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Abstract: Seismic inversion is a process to obtain the spatial structure and physical properties of
underground rock formations using surface acquired seismic data, constrained by known geological
laws and drilling and logging data. The principle of seismic inversion based on deep learning is
to learn the mapping between seismic data and rock properties by training a neural network using
logging data as labels. However, due to high cost, the number of logging curves is often limited,
leading to a trained model with poor generalization. Multi-task learning (MTL) provides an effective
way to mitigate this problem. Learning multiple related tasks at the same time can improve the
generalization ability of the model, thereby improving the performance of the main task on the same
amount of labeled data. However, the performance of multi-task learning is highly dependent on the
relative weights for the loss of each task, and manual tuning of the weights is often time-consuming
and laborious. In this paper, a Fully Convolutional Residual Network (FCRN) is proposed to achieve
seismic impedance inversion and seismic data reconstruction simultaneously, and a method based
on the homoscedastic uncertainty of the Bayesian model is used to balance the weights of the loss
function for the two tasks. The test results on the synthetic datasets of Marmousi2, Overthrust, and
Volve field data show that the proposed method can automatically determine the optimal weight of
the two tasks, and predicts impedance with higher accuracy than single-task FCRN model.

Keywords: seismic impedance inversion; fully convolutional residual network; multi-task learning;
homoscedastic uncertainty

1. Introduction

Reflection seismic exploration is used to detect changes in impedance in the subsurface
through an active seismic source. Seismic inversion refers to the process of estimating the
properties of underground rocks using surface acquired seismic data. Classical seismic
inversion methods usually start with a smooth model of underground properties, and then
perform forward simulation to generate synthetic seismic data. The differences between
the synthetic and actual seismic data can be used to update the model parameters [1].
Traditional inversion methods are usually physics-driven, which are limited by expensive
computational costs and physical theory/assumptions. Due to the increased complexity of
the subsurface structures, and the difficulty in obtaining a good initial model to converge
to the high-resolution target model for conventional methods, advanced techniques are
required for effective and efficient seismic inversion. More recently, with the successes of
deep learning in the computer vision community, time series forecasting [2], and natural
language processing, researchers have developed various data-driven seismic inversion
techniques. The amount of available seismic data is growing exponentially and the deep
learning methods are becoming integral components of geophysical exploration work-
flows [3], such as P-wave detection [4], seismic fault detection [5–8], seismic data noise
attenuation [9,10], seismic data interpolation [11–15], and seismic slope estimation [16].
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Deep neural networks are built by a composition of hierarchical linear and non-linear func-
tions (layers). The high-capacity networks trained using large datasets enable tasks beyond
traditional methods, such as high-resolution velocity model building [17]. At the same
time, seismic impedance inversion has also made many contributions using deep learning
methods. In 2019, Biswas et al. used Convolutional Neural Networks (CNNs) to estimate
acoustic impedance and elastic impedance from seismic data [18]. Das et al. used a Fully
Convolutional Neural Network (FCN) to invert P-wave impedance [19]. Alfarraj et al. [20]
introduced a Recurrent Neural Network (RNN) based on serial modeling to estimate
petrophysical properties and Mustafa et al. [21] introduced a Temporal Convolutional
Network (TCN) to estimate various rock properties from seismic data. Li et al. [22] used
geological and geophysical model-driven CNNs (GGCNNs) to estimate elastic properties
from pre-stack seismic data. Wu et al. proposed a Fully Convolutional Residual Network
(FCRN) combined with transfer learning for seismic impedance inversion [23], and then
extended their work to semi-supervised learning seismic impedance inversion based on a
Generative Adversarial Network (GAN) [24,25]. Wang et al. [26] proposed a novel seismic
impedance inversion method based on a Cycle-consistent Generative Adversarial Network
(Cycle-GAN). To fully explore the multichannel characteristics of the seismic data [27],
Wu et al. proposed a deep learning method for multidimensional seismic impedance
inversion [28].

