Research of Strength, Frost Resistance, Abrasion Resistance and Shrinkage of Steel Fiber Concrete for Rigid Highways and Airfields Pavement Repair
Abstract
:1. Introduction and Background
2. Materials and Methods
3. Research Results and Analysis
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Laszlo, G.; Zsolt, B. Long-life pavements—European and American perspectives NBM&CW. New Build. Mater. Constr. World 2018, 24, 122–135. [Google Scholar]
- AC No:150/5320-6G—Airport Pavement Design and Evaluation. Available online: https://www.faa.gov/regulations_policies/advisory_circulars/index.cfm/go/document.information/documentID/1039843 (accessed on 19 December 2021).
- Pavement Quality Concrete for Airfields, Specification 033; Her Majesty Stationary Office: Richmond, UK, February 2017; 72p.
- Zhao, Z.; Ma, Q.; Xu, Q.; Sun, F. A review: Fast repair technology of cement concrete pavement. E3S Web Conf. 2019, 136, 04053. [Google Scholar]
- Karmacharya, A.; Chao, S.-H. Precast ultra-high-performance fiber-reinforced concrete for fast and sustainable pavement repair. MATEC Web Conf. 2019, 271, 01004. [Google Scholar] [CrossRef]
- Porras, Y.A. Durable High Early Strength Concrete. Master’s Thesis, Kansas State University, Manhattan, KS, USA, 2018. [Google Scholar]
- Van Dam, T.J.; Peterson, K.R.; Sutter, L.L.; Panguluri, A.; Sytsma, J. Portland Cement Concrete for Pavement Rehabilitation; Final Report for Early-Opening-to-Traffice; Transportation Research Board of the National Academies: Washington, DC, USA, 2005. [Google Scholar]
- Dvorkin, L.Y.; Bordyuzhenko, O.M. Technological properties of high-strength fibroconcretes with plasticizers of different types. Sci. Constr. 2018, 2, 10–17. [Google Scholar]
- Sanitsky, M.A.; Marushchak, U.D.; Kirakevich, I.I.; Mazurak, T.A. Especially Fast-Hardening Compositions for High-Performance Concretes; Bulletin of Lviv Polytechnic National University; Theory and Practice of Construction: Lviv, Ukraine, 2013; № 755; pp. 385–390. [Google Scholar]
- Dvorkin, L.Y.; Babych, E.M.; Zhitkovsky, V.V.; Bordyuzhenko, O.M. High-Strength, Fast-Hardening Concretes and Fibrous Concretes; NUVGP: Rivne, Ukraine, 2017. [Google Scholar]
- Yu, R.; Spiesz, P.; Brouwers, H.J.H. Dynamic performance of a sustainable ultra-high performance fibre reinforced concrete under high velocity projectile impact. In Tagungsbericht/IBAUSIL, 19. Internationale Baustofftagung; Fischer, H.-B., Ed.; Finger-Institut für Baustoffkunde: Weimar, Germany, 2015; Volume 16, pp. 1-1215–1-1222. [Google Scholar]
- Yu, B.; Chen, Y.; Wang, H.; Li, X.; Xie, C.; Li, S. Experiment on control measures of shrinkage and cracking of high strength manufactured sand concrete containing a large amount of high absorbency stone powder. Fuhe Cailiao Xuebao/Acta Mater. Compos. Sin. 2021, 38, 2737–2746. [Google Scholar]
- Harrington, D.; Fick, G.; Taylor, P. Preservation and Rehabilitation of Urban Concrete Pavements Using Thin Concrete Overlays: Solutions for Joint Deterioration in Cold Weather States; National Concrete Pavement Technology Center: Ames, IA, USA, 2014. [Google Scholar]
- Kabashi, N.; Krasniqi, C.; Hadri, R.; Sadikah, A. Effect of fibre reinforced concrete and behavior in rigid pavements. Int. J. Struct. Civ. Eng. Res. 2018, 7, 29–33. [Google Scholar] [CrossRef]
