations of motion are simplified to a two-body problem; however, the method can
be extended to include more than two bodies. In addition, the model of the articulated
abdomen for control was derived for a specific regime, which allowed the linearization
of the multibody model for stable equilibrium (level cruising flight). A linear quadratic
integral controller (LQI) was designed and implemented to optimally maintain attitude
(pitch and yaw) of the DISWA. The LQI controller offers the advantage of simplicity in
design, and application of multiple-input-multiple-output (MIMO) systems in terms of
control effort allocation. The developed model will enable the study of the flight dynamics
of insect-like flapping aerial vehicles and a determination of the relative importance of
abdominal actuation to insect flight.

The model we will derive treats appendages as mass elements that do not create lift
or drag. Depending on the appendage, this might be a reasonable approximation. Future
work could consider moments from drag on appendages. In this first formulation, it would
replace one approximation (dragless slender bodies) with another (drag on slender bodies).

2. Development of the Multibody Equations of Motion

In this section, the equations of motion (EoMs) for the DISWA are derived using the
simplest case of a two-body model. The dragonfly head/thorax/wings combination is
abstracted as a rigid body and will be referred to as the central body. The central body
typically has six degrees of freedom—three translational and three rotational. The abdomen
is the second rigid body which has three additional degrees of freedom, constrained to
move with respect to the central body about a joint. Additionally, the abdomen will
be interchangeably referred to as the tail in this paper. It is common practice to derive
equations of motion referenced to the combined center of gravity (cg) of an aircraft; however,
to properly reflect the effects associated with dynamic changes in combined cg position,
the dynamic equations presented in this study are referenced to point b, which is the center
of mass of the central body.

2.1. Preliminaries

This section briefly introduces the concept of the rotational time derivative operator,
which is used throughout the text. A brief description is presented below; more details
about the rotational time derivative and its application in modeling can be found in [125].
Consider two arbitrary frames A and O, with relative angular velocity of ωOA, and a
vector a, associated with frame A. For clarity, a vector associated with a frame implies it
is constant, as it is fixed relative to the associated frame. In addition, vector a transforms
similar to a first-order tensor given the coordinate systems of frames A and O as in

[a]O = [R]OA[a]A (1)

where [R]OA is the transformation matrix from the coordinate system of frame A to frame
O. Transformation matrices are applicable to second-order tensors (equivalent to matrices)
as well.
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Given that the time rate of change of vector a with respect to frame A is given by [ da
dt ]

A,
the time rate of change of vector a, expressed in frame O, can be obtained by applying the
classical Euler transformation using ordinary time derivatives as[

da
dt

]A

=

[
da
dt

]O

+ ΩOA a (2)

where ΩOA is the skew symmetric matrix of the angular velocity vector ωOA. The resulting
expression on the right-hand side (RHS) of Equation (2) does not preserve the tensorial
formulation due to the time-dependent nature of the derivative of vector a.

To preserve the tensor formulation during Euler transformation, a time operator, called
the rotational time derivative, is used instead of the ordinary time derivative, and was first
introduced in Wrede’s textbook [126] on vector and tensor analysis. The operator depends
only on a frame of reference such that the rotational time derivative of a vector a regarding
frame A is expressed as DA a. A change in reference frame of vector a from frame A to O
is obtained through Euler transformation [125] with the rotational time derivative, using the
following relationship

DAa = DOa + ΩOAa (3)

Thus, the vector a can be expressed in the coordinate system of any frame due to the
tensor properties the rotational time derivative possesses as in

[DA a]O = [R]OA[DA a]A (4)

The time rate of change of vector a with respect to its associated frame A can be written
as [DA a]A. It is important to note that rotational time derivatives expressed in their own
associated frame become ordinary time derivatives ready for numerical integration as in

[DAa]A =
da
dt

. (5)

In the case of a multibody aircraft, the use of fixed body reference frames and displace-
ment vectors between points in the associated reference frames enables the equations to be
derived in tensor form, and to be both compact and coordinate-independent (invariant).

2.2. Reference Frames and Coordinate Systems

The reference frames and associated coordinate systems used for the development of
equations of motion are as follows and shown in Figure 2b.

(a) The inertial reference frame I{XI , YI , ZI}: The Earth frame is assumed to be the inertial
frame with its origin, I fixed at an arbitrary point relative to the Earth’s surface. The
orientation of the inertial frame is such that the XI axis is positive facing North, YI
axis is positive facing East and ZI axis is positive downwards towards Earth’s center
of gravity.

(b) The body-fixed reference frame B{xB, yB, zB}: The origin is located at the center of
mass of the central body, point b. The body frame is oriented such that xB axis lies on
the plane of symmetry of the aircraft and points in the forward direction towards the
head of the aircraft. The yB axis is perpendicular to the xB axis, pointing towards the
right side of the aircraft and the zB axis is positive downwards and lies on the plane
of symmetry.

(c) The abdominal/tail reference frame T{xT , yT , zT}: This reference frame originates
from the center of mass of the tail with its orientation the same as that of the body
frame coordinate system when the tail is not deflected.
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2.3. Reference Points

Reference points are introduced for each individual part of the aircraft model and are
shown in Figure 2b. The reference point for the central body is its center of mass, point
b, associated with frame B. The reference point for the tail is its center of mass, point t,
associated with frame T. The tail joint, j, serves as an intermediate reference point. It will
be mostly associated with frame B except in cases where it is stated to be associated with
frame T. The center of mass of the whole aircraft (rigid body C) is located at point c and is
associated with frame B.

2.4. Orientation and Transformation Matrices

The numerical simulation framework will rely on the appropriate transformation
matrices to ultimately yield the EoMs in the body-fixed coordinate system. The standard
transformation matrices of a rotation angle µ, about x, y and z axes of the coordinate
systems are expressed as

Rµ|x =

1 0 0
0 c µ s µ
0 −s µ cµ

Rµ|y =

c µ 0 −s µ
0 1 0

s µ 0 cµ

Rµ|z =

 c µ s µ 0
−s µ c µ 0

0 0 1

 (6)

where s µ and c µ represent the sin and cosine functions of µ, respectively. Given any
two arbitrary coordinate systems, the transformation matrices can be obtained using
relationships between the rotation angles and axes of rotation in Equation (6).

In this paper, the attitude of the central body with respect to the inertial frame is
described by the Euler angles ψ (yaw), θ (pitch) and φ (roll). The transformation matrix from
inertial to body coordinate system, [R]BI , is obtained using the z-y-x rotational sequence of
the Euler angles as in

[R]BI = Rψ|z Rθ|y Rφ|x (7)

The transformation matrix from body to inertial coordinate system is obtained as the
transpose of the [R]BI matrix, [R]IB = [R′]BI . Euler angles ψT (tail yaw), θT (tail pitch) and
φT (tail roll) are used to specify the orientation of the abdomen relative to the central body.
The transformation matrix from the body to tail coordinate system also follows the z-y-x
rotational sequence as in

[R]TB = RψT |z RθT |y RφT |x (8)

2.5. Kinematics

The velocities of each of the bodies will be defined in this section using the rotational
time derivative operator and displacement vector between points. The velocities are ulti-
mately expressed in the preferred B frame. Given that the displacement vector of the central
body relative to the inertial frame is sbI , the translational velocity of the central body regard-
ing the inertial frame is expressed as DIsbI . The translational velocity of the central body in
the body frame can then be obtained using the inertial to body transformation matrix

[DBsbI ]
B = [R]BI [DIsbI ]

I (9)

where the term [DBsbI ]
B = [u, v, w], and u, v, w are the body velocity components.