These studies show that neural networks have great potential for seismic inversion.
All of these methods are based on learning the mapping from seismic data to well logging
data, and then using the learned mapping to estimate properties for off-well locations.
This approach usually requires a large amount of labeled training data to improve gen-
eralization performance. However, due to the high drilling cost, the number of wells in
most exploration operations is limited, leading to a trained model with poor generalization.
MTL provides an effective way to mitigate this problem [29,30]. Compared with single task
learning, multi-task learning network is in the fashion of “single input and multi output”,
with an incomparable advantage over a single task network [31]. Simultaneously learning
multiple related tasks can improve the model generalization ability, thus improving the
performance of the main task on the same amount of labeled data [32]. Meanwhile, multi-
task learning can help extract multi-scale texture information from datasets [33]. There are
two main ways to implement MTL: hard parameter sharing and soft parameter sharing.
Hard parameter sharing involves the hidden layer of a two-task sharing network, and uses
different output layers to complete different tasks. The soft parameter sharing method
means that each task has its own model and parameters, and the distance between model
parameters is then regularized to increase the similarity of models [34]. When there is a
high correlation between tasks, the hard parameter sharing method is more suitable, and
the higher the correlation between tasks, the greater the proportion of sharing layers in
hard parameter sharing [35]. Mustafa et al. proposed an example of multi-task learning
via representation sharing where multiple tasks (seismic impedance inversion and data
reconstruction) are learnt simultaneously in the hope that the network can learn more
generalizable feature representations leading to better performance in all tasks [1]. This
is especially the case when the tasks are highly related to each other. In this paper, we
propose a multi-task FCRN for simultaneous seismic impedance inversion and seismic
data reconstruction. The performance of hard parameter sharing deep learning is highly
dependent on the loss weight of each task, and the weighted linear sum of the loss for
each individual task is usually used for training. However, it is tedious to manually adjust
the weights for the loss of different tasks. It was found that the optimal weights for each
task are closely related to the task magnitude and ultimately depend on the task’s noise
level [36]. Therefore, in this paper, we propose an automatic weight adjustment method
for a multi-task loss function based on homoscedastic uncertainty for seismic impedance
inversion. The test results from the two synthetic datasets of the Marmousi2 and Over-
thrust model, and one field dataset of the Volve model, show that the proposed method can
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automatically determine the optimal weight of the two tasks, and generate higher accurate
impedance results than single-task model.

The remainder of this paper is organized as follows. Section 2 describes the method-
ology, which includes the network architecture and the theory of multi-task loss function
based on homoscedastic uncertainty. In Section 3, the three datasets and experimental
results are presented. We discuss the limitations of the proposed method in Section 4.
Conclusions are given in Section 5.

2. Methodology
2.1. Network Architecture

The single-task network used in this paper is a FCRN from Wu et al. [23], and the
multi-task network is a hard parameter sharing network developed from the single-task
FCRN. The multi-task network structure is shown in Figure 1. In order to better capture
the low-frequency characteristics of seismic data, the first convolution layer of FCRN has
16 kernels of size 299× 1. After the first convolution layer, three residual blocks are stacked,
and each residual block is composed of two convolution layers. The first layer and the
second layer, respectively, have 16 convolution kernels of size 299 × 1 and 3 × 1. To enable
the network to complete multi-task inversion, two output channels are set after the residual
block. Each output channel contains two one-dimensional convolution layers, and each
one-dimensional convolution layer has a kernel of 3 × 1. The convolution step size is 1,
and zero-padding is used to all convolution layers to ensure the same input and output
sizes. Rectified linear unit (ReLU) and batch normalization (BN) are introduced into the
network to accelerate network training and convergence.
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2.2. Multi-Task Loss Function Based on Homoscedastic Uncertainty

The performance of hard parameter sharing is highly dependent on the loss weight
of each task, and simply performing a weighted linear sum of the loss for each individual
task is usually undertaken to carry out training. Manual tuning of the weights is often
troublesome. Thus, a method based on homoscedastic uncertainty of the Bayesian model is
used to balance the weights of the loss function of multiple tasks.