- Jonbi, J.; Tjahjani, A.R.; Tinumbia, N.; Pattinaja, A.M.; Haryono, B.S. Repair of rigid pavement using micro concrete material. MATEC Web Conf. 2018, 195, 01014. [Google Scholar] [CrossRef]
- Kianets, A.V. Investigation of Steel Fiber Concrete Abrasion. In Bulletin of SUSU. Series Construction and Architecture; South Ural State University: Southern Ural, Russia, 2018; Volume 18, pp. 53–57. [Google Scholar]
- Babych, E.M.; Andriychuk, O.V.; Uzhegov, S.O.; Shapoval, I.V. Application of steel fiber concrete in road construction. Mod. Technol. Methods Calc. Constr. 2015, 4, 3–9. [Google Scholar]
- Hossain, M.S.; Han, S.; Kim, S.K.; Yun, K. Long-term effect of accelerator content on flexural toughness of steel fiber reinforced shotcrete for tunnel construction. Case Stud. Constr. Mater. 2021, 15, e00706. [Google Scholar] [CrossRef]
- Ghosh, D.; Abd-Elssamd, A.; John Ma, Z.; Hun, D. Development of high-early-strength fiber-reinforced self-compacting concrete. Constr. Build. Mater. 2021, 266, 121051. [Google Scholar] [CrossRef]
- Choi, W.-C.; Jung, K.-Y.; Jang, S.-J.; Yun, H.-D. The influence of steel fiber tensile strengths and aspect ratios on the fracture properties of high-strength concrete. Materials 2019, 12, 2105. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Song, H.; Zhenq, T. Mechanical properties of steel fibre-reinforced high strength concrete with high early-age strength used in freezing shaft lining. Appl. Mech. Mater. 2012, 174–177, 1388–1393. [Google Scholar] [CrossRef]
- Bandelj, B.; Saje, D.; Sustersic, J.; Lopatic, J.; Saje, F. Free shrinkage of high performance steel fibre reinforced concrete. J. Test. Eval. 2011, 39, 166–176. [Google Scholar]
- Kim, D.-J.; Kim, S.-H.; Choi, W.-C. Characteristics of restrained drying shrinkage on arched steel fiber-reinforced concrete. Appl. Sci. 2021, 11, 7537. [Google Scholar] [CrossRef]
- Lau, C.K.; Chegenizadeh, A.; Htut, T.N.S.; Nikraz, H. Performance of the steel fibre reinforced rigid concrete pavement in fatigue. Buildings 2020, 10, 186. [Google Scholar] [CrossRef]
- Biswas, R.K.; Bin Ahmed, F.; Haque, M.E.; Provasha, A.A.; Hasan, Z.; Hayat, F.; Sen, D. Effects of steel fiber percentage and aspect ratios on fresh and harden properties of ultra-high performance fiber reinforced concrete. Appl. Mech. 2021, 2, 501–515. [Google Scholar] [CrossRef]
- Zhang, P.; Li, Q.; Chen, Y.; Shi, Y.; Ling, Y.-F. Durability of steel fiber-reinforced concrete containing SiO2 nano-particles. Materials 2019, 12, 2184. [Google Scholar] [CrossRef] [Green Version]
- DSTU B V.2.7-75-98. Crushed Stone and Gravel Are Dense Natural for Building Materials, Products, Structures and Works. Specifications. Available online: http://online.budstandart.com/ru/catalog/doc-page?id_doc=4674 (accessed on 19 December 2021).
- DSTU B V.2.7-32-95. Building Materials. Sand Dense Natural for Construction Materials, Products, Designs and Works. Specifications. Available online: http://online.budstandart.com/ru/catalog/doc-page?id_doc=4053 (accessed on 19 December 2021).
- BS EN 12620:2013; Aggregates for Concrete. British Standard Institution: London, UK, 2013.
- ASTM C 33/C33M-18; Standard Specifications for Concrete Aggregates. ASTM International: West Conshohocken, PA, USA, 2018.