Using the abdominal joint j as the reference point, the displacement of the joint with
respect to the inertial frame can be expressed as a summation of displacement vectors as in

sjI = sjb + sbI (10)

Hence, the relative translational velocity of the joint regarding the inertial frame is
expressed as

DIsjI = DIsjb + DIsbI (11)
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Since DIsjb is not readily available for measurement, a simpler expression is established
by applying a Euler transformation of DIsjb . Equation (11) becomes

DIsjI = DBsjb + ΩBIsjb + DIsbI (12)

Noting that DBsjb = 0, since sjb is associated with frame B, simplifies Equation (12) to

[DIsjI ]
I = ΩBIsjb + DIsbI (13)

Similar to Equation (9), the abdominal joint relative velocity can be obtained using the
inertial to body transformation matrix.

Rotational kinematic equations are mathematical representations of the relationships
between the rate of change of kinematic parameters and the angular velocities. Let the
Euler angle derivatives for the central body and the abdomen be (φ̇, θ̇, ψ̇) and (φ̇T , θ̇T , ψ̇T),
respectively. The angular velocity of the central body relative to the inertial frame, expressed
in the B frame, is introduced as [ωBI ]B = [p, q, r], while that of the abdomen relative to
the body frame and expressed in the T frame is introduced as [ωTB]T = [pT , qT , rT ]. The
relationships between the rate of change of kinematic parameters and the angular velocities
follow the sequence of rotations and are calculated according to

[ωBI ]B =

φ̇
0
0

+ Rφ|x

0
θ̇
0

+ Rφ|x Rθ|y

0
0
ψ̇

 (14)

[ωTB]T =

φ̇T
0
0

+ RφT |x

 0
θ̇T
0

+ RφT |x RθT |y

 0
0

ψ̇T

 (15)

2.6. Multibody Equations of Motion

Next, the equations of motion (EoMs) are derived using Newtonian and Eulerian
mechanics. The equations will be derived using points defined in their associated reference
frames and related using invariant displacement vectors. The approach presented in this
section allows the tensor nature of the equations to be preserved. EoMs are required for
translational, rotational, and abdominal motion.

2.6.1. Translational Dynamics

For a system of k clustered rigid bodies, the translational dynamic equations are
developed as the sum of their individual contributions, considering their respective centers
of mass at Bk, with respect to the inertial frame I as follows [38,125]:

DI
(

∑
k

mBk DIsBk I

)
= ∑

k
Fk (16)

where ∑k Fk is the contributing sum of all the forces acting on the aircraft from each rigid
body, which will be discussed in Section 2.7.

Recall three previously introduced reference points b, j and t. Separating the individual
contributions of the central body and the tail with sBk I = sbI + stI and stI = stj + sjb + sbI gives

DI
(

mBDIsbI + mT DIstj + mT DIsjb + mT DIsbI

)
= ∑

k
Fk (17)

The first term on the left-hand side of Equation (17) represents the contribution of the
central body, while the second, third and fourth terms represent the contributions of the tail.
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Merging the first and fourth terms of the left-hand side of Equation (17) and introducing
DIsbI = V I

b results in

m DIV I
b︸ ︷︷ ︸

Term I

+ mT DIstj︸ ︷︷ ︸
Term II

+ mT DI DIsjb︸ ︷︷ ︸
Term III

= ∑
k

Fk︸ ︷︷ ︸
Term IV

(18)

Since Term I of Equation (18) relates to the body frame, we use the Euler transformation
to represent this term in the body-fixed frame as

m DIV I
b = m (DBV I

b + ΩBIV I
b ) (19)

Term II of Equation (18) relates to the tail frame, therefore, the rotational time deriva-
tive DIstj is transformed to the tail frame, using Equation (3) as in

mT DI DIstj = mT DI(DTstj + ΩTIstj) (20)

The vector stj is constant in the tail frame, hence, DTstj = 0 in Equation (20). Addition-
ally, rewriting ΩTI = ΩTB + ΩBI results in

mT DI DIstj = mT DI(ΩTBstj + ΩBIstj) (21)

In addition, the rotational time derivatives of ΩTB and ΩBI should be transformed
into their associated frames, which are the tail and body frames, respectively. Therefore,
Equation (21) becomes

mT DI DIstj = mT [DT(ΩTBstj) + ΩTIΩTBstj + DB(ΩBIstj) + ΩBIΩBIstj ]

= mT

[
DTΩTBstj + ΩTBDTstj + ΩTIΩTBstj

+DB(ΩBIstj) + ΩBI DBstj + ΩBIΩBIstj

]
(22)

Again, since DTstj = 0, the second term on the RHS of Equation (22) vanishes.
Additionally, rewriting ΩTI = ΩTB + ΩBI and using the Euler transformation DBstj =

DWstj + ΩTBstj results in

mT DI DIstj = mT
[

DTΩTBstj + ΩTBΩTBstj + ΩBI DTstj + DBΩBIstj

+2ΩBIΩTBstj + ΩBIΩBIstj

]
(23)

However, DTstj = 0; therefore, the final expression for Term II in Equation (18) is

mT DI DIstj = mT
[ DTΩTBstj + ΩTBΩTBstj

+DBΩBIstj + 2ΩBIΩTBstj + ΩBIΩBIstj

]
(24)

Term II I of Equation (18) should be transformed to the body frame as

mT DI DIsjb = mT DI(DBsjb + ΩBIsjb) (25)

Considering DBsjb = 0 since sjb is fixed in the body frame and transforming the
rotational derivative to the body frame gives

mT DI DIsjb = mT [DBΩBIsjb + ΩBIΩBIsjb ] (26)



Appl. Sci. 2022, 12, 1162 12 of 36

Finally, Term IV of Equation (18) represents the sum of all external forces acting on the
aircraft. Substituting Equation (19), (24) and (26) into Equation (18) gives the translational
dynamic equations of motion in an invariant tensor form as

m (DBV I
b + ΩBIV I

b ) + mT

[
DTΩTBstj + ΩTBΩTBstj + DBΩBI(stj + sjb)

+ΩBIΩBI(stj + sjb) + 2ΩBIΩTBstj

]
= ∑

k
Fk (27)

To use this equation in a simulation framework, all terms in Equation (27) must be
written as body coordinate frames using transformation matrices.

m
(
[V̇ I

B]
B + [ΩBI ]B[V I

b ]
B
)
+ mT

(
[R]BT

(
[Ω̇TB]T [stj]

T + [ΩTB]T [ΩTB]T [stj]
T)
)

+ [Ω̇BI ]B([R]BT [stj]
T + [sjb]

B) +
(
[ΩBI ]B [ΩBI ]B([R]BT [stj]

T + [sjb]
B)
)

+
(

2 ΩBI [R]BT([ΩTB]T [stj]
T)
))

= ∑
k
[Fk]

B

(28)

2.6.2. Rotational Dynamics

For a system of k clustered rigid bodies, the rotational dynamic equations are devel-
oped as the sum of their individual contributions based on Euler’s law, as follows [38,125]:

∑
k

DI
(

IBk
Bk

ωBk I

)
︸ ︷︷ ︸

Term I

+∑
k

DI
(

mBk SBk I DIsBk I

)
︸ ︷︷ ︸

Term II

= ∑
k

Mk + ∑
k

SBk I Fk (29)

where the expression ∑k Mk + ∑k SBk I Fk on the right-hand side (RHS) of Equation (29) is
the contributing sum of all the moments acting on the aircraft from each rigid body, which
will be discussed in Section 2.7. For the system being considered in this study, the tail and
body contributions are separated in Term I in Equation (29) as