In Bayesian modeling, there are two main types of uncertainty, i.e., epistemic and
aleatoric uncertainty. In a model, the aleatoric uncertainty captures the randomness of
the model prediction, which depends on the noise inherent in input observations, and
the epistemic uncertainty captures what a model does not know due to lack of training
data [37]. Aleatoric uncertainty can again be divided into two subcategories, heteroscedastic
uncertainty and homoscedastic uncertainty. Heteroscedastic uncertainty depends on the
inputs to the model, with some inputs potentially having more noisy outputs than others.
Homoscedastic uncertainty can be described as task dependent, which stays constant for
all input data and varies between different tasks [36]. In this paper, we derive a multi-task
loss function based on maximizing the Gaussian likelihood with homoscedastic uncertainty.
The derivation is as follows:
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(1) Given a dataset X = {x1, . . . , xN}, Y = {y1, . . . , yN}, we define f w(x∗) as the output
of a neural network with weights w on input x∗. For regression tasks, we define the
likelihood as a Gaussian distribution that takes the model output as the mean:

p(y∗| f w(x∗)) = N
(

f w(x∗), σ2
)

(1)

where σ is an observation noise scalar capturing how much noise is in the outputs.
When w and x∗ are determined, the establishment of a probabilistic model of observa-
tion is equivalent to the determination of epistemic uncertainty and heteroscedastic
uncertainty. Only homoscedastic uncertainty is considered in this paper. Different
tasks have different homoscedastic uncertainties.

(2) In maximum likelihood inference, we want to maximize the logarithmic likelihood of
the model, that is, to maximize the following equation:

log p(y∗| f w(x∗)) ∝ − 1
2σ2 ||y

∗ − f w (x∗)||2 − logσ (2)

(3) Construct the maximum likelihood function for multi-task. There are two tasks in
our model: impedance prediction and data reconstruction. We use ypre and yrec
to denote the outputs of the two tasks and assume that ypre and yrec following a
Gaussian distribution:

p
(
ypre, yrec

∣∣ f w(x)
)
= p

(
ypre

∣∣ f w(x)
)

p(yrec| f w(x)) = N
(

ypre, f w(x), σ2
pre

)
N
(

yrec, f w(x), σ2
rec

)
(3)

(4) To maximize the logarithmic likelihood function, that is, to minimize the negative
logarithmic likelihood function, then the multi-task loss function is:

L
(
w, σpre, σrec

)
= −log p

(
ypre, yrec

∣∣ f w(x)
)

∝ 1
2σ2

pre
||ypre − f w (x)||2 + 1

2σ2
rec
||yrec − f w (x)||2 + logσpreσrec

= 1
2σ2

pre
Lpre(w) + 1

2σ2
rec

Lrec(w) + logσpreσrec
(4)

the process of minimizing the loss function is to learn the optimal weight of Lpre(w)
and Lrec(w) automatically according to the data. As σpre increases, the weight of task
impedance prediction decreases. However, with too great an increase in noise, the
data will be ignored, so the last term of the objective function logσpreσrec is the noise
term regularizer. When the loss function reaches its minimum, we can obtain the
corresponding σpre and σrec . We use wpre and wrec to denote the weights of the two
tasks; then, from Equation (4) we can obtain the optimal weight between the two
tasks as:

wpre : wrec =
1

2σ2
pre

:
1

2σ2
rec

= σ2
rec : σ2

pre (5)

Further processing makes the two weights add to 1; then, the final optimal weight is:

wpre : wrec =
σ2

rec
σ2

pre + σ2
rec

:
σ2

pre

σ2
pre + σ2

rec
(6)

3. Experiments

Two synthetic datasets and one field dataset were used in this study, which are
denoted as the Marmousi2 model, the Overthrust model, and the Volve model, respectively.
The three datasets were used to train the single-task network and the hard parameter
sharing multi-task network respectively, and then the trained networks were used for
impedance inversion.
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3.1. Experiment on the Marmousi2 Model