- Kryzhanovskyi, V.; Kroviakov, S.; Zavoloka, M. High-early strength concretes modified with polycarboxylate admixture on different cement types. IOP Conf. Ser. Mater. Sci. Eng. 2021, 1141, 012003. [Google Scholar] [CrossRef]
- Kryzhanovskyi, V.O.; Kroviakov, S.O.; Zavoloka, M.V. Influence of metakaolin on properties of concrete modified with polycarboxylate admixture for rigid pavement repair. Bull. Odessa State Acad. Civ. Eng. Archit. 2021, 82, 90–97. [Google Scholar] [CrossRef]
- Lyashenko, T.V.; Voznesensky, V.A. Methodology of Recipe-Technological Fields in Computer Building Materials Science; Astroprint: Odessa, Ukraine, 2017. [Google Scholar]
- Kryzhanovskiy, V.; Kroviakov, S. Strength of rigid pavement concretes modified with polycarboxylate admixture on different types of cement. Bull. Odessa State Acad. Civ. Eng. Archit. 2020, 79, 92–98. [Google Scholar] [CrossRef]
- BS EN 12350-2:2019; Testing Fresh Concrete. Slump Test. British Standard Institution: London, UK, 2019.
- ASTM C78/C78M-16; Standard Test Method for Flexural Strength of Concrete (Using Simple Beam with Third-Point Loading). ASTM International: West Conshohocken, PA, USA, 2016.
- DSTU B V.2.7-214:2009. Building Materials. Concrete. Methods for Determining the Strength of Control Samples. Available online: http://online.budstandart.com/ua/catalog/doc-page.html?id_doc=25943 (accessed on 19 December 2021).
- BS EN 12390-5:2009; Testing Hardened Concrete. Flexural Strength of Test Specimens. British Standard Institution: London, UK, 2009.
- BS EN 12390-3:2009; Testing Hardened Concrete. Compressive Strength of Test Specimens. British Standard Institution: London, UK, 2009.
- Pukharenko, Y.V.; Panteleev, D.A.; Zhavoronkov, M.I. Determination of the fiber contribution to the formation of the strength of steel fiber reinforced concrete. Bull. Civ. Eng. 2017, 1, 172–176. [Google Scholar]
- Brykov, A.S. Hydration of Portlandcement. Saint Petersburg State Institute of Technology: Saint-Petersburg, Russia, 2008. [Google Scholar]
- DSTU B V.2.7-49-96. Concrete. Accelerated Methods for Determining Frost Resistance during Repeated Freezing and Thawing. Available online: http://online.budstandart.com/ru/catalog/doc-page?id_doc=4950 (accessed on 19 December 2021).
- Tolmachev, S.N.; Kondratyeva, I.G.; Chuguenko, A.N.; Grinchenko, R.O. The Relationship between Abrasion and Frost Resistance of Road Concrete. Bulletin of the Kharkiv National Automobile and Highway University; Kharkiv National Automobile and Highway University: Kharkiv, Ukraine, 2005; № 30; pp. 52–55. [Google Scholar]
- DSTU B V.2.7-212:2009. Building Materials. Concrete. Methods for Determining Abrasion Resistance. Available online: http://online.budstandart.com/ru/catalog/doc-page?id_doc=25953 (accessed on 19 December 2021).
- ASTM C944/C944M-19; Standard Test Method for Abrasion Resistance of Concrete or Mortar Surfaces by the Rotating Cutter Method. ASTM International: West Conshohocken, PA, USA, 2019.
- Kalinovskaya, N.N.; Kotov, D.S.; Ivanova, E.A. Durability of concrete. Analysis of the causes and methods of reducing the shrinkage deformations of the modified concrete. Concr. Technol. 2017, 11–12, 14–17. [Google Scholar]
- DSTU V.2.7-216:2009. Building Materials. Concrete. Methods for Determining Shrinkage and Creep Strains. Available online: http://online.budstandart.com/ru/catalog/doc-page?id_doc=25914 (accessed on 19 December 2021).