∑
k

DI
(

IBk
Bk

ωBk I

)
= DI

(
IB
B ωBI

)
+ DI

(
IT
T ωT

)
(30)

Applying the chain rule and Euler transformation to each term on the RHS of
Equation (30) leads to

∑
k

DI
(

IBk
Bk

ωBk I

)
= ωBI DB IB

b + IB
b DBωBI + ΩBI IB

b ωBI

+ωTI DT IT
t + IT

t DTωTI + ΩTI IT
t ωTI

(31)

Since the moment of inertia of the body and wing are constant in their correspond-
ing frame, the first and fourth terms on the RHS of Equation (31) vanish. Additionally,
considering DTωTI = DTωTB + DTωBI and ΩBT = −ΩTB, and performing the Euler
transformation to establish DTωBI in the body frame results in

∑
k

DI
(

IBk
Bk

ωBk I

)
= IB

b DBωBI + ΩBI IB
b ωBI

+ IT
t

(
DTωTB + DBωBI −ΩTBωBI

)
+

(
(ΩTB + ΩBI)IT

t (ω
TB + ωBI)

) (32)
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Applying the chain rule to Term II in Equation (29) yields

∑
k

DI
(

mBk SBk I DIsBk I

)
= ∑

k
mBk

(
DISBk I DIsBk I + SBk I DI DIsBk I

)
(33)

The cross-product of the vector derivatives is zero; therefore, the first term on the RHS
of Equation (33) is zero. Additionally, the body and abdominal contributions are separated,
leading to

∑
k

DI
(

mBk SBk I DIsBk I

)
= mBSBI DI DIsbI + mTStI DI DIstI (34)

Using Euler transformation, the first term on the RHS of Equation (34) becomes

mBSbI DI DIsbI = mBSbI (DBV I
b + ΩBIV I

b ) (35)

The second term on the RHS of Equation (34) could be developed using the vector
expansion stI = stj + sjb + sbI and performing Euler transformation, results in

mTStI DI DIstI = mTStI DI
(

DTstj + ΩTIstj + DBsjb + ΩBIsjb + V I
b

)
(36)

As stj and sjb are constant in their corresponding frames, the first and third terms of
the equation above vanish. Additionally, the rotational time derivatives of the last two
terms can be transformed to the body frame as follows

DI(ΩBIsjb) = DBΩBIsjb + ΩBIΩBIsjb and DIV I
b = DBV I

b + ΩBIV I
b (37)

Only the rotational derivative of the second term on the RHS of Equation (36) needs to
be calculated. Using the expansion of the angular velocity tensor ΩTI = ΩTB + ΩBI and
performing the Euler transformation results in

DI(ΩTIstj

)
= DTΩTBstj + ΩTIΩTBstj + DB(ΩBIstj) + ΩBIΩBIstj (38)

ΩTI in the second term of RHS the above equation should be substituted using
ΩTI = ΩTB + ΩBI . For the third term on the RHS of the above equation, we take the rota-
tional time derivative of the term, apply the Euler transformation, DBstj = DTstj + ΩTBDBstj

and consider that DTstj = 0. These simplify the third term to

DB(ΩBIstj) = DB(ΩBIstj) + ΩTIΩTBstj (39)

Substituting Equation (39) into Equation (38) and then substituting Equations (37) and (38)
into Equation (36) gives

mTStI DI DIstI = mTStI

[ DTΩTBstj + ΩTBΩTBstj

+DBΩBIstj + 2ΩBIΩTBstj + ΩBIΩBIstj

+DBΩBIsjb + ΩBIΩBIsjb + DBV I
b + ΩBIV I

b

]
(40)
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Finally, substituting Equations (35) and (40) into Equation (34) and further substituting
Equations (32) and (34) into Equation (29), we obtain

mTStI

[ DTΩTBstj + ΩTBΩTBstj

+DBΩBIstj + 2ΩBIΩTBstj + ΩBIΩBIstj

+DBΩBIsjb + ΩBIΩBIsjb + DBV I
b + ΩBIV I

b

]

+ IT
t

(
DTωTB + DBωBI −ΩTBωBI

)
+

(
(ΩTB + ΩBI)IT

t (ω
TB + ωBI)

)
+ IB

b DBωBI + ΩBI IB
b ωBI + mBSbI (DBV I

b + ΩBIV I
b ) = ∑

k
Mk + ∑

k
SBk I Fk

(41)

The second term on the RHS of this equation can be written as the sum of contributions
from individual parts

∑
k

Sbk I Fk = SbI FB +
(
STB + SbI

)
FT = SbI ∑

k
Fk + Stb FT (42)

The expression for ∑k Fk can be obtained from Equation (27). Multiplying both sides
of Equation (27) by SbI and inserting into Equation (34) results in corresponding terms
being canceled from both sides. Therefore, the rotational dynamic equations of motion in
an invariant tensor form are

mTStb

[ DTΩTBstj + ΩTBΩTBstj

+DBΩBI(stj + sjb) + ΩBIΩBI(stj + sjb)

2ΩBIΩTBstj + DBV I
b + ΩBIV I

b

]
+ IT

t

(
DTωTB + DBωBI −ΩTBωBI

)

+

(
(ΩTB + ΩBI)IT

t (ω
TB + ωBI)

)
+ IB

b DBωBI + ΩBI IB
b ωBI = ∑

k
Mk + Stb FT

(43)

For numerical simulations, these equations must be expressed in the body frame
coordinate system as follows

mT([R]BT [Stj]
T + [Sjb]

B)

(
[R]BT

(
[Ω̇TB]T [stj]

T + [ΩTB]T [ΩTB]T [stj]
T
)

+ [Ω̇BI ]B([R]BT [stj]
T + [sjb]

B) +
(
[ΩBI ]B [ΩBI ]B([R]BT [stj]

T + [sjb]
B)
)

+
(

2 ΩBI [R]BT([ΩTB]T [stj]
T)
)
+

(
[V̇ I

B]
B + [ΩBI ]B[V I

b ]
B
))

+ [R]BT [IT
t ]

T
(
[ω̇TB]T + [R′]BTω̇BI − [ΩTB]T [R′]BT [ωBI ]B

)
+

(
([R]BT [ΩTB]T + [ΩBI ]B)[R]BT [IT

t ]
T([ωTB]T + [R′]BT [ωBI ]B)

)
+ [IB

b ]
B[ω̇BI ]B + [ΩBI ]B[IB

b ]
B[ωBI ]B = ∑

k
[Mk]

B +

[
[Stb ]

B[FT ]
B

]

(44)

2.6.3. Abdominal Motion

The 3 DoF actuation of the abdomen can be considered to be three revolute joints for
each DoF. Consider the pitch angular motion θT of the abdomen about point j, relative to
the body. The corresponding pitch angular motion is given by

IT
jy θ̈T + κθ̇T = τly + τay (45)
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where IT
jy is the mass moment of inertia of the abdomen about y-axis at the joint j, and κ is

the damping constant. τly is the load torque due to gravity and τay is the torque applied at
the joint to actuate the abdomen.