The impedance of the Marmousi2 model and its corresponding synthetic data are
the same as in [23], and are shown in Figure 2. For this model, 101 traces were selected
from the synthetic seismic data and impedance data as the training set through isometric
sampling, and 1350 traces were randomly selected from the remaining 13,500 traces as the
validation set and the whole 13,601 traces comprised the test set. The Adam optimization
method was adopted in this paper. The weight decay rate was set to 1 × 10−7. The learning
rate was set to 0.001. The number of epochs was set to 50, and the batch size was set to 10.
The above hyperparameters and network structure were decided from an ablation study
by adjusting the convergence of the training set and the validation set. The training of
the network was implemented under the PyTorch framework, and a GPU was applied to
accelerate the calculation.
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The validation Mean Squared Error (MSE) of the two tasks with different weights
is shown in Table 1. The training/validation procedure was executed five times and the
average results were output for comparison. The performance of the model for a single
task is shown in the first and last rows. When the validation loss is minimal during the
50 epochs, the corresponding σpre = 0.890 and σrec = 0.759, then we can calculate that the
optimal weight for impedance prediction and seismic data reconstruction is 0.421:0.579 by
Equations (5) and (6). Figure 3 shows the variation at different epochs of σpre, σrec and
the corresponding wpre, wrec. Under this optimal weight, the validation MSE of the two
task is 0.0365 and 0.00054. Compared with results in Table 1, it can be seen that the MSEs
of the multi-task network of the two tasks under different weights are smaller than that
of the single-task network, and the optimal weight determined by the proposed method
makes the MSE smaller for both tasks, which proves the effectiveness of the method. The
training and validation loss curves of different tasks under the optimal weight are shown
in Figure 4. Figure 5 illustrates the profiles predicted by the single-task network (Figure 5a)
and the hard parameter sharing multi-task network (Figure 5b) with the optimal weight
for visual comparison. The MSEs of the profiles predicted by the single-task network
and the hard parameter sharing multi-task network are 0.0478 and 0.0353, respectively,
which proves the advantage of the hard parameter sharing multi-task network from a
quantitative perspective.
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Table 1. The validation MSEs of the two tasks with different weights on the Marmousi2 model.

Task Weights MSE of Validation

wpre (Impedance prediction) wrec (Data reconstruction) Impedance prediction Data reconstruction

0 1 / 0.00080
0.1 0.9 0.0411 0.00028
0.2 0.8 0.0412 0.00040
0.3 0.7 0.0407 0.00045
0.4 0.6 0.0397 0.00056
0.5 0.5 0.0372 0.00065
0.6 0.4 0.0374 0.00066
0.7 0.3 0.0397 0.00060
0.8 0.2 0.0385 0.00072
0.9 0.1 0.0375 0.00077
1 0 0.0446 /
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reconstruction.

To further demonstrate the effectiveness of the proposed method, Figure 6 shows the
results of impedance prediction for the 731st (Figure 6a) and 8991st (Figure 6b) trace data
points. We can see that the impedance predicted by the hard parameter sharing multi-
task network (green) matches the true impedance (red) better than that of the single-task
network (blue). The blue and green dotted lines in Figure 6 represent residuals between
the true impedance and the impedance predicted by the two networks. Table 2 shows the
Pearson Correlation Coefficient (PCC) between the predicted value and the truth. Under
the optimal weights, the PCC between the predicted value and the ground truth of the
731st and 8991st traces of the multi-task network (third column) are both higher. We also
tested the tolerance of the two networks to noise. We added six levels of Gaussian noise
with a signal-to-noise ratio (SNR) of 0, 5, 15, 25, 35, and 45 dB to the test dataset. The MSEs
between the prediction of different SNR data and the true impedance are presented in
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Table 3, and shows that the accuracy of the multi-task network is higher than that of the
single-task network under all six test datasets with different SNRs. This further proves the
superiority of the method in this paper.
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Figure 6. Impedance traces’ prediction of the Marmousi2 model by the two networks: (a) trace 731;
(b) trace 8991.