- Dvorkin, L.Y.; Mishutin, A.V.; Krovyakov, S.O.; Bordyuzhenko, O.M.; Kinta, L. Effective Types of Concrete; Odessa State Academy of Civil Engineering and Architecture: Odessa, Ukraine, 2021. [Google Scholar]
- Afroughsabet, V.; Biolzi, L.; Ozbakkaloglu, T. High-performance fiber-reinforced concrete: A review. J. Mater. Sci. 2016, 51, 6517–6551. [Google Scholar] [CrossRef] [Green Version]
Name of the Indicator | Value, % by Mass |
---|---|
Tricalcium silicate, C3S | 66.95 |
Dicalcium silicate, C2S | 13.15 |
Tricalcium aluminate, C3A | 7.42 |
Tetracalcium aluminoferrite, C$AF | 12.48 |
Calcium oxide, CaO | 64.49 |
Silicone oxide, SiO2 | 20.32 |
Alumina oxide, Al2O3 | 5.28 |
Ferric oxide (III), Fe2O3 | 4.05 |
Magnesium oxide, MgO | 0.74 |
Chlorine ion content, Cl | - |
Insoluble residue, IR | 0.28 |
Ignition lost, IL | 0.33 |
Sieve Size, mm | % Passing by Weight | DSTU B V.2.7-75-98 | DSTU B V.2.7-32-95 | BS EN 12620:2013 | ASTM C 33/C33M-18 | |||
---|---|---|---|---|---|---|---|---|
Crushed Breakstone | Sand | Crushed Breakstone | Sand | Crushed Breakstone | Sand | Crushed Breakstone | Sand | |
20 | 100 | 100 | ≥90 | - | 90-99 | - | 90–100 | - |
10 | 54.7 | 100 | 20–70 | - | - | - | 20–55 | 100 |
5 | 5.0 | 100 | 0–10 | - | 0–15 | 100 | 0–10 | 95–100 |
2.5 | 0.8 | 97.0 | - | 80–100 | 0–5 | 85–99 | 0–5 | 80–100 |
1.25 | 0 | 83.5 | - | 55–95 | - | - | - | 50–85 |
0.63 | 0 | 48.3 | - | 30–80 | - | - | - | 25–60 |
0.315 | 0 | 28.6 | - | 20–50 | - | - | - | 5–30 |
0.16 | 0 | 8.5 | - | 0–15 | - | - | - | 0–10 |
<0.16 | 0 | 0.5 | - | - | - | - | - | - |
No. of Mixture | X1, Hardening Accelerator | X2, Steel Fiber | Concrete and Fibrous Concrete Mixtures | fck.cube2 (MPa) | fck.cube (MPa) | fctk2 (MPa) | fctk (MPa) | W/C Ratio | ||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Cement, kg/m3 | Sand, kg/m3 | Crushed Stone, (kg/m3) | SKY 608, % | Sika Rapid 3, % (X1) | Steel Fiber kg/m3, (X2) | Water, L/m3 | ||||||||
1 | −1 | −1 | 400 | 830 | 1190 | 1.2 | 0 | 0 | 127 | 46.5 | 85.5 | 5.6 | 9.0 | 0.318 |
2 | 0 | −1 | 828 | 1190 | 1.2 | 0 | 126 | 51.8 | 76.2 | 5.8 | 7.2 | 0.316 | ||
3 | +1 | −1 | 825 | 1190 | 2.4 | 0 | 123 | 56.4 | 72.8 | 6.0 | 6.9 | 0.307 | ||
4 | −1 | 0 | 788 | 1180 | 0 | 50 | 133 | 49.2 | 90.7 | 8.2 | 16.1 | 0.332 | ||
5 | 0 | 0 | 786 | 1180 | 1.2 | 50 | 131 | 53.7 | 85.3 | 8.4 | 15.5 | 0.328 | ||
6 | +1 | 0 | 782 | 1180 | 2.4 | 50 | 130 | 59.1 | 83.1 | 8.7 | 14.9 | 0.325 | ||
7 | −1 | +1 | 752 | 1170 | 0 | 100 | 138 | 52.6 | 92.5 | 8.6 | 16.8 | 0.344 | ||
8 | 0 | +1 | 750 | 1170 | 1.2 | 100 | 135 | 55.9 | 87.1 | 8.9 | 15.7 | 0.337 | ||
9 | +1 | +1 | 745 | 1170 | 2.4 | 100 | 132 | 61.5 | 84.7 | 9.2 | 15.2 | 0.331 |
No. of Mixture | X1, Hardening Accelerator | X2, Steel Fiber | Strength Loss after Freezing to −50 ± 5 °С and Thawing in 5% Sodium Chloride Solution (%) | Mass Loss after Freezing to −50 ± 5 °С and Thawing in 5% Sodium Chloride Solution (%) | Assessment of Frost Resistance | ||||