2.7. Forces and Moments

The resultant forces and moments acting on the aircraft, expressed as contributions from
the central body and the abdomen, are represented by the RHS of Equations (28) and (43)
respectively. The forces and moments acting on the aircraft are due to aerodynamics
(FA, MA), gravity (FG, MG), and propulsion (FP, MP), which ultimately must be represented
in the body frame coordinate system as follows

∑
k
[Fk]

B = [FA]
B + [FG]

B + [FP]
B (46)

∑
k
[Mk]

B +

[
[stb ]

B × [FT ]
B

]
= [MA]

B + [MG]
B (47)

The propulsive force is assumed to act parallel to the aircraft xB axis and produces no
moments, which yields

[FP]
B =

[
Tn
0
0

]
(48)

The resultant gravitational forces are estimated by summing the contributions from
the central body and the abdomen

[FG]
B = [R]BI

[ 0
0

m g

]
(49)

where g is the acceleration due to gravity.
As the gravitational force acting on the central body produces no moment, the resultant

gravitational moment is produced by the abdomen

[MG]
B = ([R]BT [stj]

T + sjb)× [R]BI

[
0
0

mT g

]
(50)

The resultant aerodynamic forces and moments produced for fixed-wing aircraft are
well established [96,127] and are represented as

[FA]
B =

1
2

ρV2Sre f

[
Cx
Cy
Cz

]
and [MA]

B =
1
2

ρV2Sre f

Cl bre f
Cm cre f
Cm bre f

 (51)

where ρ is the density of air, cre f , bre f and Sre f are the respective reference chord, span and
area of the wing. C(x,y,z,l,m,n) are the dimensionless aerodynamic coefficients.

2.8. Control Effectors

For propulsion, the control input is the thrust (Tn). The control inputs for abdominal
motion are the abdominal mass angular deflections (φT , θT , ψT), relative to the body frame.
The aerodynamic control surfaces, which are the left and right elevons, denoted by ηl and
ηr respectively, function as elevators or ailerons, depending on the desired flight regime.
The combined deflections of the elevons as elevators δe or ailerons δa are according to [127](

δe
δa

)
=
(

1 1
−1 1

)(
ηr
ηl

)
(52)

Following the sign convention for control effectors in flight dynamics [127], where
applicable, a downward deflection is positive and a deflection to the right is positive, with
negative to the left.
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3. Control System Design

In this section, the control system is defined for a linearized system. Let the control
objective be for the output y to track a constant reference signal r, such that y = r is reached
asymptotically. The high-level block diagram of the control system is shown in Figure 3.

Figure 3. Linear quadratic integral (LQI) control system block diagram.

3.1. System Description

The nonlinear equations of motion have been derived in Sections 2.6 and 2.7, which
can be represented as a function of states x and inputs u in the form,

ẋ = f (x, u)

y = g(x, u)
(53)

where x ∈ Rn is state of the system, u ∈ Rm and y ∈ Rp is the output of the system.
Linearizing the nonlinear model developed around a steady-state condition (trimmed

flight) produces a linear system of the form

ẋ = Ax + Bu

y = Cx + Du
(54)

where matrix A ∈ Rn×n is the system matrix, B ∈ Rn×m is the input matrix, C ∈ Rl×n is
the output matrix, D ∈ Rl×m is the feedthrough matrix, and (A,B) can be stabilized. It is
assumed that all the states x are measurable.

Controllability and Observability

In designing linear control systems, controllability and observability of the system
should be investigated. Controllability determines the possibility of achieving the desired
response of the system states x using the input u. To check the controllability (C) of a
system, the matrix given in Equation (55) is used. If the matrix is full rank, the system is
controllable [96].

C = [B, AB, A2B, · · · , An-1B] (55)

Observability (O), on the other hand, is to know the possibility of determining all
the states from the output and input signals. The system is observable if the matrix in
Equation (56) is full rank [96].

O =


C

CA
...

CAn-1

 (56)

3.2. Optimal Linear Quadratic Regulator Control Theory

The control law for an optimal linear quadratic regulator (LQR) is presented in this
section. For the system described in Equation (54), consider a cost function J defined as

J =
∫ ∞

0
(x′Qx + u′R u)dt
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where Q = Q
′
, Q ∈ Rn×n is a positive semidefinite weighting matrix for the states and

R = R
′
, R ∈ Rm×m is a positive definite weighting matrix for the control inputs. The

optimal control input is given by

u(t) = −Kx(t)

where the gain K = R−1B
′
P

(57)

P represents the unique positive semidefinite and symmetric solution to the Algebraic
Riccati Equation (ARE)

A′P + PA + Q− PBR−1B′P = 0 (58)

If the pair (A, B) is stabilizable and the pair (A, Q) is detectable, then Equation (58)
has a unique positive definite solution P such that the optimal control

u = −R−1B
′
Px (59)

is asymptotically stabilizing [128,129].

3.3. Linear Quadratic Integral (LQI) Control

Since the aim of the controller is to track a non-zero reference input, integral control
is also added to improve the tracking performance of the LQR controller, hence the term
linear quadratic integral (LQI) control. LQI is, therefore, an augmented version of the
LQR controller that designs an optimal controller, using full state feedback to optimize the
quadratic cost function. Additional states are introduced into the system as the integrals of
the error e, between the reference command and the actual output of the system. For the
output equation in Equation (54), the LQI state feedback control law is given by

u = −K[x; xi] = −Kz (60)

where z are the states of the augmented system and xi are the additional integral states.
Upon introducing the integral states, the state–space representation of the augmented
system becomes [

ẋ
ẋi

]
=
[

A 0
−C 0

][
ẋ
ẋi

]
+
[

B
−D

]
u (61)

Equation (61) above implies that{
ż = Âaugz + B̂augu
y Cx + Du

(62)

Hence, the general cost function for the augmented system is the given by

J =
∫ ∞

0
(z′Qz + u′Ru)dt

where z, u, Q, and R represent the augmented state vector, control vector, state weight
matrix and input weight matrix, respectively. For the augmented system, Q and R are
design parameters that can be adjusted to meet the design requirements of the controller.

4. Simulation and Results

The flight dynamics model of the conceptual DISWA was simulated in the MAT-
LAB/Simulink environment [130].

4.1. Aircraft Specification

The DISWA model used in this study was obtained from a previous study [131]. The
properties of the aircraft are summarized in Table 1. The aerodynamic properties of the
aircraft are assumed to be solely produced by the wings. The Athena Vortex Lattice (AVL)
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tool developed by Drela [132] was used to obtain the aerodynamic data for the DISWA
model. AVL produces acceptable aerodynamic data that has been used for real aircraft
applications [133]. See Appendix A for the AVL geometry file used in this study.

Table 1. Aircraft model physical properties [131].

Parameter Value Parameter Value

mB (kg) 0.325 mT (kg) 0.06
Body length, lB (m) 0.3 Tail length, lTmax (m) 0.4

Max. body diameter, dBmax (m) 0.14 Tail diameter, dT (m) 0.05
Ixx

B
b (kg·m2) 0.00187 bre f (m) 1.4

Iyy
B
b (kg·m2) 0.01117 cre f (m) 0.19434

Izz
B
b (kg·m2) 0.00934 Sre f (m2) 0.26865
cgB

b (m) [−0.064; 0; 0.003] ARP (m) [0.025; 0; 0]

4.2. Model Validation: Single-Body vs. Multibody

The verification/validation of the proposed multibody model presented in
Sections 2.6 and 2.7 are presented in this section. The states and control inputs for the
aircraft considered are:

x = (u, v, w, p, q, r, φ, θ, ψ, X, Y, Z)T , (63)

u = (δe, δa, Tn, φT , θT , ψT)
T , (64)

The single-body and multibody model of the same aircraft should present the same
longitudinal trim results. The translational and rotational flight dynamics equations of
motion for a single rigid body not referenced to the center of mass have been derived by
Bacon and Gregory in [134] as

m
(
[V̇ I

b ]
B + [ΩBI ]B[V I

b ]
B
)
+

(
[Ω̇BI ]Bm[scb]