Table 2. PCC between the traces’ predicted value and the ground truth of the Marmousi2 model.

Trace No. Single-Task Multi-Task (0.421:0.579)

731 0.9952 0.9956
8991 0.9805 0.9890

Table 3. The MSEs between the prediction of different SNR data and the true impedance of the
Marmousi2 model

SNR (dB) Single-Task Multi-Task (0.421:0.579)

0 1.1270 0.5948
5 0.2020 0.1260
15 0.0546 0.0379
25 0.0484 0.0355
35 0.0478 0.0353
45 0.0478 0.0353
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3.2. Experiment on the Overthrust Model

The impedance of the Overthrust model and its corresponding synthetic data are also
that same as in [23] and are shown in Figure 7. For this model, five traces were selected as
the training set from the synthetic seismic data and impedance data by isometric sampling,
39 traces were randomly selected from the remaining 392 traces as the validation set, and
the whole 401 traces were the test set. Due to the small amount of sample data, there
may be overfitting. Data enhancement methods are usually used to avoid overfitting.
In contrast to the Marmousi2 model test, we used cubic spline interpolation to generate
20 new impedance and seismic data traces between every two selected traces in this model.
Ultimately, we used 85 traces to train the network. The interpolation data are shown in
Figure 8. The frequency-wavenumber spectra of the original and interpolated seismic
data are shown in Figure 9 for comparison. The number of epochs was set to 1000 and
the other hyperparameters and network structure were same as those of the Marmousi2
model. The validation MSEs of the two tasks with different weights are shown in Table 4.
The performance of the model for a single task is shown in the first and the last rows.
When the validation loss is minimal during the 1000 epochs, the corresponding σpre = 0.192
and σrec = 0.120, then we can calculate that the optimal weight is 0.28: 0.72, and the MSE
of the two tasks under this weight is 0.0079 and 0.00001. Figure 10 shows the variation
with epochs of σpre, σrec and the corresponding wpre, wrec. It can be seen that the MSEs
obtained by the multi-task network under different weights for both tasks are all smaller
than that obtained by the single-task network, and the optimal weight minimizes the MSEs.
The training and validation loss curves of different tasks under the optimal weight are
shown in Figure 11. Figure 12 illustrates the profiles predicted by the single-task network
(Figure 12a) and the hard parameter sharing multi-task network (Figure 12b) with the
optimal weight. The MSEs of the predicted profiles are 0.0119 and 0.0063, respectively,
which also shows that the hard parameter sharing multi-task network outperforms the
single-task network. Similarly, we chose two traces to further demonstrate the performance
of the proposed method. Figure 13 shows the predicted results of impedance prediction
for the 99th (Figure 13a) and 316th (Figure 13b) traces, and their corresponding PCC
between the predicted value and the ground truth are shown in Table 5. It is clear that the
impedance predicted by the hard parameter sharing multi-task network (green) matches
the true impedance (red) better than that by the single-task network (blue). The blue and
green dotted lines in Figure 13 represent residuals between the true impedance and the
impedance predicted by the two networks. In addition, the MSEs between the prediction of
different SNR data and the true impedance are presented in Table 6. It shows that, with the
exception of 0 dB noise, the accuracy of the multi-task network is higher than that of the
single-task network under the other five testing data with different SNRs, which further
proves the advantage of the proposed method.
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Table 5. PCC between the traces’ predicted value and the ground truth of the Overthrust model.

Trace No. Single-Task Multi-Task (0.28:0.72)

99 0.9964 0.9993
316 0.9960 0.9990
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Table 6. The MSEs between the prediction of different SNR data and the true impedance of the
Overthrust model

SNR (dB) Single-Task Multi-Task (0.28:0.72)

0 0.1300 0.2163
5 0.0295 0.0199
15 0.0128 0.0068
25 0.0120 0.0063
35 0.0119 0.0063
45 0.0119 0.0063