---|---|---|---|---|---|---|---|---|---|
10 Cycles | 15 Cycles | 20 Cycles | 10 Cycles | 15 Cycles | 20 Cycles | ||||
1 | −1 | −1 | 1.26 | 1.98 | 4.91 | 0.30 | 0.30 | 1.18 | F200 |
2 | 0 | −1 | 1.58 | 2.74 | 5.93 | 0.30 | 1.57 | 1.87 | F150 |
3 | +1 | −1 | 1.80 | 4.63 | 6.96 | 0.40 | 0.99 | 2.29 | F150 |
4 | −1 | 0 | 1.16 | 1.85 | 4.78 | 0.31 | 0.48 | 1.12 | F200 |
5 | 0 | 0 | 1.42 | 2.45 | 4.86 | 0.39 | 1.16 | 1.61 | F200 |
6 | +1 | 0 | 2.16 | 3.80 | 4.88 | 0.20 | 0.79 | 1.79 | F200 |
7 | −1 | +1 | 0.77 | 2.07 | 4.90 | 0.38 | 0.59 | 1.37 | F200 |
8 | 0 | +1 | 0.87 | 3.33 | 4.88 | 0.39 | 0.78 | 1.36 | F200 |
9 | +1 | +1 | 0.84 | 3.35 | 4.92 | 0.59 | 0.79 | 1.28 | F200 |
No. of Mixture | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 |
---|---|---|---|---|---|---|---|---|---|
Abrasion (g/cm2) | 0.30 | 0.32 | 0.34 | 0.22 | 0.24 | 0.26 | 0.20 | 0.24 | 0.25 |
No. of Mixture (Table 1) | Shrinkage Ratio ɛ × 10−4 | |||||
---|---|---|---|---|---|---|
3 h | 6 h | 1 Day | 2 Days | 3 Days | 7 Days | |
1 | 0.609 | 0.865 | 1.218 | 1.376 | 1.445 | 1.604 |
2 | 0.653 | 0.890 | 1.221 | 1.342 | 1.383 | 1.507 |
3 | 0.725 | 0.942 | 1.21 | 1.312 | 1.365 | 1.465 |
4 | 0.565 | 0.748 | 1.07 | 1.211 | 1.275 | 1.353 |
5 | 0.564 | 0.718 | 1.035 | 1.163 | 1.225 | 1.325 |
6 | 0.660 | 0.820 | 1.082 | 1.203 | 1.214 | 1.337 |
7 | 0.505 | 0.733 | 1.035 | 1.179 | 1.235 | 1.340 |
8 | 0.528 | 0.75 | 1.031 | 1.153 | 1.212 | 1.304 |
9 | 0.668 | 0.827 | 1.075 | 1.195 | 1.215 | 1.311 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kos, Ž.; Kroviakov, S.; Kryzhanovskyi, V.; Grynyova, I. Research of Strength, Frost Resistance, Abrasion Resistance and Shrinkage of Steel Fiber Concrete for Rigid Highways and Airfields Pavement Repair. Appl. Sci. 2022, 12, 1174. https://doi.org/10.3390/app12031174
Kos Ž, Kroviakov S, Kryzhanovskyi V, Grynyova I. Research of Strength, Frost Resistance, Abrasion Resistance and Shrinkage of Steel Fiber Concrete for Rigid Highways and Airfields Pavement Repair. Applied Sciences. 2022; 12(3):1174. https://doi.org/10.3390/app12031174
Chicago/Turabian StyleKos, Željko, Sergii Kroviakov, Vitalii Kryzhanovskyi, and Iryna Grynyova. 2022. "Research of Strength, Frost Resistance, Abrasion Resistance and Shrinkage of Steel Fiber Concrete for Rigid Highways and Airfields Pavement Repair" Applied Sciences 12, no. 3: 1174. https://doi.org/10.3390/app12031174
APA StyleKos, Ž., Kroviakov, S., Kryzhanovskyi, V., & Grynyova, I. (2022). Research of Strength, Frost Resistance, Abrasion Resistance and Shrinkage of Steel Fiber Concrete for Rigid Highways and Airfields Pavement Repair. Applied Sciences, 12(3), 1174. https://doi.org/10.3390/app12031174