B
)

+

(
[ΩBI ]B ([ΩBI ]Bm[scb]

B)

)
= [F]B

(65)

(
m[Scb]

B[V̇ I
b ]

B
)
+

(
m[ΩBI ]B([Scb]

B[V I
b ]

B)

)
(

m[V I
b ]

B([ΩBI ]B[Scb]
B)

)
+ [IC

b ]
B[ω̇BI ]B

+

(
[ΩBI ]B[IC

b ]
B[ωBI ]B

)
= [M]B +

[
[Scb]

B[F]B
] (66)

The longitudinal trim results of the single-body model in [134] and the multibody
model presented in this paper are calculated and compared. For the single-body model, the
aircraft rotation of the abdomen was not considered during the estimation for longitudinal
trim. The longitudinal trim using the single-body model can be described as follows: for
a given airspeed V and a fixed abdominal pitch angle θT , the objective is to estimate the
appropriate longitudinal pitch angle θ and controls elevator δe and thrust Tn, to make the
longitudinal rates, u̇, ẇ, q̇ and ḣ approach zero.

In the case of the multibody model, the longitudinal trim can be described as follows:
for a given airspeed V and a fixed abdominal pitch angle θT , the objective is to estimate the
appropriate longitudinal pitch angle θ and controls, elevator δe and thrust Tn, required to
keep the abdomen pitch angle θT at a given value to make the longitudinal rates u̇, ẇ, q̇, ḣ
and [ω̇TB]T approach zero. Because the abdominal motion dynamics are included in the
multibody model, the torque τay required to keep the abdominal pitch inclination angle at
the specified value can also be estimated.
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The longitudinal trim problem is solved in MATLAB for an airspeed V0 = 10 m/s, a
height H0 = 100 m and abdominal pitch inclination angles θT0 = 0,−10 and −30◦. The
results are presented in Table 2.

Table 2. Single-body vs multibody trim results at steady cruise trim condition.

V0 (m/s) H0 (m) θT0 (◦) Model Type θ0 (◦) δe0 (◦) Tn0 (N) τay0 (Nm)

10 100

0 Single-body −11.35 0.228 0.679 -
Multibody −11.35 0.228 0.679 −0.235

−10 Single-body −10.66 0.0707 0.683 -
Multibody −10.66 0.0707 0.683 −0.232

−30 Single-body −6.02 −0.96 0.708 -
Multibody −6.02 −0.96 0.708 −0.204

4.3. Linearized Aircraft Model

Applying the Jacobian linearization approach or small disturbance theory [96], at a
steady-state condition (trimmed flight), the linearized state–space model of the aircraft was
obtained. Since the aim of the proposed work is to track a reference pitch angle and yaw
angle, the linearized model was decoupled into longitudinal and lateral models. The same
servomotor was used for abdominal pitch and yaw motion control.

The aircraft trim data corresponding to steady cruise flight condition was estimated for
an airspeed of V0 = 10 m/s and height H0 = 100 m for an undeflected abdomen. For steady
cruise, the aircraft flies with constant translational and angular velocity components in the
body frame, (u̇, v̇, ẇ, ṗ, q̇, ṙ = 0). Furthermore, (v, p, r, φ, ψ = 0). Only the elevator δe and
thrust Tn were used as control inputs to trim the aircraft. MATLAB’s trim algorithm that
uses sequential quadratic programming was used to obtain the trim solution. The resulting
trimmed steady cruise flight condition parameters are presented in Table 3. Simulation
constraints on states and control inputs are given in Equation (67).

The nonlinear model was trimmed about steady cruise flight condition (v, p, q, r, φ, ψ = 0)
with Matlab’s trim algorithm that uses sequential quadratic programming.

Table 3. Aircraft initial state and control inputs at steady cruise trim condition.

State (x0) Control Input (u0)
u0 = 10 (m/s) p0 = 0 (◦/s) δe0 = 0.228 (◦) φT0 = 0 (◦)
v0 = 0 (m/s) q0 = 0 (◦/s) δa0 = 0 (◦) θT0 = 0 (◦)

w0 = −0.198 (m/s) r0 = 0 (◦/s) Tn0 = 0.68 (N) ψT0 = 0 (◦)
X0 = 0 (m) φ0 = 0 (◦)
Y0 = 0 (m) θ0 = −1.13 (◦)

Z0 = −100 (m) ψ0 = 0 (◦)

{
|α| ≤ 20 ◦, |β| ≤ 30 ◦, |p| ≤ 30 ◦/s, |q| ≤ 30 ◦/s, |r| ≤ 30 ◦/s
δe, δa,∈ [−20, 20] (◦), θT , ψT ∈ [−60, 60] (◦)

(67)

The linearization algorithm in MATLAB was also used to linearize the trimmed
aircraft. The longitudinal part of the linearized model consists of the following states:
xlong = [u w q θ]′, and control inputs: ulong = [δe θT ]

′. The lateral–directional part consists
of the following states: xlat = [v p r φ ψ]′, and control inputs: ulong = [δa φT ]

′. The
longitudinal state and control matrices, as well as the lateral state and control matrices are
given in Equations (68) and (69), respectively.

Along =

−0.39 0.18 0.13 −9.81
−3.16 −26.62 6.82 0.26
−7.80 −67.54 −8.74 0.64

0 0 1 0

, Blong =

 0 0
−2.2 1.65
−6.43 −190.03

0 0

 (68)
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Alat =


−0.25 −0.32 −9.91 12.22 0
−14.09 −85.94 12.47 0 0

0.45 −0.014 −0.49 −23.33 0
0 1 −0.02 0 0
0 0 1 0 0

, Blat =


−0.033 −7.11
−18.71 0

0.32 −137.27
0 0
0 0

 (69)

4.4. Effect of Abdomen Mass on Longitudinal Stability

Static stability in aircraft design provides insight into the flying qualities of an aircraft.
It is the initial tendency of an aircraft to return to its equilibrium state when disturbed [96].
Where the main focus is longitudinal motion, static stability theory can be applied to
cruise conditions, as well as to quasi- steady maneuvers. A way to determine the static
longitudinal stability of an aircraft is through the change in pitching moment with lift, dCm

dCL
.

This derivative must be negative for a stable aircraft. In addition, the pitching moment
at zero angle of attack must be positive. The same condition applies using the change
in pitching moment with angle of attack as an indicator in some cases, i.e., dCm

dα < 0 is
indicative of a stable aircraft [96,135]. Another measure of static stability is the static margin
(SM), which will be used to analyze the static stability of the aircraft in consideration in
this study due to its simplistic and intuitive nature. The SM of an aircraft is given by [136]

SM =
XNP − Xcgm

cre f
, (70)

where XNP is the neutral point (NP), and Xcgm is the center of gravity (cg) position of the
whole aircraft along xB axis.

Generally, if cg is ahead of the NP, then SM is positive and the aircraft is stable. The
larger the SM, the more stable and less maneuverable the aircraft is. However, if the cg
is behind the NP, resulting in a negative SM, the aircraft is unstable in pitch, making it
difficult or impossible to fly manually [136]. The SM value is usually chosen based on the
desired performance of the aircraft in terms of handling qualities and usually ranges from
(10% ≤ SM ≤ 5%), for piloted aircraft. The neutral point of the DISWA was estimated
as (XNP = 0.046 m) in AVL [137–139].