3.3. Experiment on the Volve Model

The field Volve data used in this paper are from the open-source code of Das et al. [19].
The Volve field shown in Figure 14a is located in offshore Norway and is a clastic reservoir.
There are 1300 labeled traces in this dataset, which were generated using the data augmen-
tation method in [19] based on the statistical characteristics of the well position log data
shown in Figure 14b. We randomly selected 750 traces as the training set and the remaining
550 traces were set to be the validation set. We used the single true well log data to test the
performance of the two networks. Unlike the previous two datasets, the kernel size was
set as 80 to adapt the 160 time sampling points of the Volve model. The number of epochs
was set to 500, and the other hyperparameters and network structure were set to be the
same as in the former two models. Similarly, when the validation loss is minimal during
the 500 epochs, the corresponding σpre = 0.829 and σrec = 0.828, then we can calculate that
the optimal weight for impedance prediction and seismic data reconstruction as 0.499:0.501.
Figure 15 shows the predicted results of impedance prediction by the single-task model
(blue) and the multi-task model (green) under the optimal weight. We can see that the
impedance predicted by the multi-task model under the optimal weight matches the true
impedance (red) better than the single-task model, especially in the time range between
40 and 50 ms. The blue and green dotted lines in Figure 15 represent residuals between
the true impedance and the impedance predicted by the two networks. The MSE of the
impedance predicted by the multi-task model under the approximate optimal weight is
0.0239, whereas the MSE predicted by the single-task model is 0.0352. In addition, the
PCC between the ground truth and the values predicted by the multi-task model and
the single-task model are 0.872 and 0.832, respectively. The above two metrics prove the
superiority of the multi-task model under the optimal weight. It is worth noting that the
test MSE and PCC in reference [19] are 0.0255 and 0.82, which is comparable with our
single-task model, but is slightly inferior to our multi-task model. The Volve field data
test shows that the proposed method in this paper improves the accuracy of impedance
prediction on real seismic data.
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4. Discussion

The proposed multi-task FCRN model was directly developed from the single-task
FCRN of Wu et al. [23]. However, this is an open framework, enabling many other networks
for seismic impedance prediction to also be explored. We believe seismic reconstruction is
a task that is not limited to impedance inversion, and other deep learning tasks such as seis-
mic fault interpretation can also benefit in similar way. Close inspection of Figures 3 and 4
indicates that the almost flat total loss variation range corresponds to a relatively large
range of

(
σpre, σrec

)
. This means that there maybe not a single optimal weighting for all

tasks, which was also an observation of Kendall et al. [36].
For the first two experiments, we attempted to add six levels of Gaussian noise, having

an SNR of 0, 5, 15, 25, 35, and 45 dB, to the test set to test the tolerance of the two networks
to noise. The test results of the Overthrust model show that the accuracy of the impedance
prediction of the multi-task network is lower than that of the single-task network under
the 0 dB noise. A possible reason for this is that when we add noise to the test dataset, we
should train the model again to obtain a new optimal weight for the two tasks.

5. Conclusions

In this paper, we propose a multi-task network for both impedance inversion and
seismic data reconstruction, and use a loss function based on the homoscedastic uncertainty
of a Bayesian model to determine the optimal weight of the two tasks in the loss function.
Test results from the Marmousi2, Overthrust, and Volve models show that: (1) the multi-
task model has better generalization performance than the single-task model when the
amount of labeled data is the same; and (2) the method proposed in this paper can be used
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to automatically determine the optimal weight of two tasks, and generates more accurate
impedance than the single-task model. The proposed method can be extended to other
multi-task learning approaches in a similar fashion.

In the future, we may apply the proposed method to high-dimensional seismic in-
version, pre-stack inversion, and additional kinds of neural networks to verify its applica-
tion value.
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MTL Multi-Task Learning
FCRN Fully Convolutional Residual Network
CNN Convolutional Neural Networks
FCN Fully Convolutional Neural Network
TCN Temporal Convolutional Network
GGCNNs Geological and Geophysical Model Driven CNNs
GAN Generative Adversarial Network
Cycle-GAN Cycle-consistent Generative Adversarial Network
ReLU Rectified Linear Unit
BN Batch Normalization
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