The eigenvalues of the state matrix of a linearized model also provide insight into the
dynamic stability of the system. The effect of abdominal mass of the aircraft of interest was
investigated. Five abdominal mass values were considered to be a percentage of central
body mass of the aircraft, namely 6%, 11%, 16%, 21% and 26%, such that they resulted
in negative and positive SM values. Each time, the aircraft was trimmed and linearized
about steady cruise flight condition for an airspeed of V0 = 10 m/s and height H0 = 100 m
with an undeflected abdomen. The obtained eigenvalues of the various A matrices are
summarized in Table 4.

Table 4. Effect of abdominal mass as a percentage of central body mass on longitudinal stability.

Percentage of Central
Body Mass (%) Static Margin (%) Eigenvalues Dynamic Stability

6 37.3 −20.80 ± 28.21i Stable−0.22 ± 0.95i

11 24.6 −18.81 ± 23.02i Stable−0.20 ± 0.69

16 9.5 −18.00 ± 20.39 Stable−0.16 ± 0.41

21 −2.7
−17.52 ± 18.91i

Unstable−0.34
0.06

26 −13.9
−17.24 ± 17.77i

Unstable−0.55
0.385
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4.5. Control Design

For control in this study, the abdomen has been constrained to 2 DoF, relative to the
central body: the abdominal pitch and yaw motions. In this section, the LQI controllers
for lateral and longitudinal control are presented. For the pitch or yaw angle controller,
it is desired that the reference value of the pitch angle θre f or yaw angle ψre f be tracked
with an overshoot of less than 4%, a steady-state error of less than 1%, and a settling time
of less than 4 s. Commanding the yaw angle instead of the roll angle achieves turning by
generating a sideslip angle, which then generates a lateral force to turn the aircraft. From
a practical standpoint, it is desirable that all states and control effectors remain within
physical limits. Additionally, the aircraft was assumed to be cruising at a constant altitude
and airspeed.

4.5.1. Longitudinal Control Simulation Study

The eigenvalues of the Along matrix of the pre-augmented state–space model shown
in Equation (68) indicate that the system is stable since all real parts of the eigenvalues
are negative

eig(Along) =
[−17.73± 19.58i
−0.15± 0.24i

]
(71)

For the longitudinal controller, the variable being controlled is the pitch angle; hence,
(ylong = eθ), furthermore, it is assumed that changes in θ do not affect the speed of the
aircraft. Therefore, the corresponding axial velocity u components are ignored. In addition,
thrust is assumed to be constant, therefore, the effects of changes in thrust are ignored. The
zB axis velocity w was replaced with the angle of attack α using the relationship (α = w

u0
).

The longitudinal augmented states considered are zlong = [α q θ eθ ]
′, and the longitudinal

control inputs: ulong = [δe θT ]
′. The resulting augmented matrices are

Âlong =

 −2.66 0.68 0.025 0
−67.54 −8.74 0.64 0

0 1 0 0
0 0 −1 0

, B̂long =

 0 0
−2.20 1.65
−6.43 −190.03

0 0


Ĉlong = [0 0 0 1], D̂long = [0 0]

(72)

The obtained longitudinal linearized model was checked to be controllable and observ-
able using MATLAB functions ctrb(Âlong, B̂long) and obsv(Âlong, Ĉlong), respectively. The ob-
servability and controllability matrices were fully ranked (rank(Olong) = rank(Clong) = 4).
Therefore, the longitudinal model is controllable and observable.

Three pitch control (PC) strategies were investigated based on the selection of weight-
ing matrices Rlong to reflect the following:

1. PC 1 —Prioritized use of elevator for pitch angle control, interpreted as cheap elevator
cost and expensive abdominal pitch cost.

2. PC 2—Prioritized use of abdominal pitch for pitch angle control, interpreted as
expensive elevator cost and cheap abdominal pitch cost.

3. PC 3—Relatively evenly prioritized use of elevator and abdominal pitch for pitch
angle control, interpreted as cheap elevator cost, cheap abdominal pitch cost.

The same state-weighting matrices Qlong = diag[4 6 4 500], which were selected using
Bryson’s rule as a guide [140], were used for all cases considered. Then, the optimal
gains were calculated using MATLAB’s lqr(A,B,Q,R) function. A summary of the cases
considered for pitch angle control are presented in Table 5. As the control objective was to
track a reference pitch angle while keeping all states and control efforts within bounds, the
performance characteristics for all cases are compared in terms of settling time, overshoot
and steady-state error. The selected gains resulted in the closed-loop step response shown
in Figure 4 for the states, while the control efforts are shown in Figure 5. The performance
characteristics of the control strategies are summarized in Table 6.
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Table 5. Simulation parameters for pitch control (PC) cases.

Pitch Control
(PC) Case Rlong Klong

PC 1 diag [2× 102 8× 107]
[−87.68 10.29 93.47 −158.11

0 0 0 0

]
PC 2 diag [8× 107 2× 10−2]

[
0 0 0 0

0.03 −17.30 −75.53 158.06

]
PC 3 diag [2× 10−2 2× 10−2]

[−12.78 −0.69 −1.98 4.22
0.69 −17.29 −75.38 158.06

]

(a)

(b)
Figure 4. Cont.
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(c)
Figure 4. Time histories of the longitudinal states: (a) angle of attack (α). (b) pitch rate (q). (c) pitch
angle (θ).

(a)
Figure 5. Cont.



Appl. Sci. 2022, 12, 1162 24 of 36

(b)
Figure 5. Time histories of the longitudinal control inputs: (a) elevator deflection (δe). (b) abdominal
pitch angle (θT).

Table 6. Comparison of performance characteristics for the different pitch control (PC) cases.

Characteristic PC 1 PC 2 PC 3
Settling time (s) 3.08 2.97 2.96
Overshoot (%) 3.84 3.82 3.81

Steady-state error (%) 0 0 0

4.5.2. Lateral–Directional Simulation Study

Estimating the eigenvalues of the Alat matrix of the pre-augmented state–space model
in Equation (69) reveals that the system is unstable due to the existence of a positive real
part in the characteristic roots.

eig(Alat) =

1.02± 3.67i
−86.05
−2.68

0

 (73)

For the yaw angle controller, the variable being controlled is the yaw angle; hence,
(ylat = eψ). The yB axis velocity v was replaced with the sideslip angle, β, using the
relationship β = v

u0
. The lateral augmented states considered were zlat = [β p r φ ψ eψ]′,

and the control inputs: ulat = [δa ψT ]
′. The resulting augmented matrices are

Âlat =


−0.025 −0.032 −0.99 1.22 0 0
−14.09 −85.94 12.47 0 0 0

0.45 −0.014 −0.49 −23.33 0 0
0 1 −0.02 0 0 0
0 0 1 0 0 0
0 0 0 0 −1 0

, B̂lat =


−0.032 −7.11
−18.71 0

0.32 −137.27
0 0
0 0
0 0


Ĉlat = [0 0 0 0 0 1], D̂lat = [0 0]

(74)

Checking the lateral–directional linearized model controllability and observability
using MATLAB functions ctrb(Âlat, B̂lat) and obsv(Âlat, Ĉlat), respectively resulted in fully
ranked matrices (rank(Olat) = rank(Clat) = 6). Therefore, the lateral–directional model is
controllable and observable.

Again, three yaw control (YC) strategies were investigated based on the selection of
weighting matrices Rlat to reflect the following:

1. YC 1—Prioritized use of aileron for yaw angle control, interpreted as cheap aileron
cost, expensive abdominal yaw cost.
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2. YC 2—Prioritized use of abdominal yaw for yaw angle control, interpreted as expensive
aileron cost, cheap abdominal yaw cost.

3. YC 3—Relatively evenly prioritized use of elevator and abdominal pitch for yaw angle
control, interpreted as cheap aileron cost, cheap abdominal yaw cost.

The same state-weighing matrix Qlat = diag[6 6 6 3 3 500] was used for all cases
considered. The choice of the state-weighting matrix was also influenced by the need to
minimize the sideslip when the aircraft is turning. The estimated optimal gains, as well
as other parameters for the yaw controllers, are presented in Table 7. The state trajectory
and control effort responses are shown in Figures 6 and 7 respectively. Additionally, a
comparison of performance characteristics is presented in Table 8.

Table 7. Simulation parameters for yaw control (YC) cases.

Roll Control
(YC) Case Rlat Klat

YC 1 diag [1 8× 107]
[−0.68−0.92 6.30−33.16 18.01−22.35

0 0 0 0 0 0

]
YC 2 diag [8× 107 2]

[
0 0 0 0 0 0
−0.86−0.08−1.72 0.27−8.68 15.81

]
YC 3 diag [10 10]

[−0.31−0.09 0.01 −2.59−0.03−0.38
−0.06−0.03−0.8−0.05−3.55 7.06

]
Table 8. Comparison of performance characteristics for the different yaw control (YC) cases.

Characteristic YC 1 YC 2 YC 3
Settling time (s) 3.33 6.25 2.29
Overshoot (%) 5.80 0.89 2.95

Steady-state error (%) 0 2.00 0.04

(a) (b)

(c) (d)

Figure 6. Cont.
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(e)
Figure 6. Time response of the lateral states: (a) sideslip (β). (b) roll angle (φ) . (c) roll rate (p).
(d) yaw rate (r). (e) yaw angle (ψ).

(a)

(b)
Figure 7. Time histories of the lateral control inputs: (a) aileron deflection (δa). (b) abdominal yaw
angle (ψT).

5. Discussion
5.1. Model Validation: Single-Body vs. Multibody

As shown in Table 2, the trim results for the DISWA using the single-body model
and multibody model are similar at various flight speeds. The only difference is the
motor torque τay, acting on the abdomen which represents the amount of torque needed to
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keep the abdominal pitch inclination angle at the specified values and can be treated as a
disturbance torque for control purposes.

5.2. Effect of Abdominal Mass on Longitudinal Stability

From the results presented in Table 4, the longitudinal stability of the aircraft decreases
with increasing mass of the abdomen. This is associated with the static margin of the
aircraft. A statically stable aircraft can be dynamically unstable; however, the reverse is
not the case. The aircraft was stable up until 16%; however, as it became statically unstable
from 21%, it also became dynamically unstable. Additionally, one can observe two complex
conjugate pairs of eigenvalues for the dynamically stable system (6–16%). The highly
damped pairs are the short-period modes, and the lightly damped modes represent the
phugoid modes. For dynamically unstable systems in general, control systems must be
designed that can stabilize the aircraft during flight.

5.3. Pitch Attitude Control

The longitudinal control input plots in Figure 5 show which longitudinal control
effectors were prioritized for use in pitch-up control. For PC 1, the elevator was used
exclusively, indicated by a downward elevator deflection in Figure 5a, and no abdominal
deflection in Figure 5b. PC 2 used abdominal pitch deflection exclusively as seen in
Figure 5a, and no elevator deflection in Figure 5b. A downward elevator and upward
abdominal pitch deflection shown in Figure 5a,b, respectively, show that the elevator and
abdomen were simultaneously used for control in PC 3.

The effects of the control effector choice on longitudinal states over time according to
the controller used are shown in Figure 4. The angle of attack α time history in Figure 4a
reveals that exclusive use of a positive elevator deflection (PC 1) caused an initial decrease
in angle of attack as expected. Similar results have been obtained in [141,142] for tailless
aircraft. The deflection of the elevator causes a change in the camber of the airfoil of the
wing and consequently changes the lift coefficient. A positive elevator deflection for a reflex
airfoil, as in the case of the aircraft wing in this study, decreases the wing lift and pitching
moment, therefore resulting in a decrease in angle of attack. However, the exclusive
deflection of the abdomen (PC 2) shifts the combined cg forward, and consequently causes
a change in lift and drag reference offset, as well as gravitational moments, therefore
generating control moments. The resulting effect is the initial increase in angle of attack. In
the case of PC 3, these effects are combined and reduced. Regarding the time histories of
the pitch rate q (Figure 4b) for the three pitch controllers, an increase in pitch angle resulted
in an increase in pitch rate, as expected.

The simulation results presented in Figures 4 and 5 and Table 6 showed that the
PC 3 controller had better tracking performance for pitch angle than the PC 1 and PC 2
controllers, with a settling time of 2.96 s and the least overshoot of 3.81%. The PC 1
controller was the poorest performer of the three controllers with the highest overshoot
of 3.84% and the longest settling time of 3.08 s. All three controllers had zero steady-state
error and fall within the set performance requirements. The corresponding control efforts
for elevator deflection δe and abdominal pitch angle are well within the physical bounds
with maximum absolute deflections being 0.37◦ and, 0.04◦ respectively. The states also fall
within the simulation constraints set for α and q, with the maximum absolute values of 5.00◦

and 27.14◦/s, respectively. For parallel comparison, the results indicate that a dragonfly
using its abdomen in conjunction with its wings would obtain improved controllability
and control performance compared to just using the wings.

5.4. Yaw Attitude Control

Figure 7 shows the lateral–directional control input plots for yaw angle control. YC 1
uses ailerons exclusively and zero abdominal yaw deflection, abdominal yaw deflection
exclusively and zero aileron deflection for YC 2, and both aileron and abdominal yaw
deflection for YC 3. The transient response for the lateral–directional dynamic response
in terms of sideslip angle β, roll angle φ and roll rate p are presented in Figure 6a–c.
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Please note that prior to implementation of a controller, the aircraft was laterally unstable
(Equation (73), which is not unusual for tailless aircraft [141,143]. Similar behavior can
be observed based on the effect of yaw control effector choice on the transient of these
states. The exclusive use of the aileron (YC 1) produces the most stable response in β, φ
and p, while using the abdominal yaw alone for control (YC 2) caused the aircraft to be
more unstable as a result of dynamic effects of the oscillatory movement of the abdomen as
seen in Figure 7b. Simultaneously using both ailerons and abdominal yaw (YC 3), on the
other hand, reduced the instability experienced with the exclusive use of abdominal yaw in
YC 2. The main remark regarding the state evolution of roll angle (Figure 6b) and roll rate
(Figure 6c) is the presence of a strong coupling between lateral and directional dynamics,
caused by aileron and abdominal yaw deflection.

A yaw controller generates a sideslip to induce a turn and a significant problem
associated with turning of a rudderless aircraft is adverse yaw resulting from the differential
lift and drag on the left and right wing. The sideslip angle β is a key performance indicator
for aircraft turn coordination, i.e., with zero sideslip angle β = 0. The time history for
sideslip angle β in Figure 6a shows that the exclusive use of ailerons (YC 1) and exclusive
use of abdominal yaw (YC 2) resulted in negative sideslip. However, simultaneously using
ailerons and abdominal yaw achieved better turn coordination over time. Regarding the
time histories of the yaw rate r (Figure 6d), for the three yaw controllers, an increase in yaw
angle resulted in an increase in yaw rate as expected.

From the simulation results presented in Figures 6 and 7 and Table 8, it can be observed
that YC 3 has a better response in terms of settling time of 2.29 s compared to that of YC 1
and YC 2 with settling times of 3.33 s and 6.25 s, respectively. In terms of overshoot, YC 2
has the least overshoot 0.89%, compared to YC 1 and YC 3 with overshoots of 5.80% and
2.95%, respectively. YC 2 gives the highest steady-state error of 2%, with the steady-state
errors of YC 1 and YC 3 being 0% and 0.04%, respectively. In addition, the corresponding
control efforts for aileron deflection δa and abdominal yaw angle fall within the set limits
with maximum absolute deflections being 0.056◦ and, 0.013◦ respectively. The states also
fall within the simulation constraints set for β, p and r, with maximum absolute values
of 22.24◦, 6.53◦/s and 26.56◦/s, respectively. Of all the controllers, only YC 3 meets the
controller performance requirements. For insects, the lack of a dedicated yaw-controlling
surface similar to the aerodynamic rudder of many aircraft causes inherent instability on the
lateral axis; however, “ruddering” movements of the abdomen have been observed [144].
The results attest to the potential use of a yaw-like abdominal airframe-based control
mechanism that can be beneficial for the reduction of sideslip during turns (see Figure 6a)
as sideslip is a critical control state of the entire aircraft.

The results obtained for yaw control are consistent with the observation in the analysis
by Eturk in [36] that used internal moving mass for turn trim and trajectory control. With
the internal moving mass, the aircraft was able to achieve trimmed turning flight with
no sideslip, which was not possible using conventional aerodynamic control surfaces.
Unlike that study, however, reaction torques are apparent, due to the size and mass of
the appendage.

The application of an externally articulated mass specifically and solely for lateral
control should be designed systematically due to the tendency of the articulated mass in
this configuration to reduce the lateral–directional flight quality of a tailless aircraft.

6. Conclusions

A tensor-based multibody flight dynamics simulation model of a dragonfly-inspired
straight-flying wing aircraft that considers abdominal articulation was presented in this
study. The longitudinal and lateral flight altering effects of the mechanism have been
demonstrated dynamically in simulation. An effective pitch and yaw angle tracking con-
troller based on optimal control theory was implemented that was only possible with this
new formulation. Allocation of control effort between the moving mass and aerodynamic
actuators was achieved using modern control techniques. This control concept offers an
alternative to conventional aerodynamic control surfaces for unmanned aerial vehicles. In
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addition, the results demonstrate the benefit of abdominal articulation of insects or tailless
aircraft for longitudinal and lateral attitude control, especially for minimizing sideslip
angle during turns.

The aerodynamic effects of the abdomen have been neglected in this study. Future
work will extend this model to create a more comprehensive model that incorporates
appendage aerodynamics. Although testing was done in the range in which the aircraft had
adequate aerodynamic control, it is worth considering the operational range of extremely
small aircraft. Furthermore, only one value of actuated mass was considered for control
design. Simulation results show the actuated mass ratio to the mass of the aircraft has effects
on the control sensitivity of the mechanism. Therefore, control sensitivity may be increased
using a heavier mass. Finding an optimal mass for such a mechanism should be considered
for future analysis. Additionally, the LQI control design procedure followed in this study
can be extended for robustness to include uncertainties and actuator dynamics. Control
allocation strategies can also be added to address issues such as actuator input saturation
and rate limits, actuator redundancy, and fault tolerance of actuators and effectors.
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Abbreviations
Acronyms
AoA Angle of Attack
ARE Algebraic Riccati Equation
ARP Aerodynamic Reference Point
AVL Athena Vortex Lattice
CA Control Allocation
CoM Center of Mass
cg Center of Gravity
DISWA Dragonfly-Inspired Straight-Wing Aircraft
DoF Degree of Freedom
EoM Equation of Motion
LHS Left-hand Side
LQI Linear Quadratic Integral
LQR Linear Quadratic Regulator
MAV Micro-Aerial Vehicle
MIMO Multiple-input Multiple-output
MMC Moving Mass Control
MPC Model Predictive Control
NP Neutral Point
PC Pitch Control
PID Proportional Integral Derivative
RHS Right-Hand Side
SM Static Margin
SMC Sliding Mode Control
SUAV Mini Unmanned Aerial Vehicle
wrt With Respect To
YC Yaw Control
Nomenclature
A,O Arbitrary rigid bodies A and O (Central body (B), abdomen (T) or aircraft (C)

in text) (–), Body-fixed frames associated with rigid bodies A and O (–)
a,o First-order tensors (equivalent to a vector) associated with frames A and O (–)
mA, mO Mass of rigid bodies A and O, respectively (kg)
m Total mass (kg)
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[∗]A Vector or tensor expressed in reference frame A (–)
sao Displacement vector of point a relative to point b (m)
Sao Skew symmetric matrix of sao (m)
Vo

A Velocity of rigid body A relative to point of (m/s)
ωAO Angular velocity of frame A relative to frame O (rad/s)
ΩAO Skew symmetric matrix of ωAO (rad/s)
IA
a Inertia tensor of rigid body A about at point a (kg·m2 )
[R]OA Transformation matrix from frame A to O (–)
DA(∗) Rotational time derivative of a vector or tensor ∗ with respect to frame A (–)
d(∗)

dt
Ordinary time derivative of ∗ (–)

e Output error of additional integral state (–)
g Acceleration due to gravity (m/s2)
i Imaginary unit (–)
H Altitude/height (m)
F External force vector (N)
M External moment vector (N·m)
V Airspeed (m/s)
Tn Propulsive thrust (N)
cre f Reference wing chord (m)
bre f Reference wing span (m)
Sre f Reference wing area (m2)
C(x,y,z)

Dimensionless aerodynamic coefficients for axial, side and normal force,
respectively (–)

C(l,m,n)
Dimensionless aerodynamic coefficients for roll, pitch and yaw moment,
respectively (–)

u, v, w Velocity vector components (m/s)
p, q, r Angular velocity vector components (rad/s)
X, Y, Z Position vector components (m)
α, β Angle of Attack and sideslip angle (rad)
δr Elevator deflection angle (rad)
δe Aileron deflection angle (rad)
η Elevon deflection angle (rad)
κ Damping constant (N·m·s)
ρ Air density (kg/m3)
τl Load torque due to gravity (N·m)
τa Actuator torque (N·m)
φ, θ, ψ Roll, pitch and yaw Euler angles (rad)
x, u, z state, input, output vector (–)
r, y Reference input signal, output signal (–)
A, B, C, D System state, control, output and feedforward matrices (–)
K Optimal gain matrix (–)
Q State-weighting matrix (–)
R Control weighting matrix (–)
J Cost function (–)
P Algebraic Riccati Equation solution (–)
Subscripts
0 Initial/nominal value
i Additional integral states
k kth rigid body
B, T Central rigid body, abdomen rigid body
I, B, T Inertial, central body and abdominal reference frames systems
l, r left, right
lat Lateral–directional motion
long Longitudinal motion
Superscripts
˙ First-order time derivative
¨ Second-order time derivative
ˆ Augmented matrix
′ Transpose of parameter
−1 Inverse of parameter

Appendix A. Athena Vortex Lattice File for Aerodynamic Data

Below (Figure A1) is the AVL input geometry file used to generate the aerodynamic
data of the DISWA used in this study. The aerodynamic coefficients and stability derivatives
are functions of the aerodynamic angles. To generate the data as a function of the angle of
attack for instance, AVL is capable of sweeping through a range of AoA. More information
on how to use the AVL tool can be found in [137].
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Figure A1. DISWA AVL input geometry file.
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