Temporal and Regional Differences and Empirical Analysis on Sensitive Factors of the Corn Production Cost in China
Abstract
:1. Introduction
2. Materials and Methods
2.1. Research Methods
2.1.1. Global Spatial Autocorrelation Method
2.1.2. Local Spatial Autocorrelation Method
2.1.3. Empirical Model of Sensitive Factors
2.2. Data Sources
3. Results
3.1. Time Series Characteristics of the CPC
3.2. Characteristics of Spatial Differences in Corn Production Cost
3.3. Global Spatial Autocorrelation Analysis of Corn Production Cost
3.4. Local Spatial Autocorrelation Analysis of Corn Production Cost
3.5. Empirical Analysis of Factors Affecting Corn Production Cost
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- National Bureau of Statistics. China Rural Statistical Yearbook 2019; China Statistics Press: Beijing, China, 2019.
- Huang, J.; Yang, G. Understanding recent challenges and new food policy in China. Glob. Food Secur. 2017, 12, 119–126. [Google Scholar] [CrossRef]
- Wu, X.; Xu, J. Drivers of food price in China: A heterogeneous panel SVAR approach. Agric. Econ. 2021, 52, 67–79. [Google Scholar] [CrossRef]
- Ministry of Agriculture and Rural Affairs of the People’s Republic of China (former Ministry of Agriculture). Layout planning of corn advantageous areas (2008–2015). Agric. Eng. Technol. 2010, 5, 11–13. [Google Scholar]
- Xu, Y.Y.; Li, C.G. Liquidity of the Chinese Agricultural Futures Market and Its Impact on Futures Price Based on High-Frequency Data. Sustainability 2018, 10, 4579. [Google Scholar] [CrossRef] [Green Version]
- Yang, W.; Zheng, F.; Han, Y.; Wang, Z.; Yi, Y.; Feng, Z. Investigating spatial distribution of soil quality index and its impacts on corn yield in a cultivated catchment of the Chinese Mollisol Region. Soil Sci. Soc. Am. J. 2016, 80, 317–327. [Google Scholar] [CrossRef] [Green Version]
- Wang, H.H.; Qi, J.; Duan, D.B.; Dong, Y.; Xu, X.L.; Zhou, G.Z. Combination of a novel designed spray cabinet and electrolyzed water to reduce microorganisms on chicken carcasses. Food Control 2018, 86, 200–206. [Google Scholar] [CrossRef]
- Zhu, Q.H.; Li, X.Y.; Zhao, S.L. Cost-sharing models for green product production and marketing in a food supply chain. Ind. Manag. Data Syst. 2018, 118, 654–682. [Google Scholar] [CrossRef]
- Zhang, L.; Chen, Z.; Yang, M.L.; Huang, H.; Ye, C. Analysis of spatiotemporal characteristics of corn production efficiency in my country. Trans. Chin. Soc. Agric. Mach. 2018, 49, 183–193. (In Chinese) [Google Scholar] [CrossRef]
- Gutiérrez, E.; Aguilera, E.; Lozano, S.; Guzmán, G.I. A two-stage DEA approach for quantifying and analysing the inefficiency of conventional and organic rain-fed cereals in Spain. J. Clean. Prod. 2017, 149, 335–348. [Google Scholar] [CrossRef]
- Pandey, R.; Nahar, N.; Pryor, S.W.; Pourhashem, G. Cost and Environmental Benefits of Using Pelleted Corn Stover for Bioethanol Production. Energies 2021, 14, 2528. [Google Scholar] [CrossRef]
- Sandhu, H.; Scialabba, E.H.; Warner, C.; Behzadnejad, F.; Fujiwara, D. Evaluating the holistic costs and benefits of corn production systems in minnesota, US. Sci. Rep. 2020, 10, 3922. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Xu, C.; Xia, T.; Wang, J.; Yu, L.; Peng, L. Selectively desirable rapeseed and corn stalks distinctive for low-cost bioethanol production and high-active biosorbents. Waste Biomass Valorization 2021, 12, 795–805. [Google Scholar] [CrossRef]
- Morris, D.L.; Brown-Brandl, T.M.; Miller, P.S.; Weiss, W.P.; White, R.R.; Kononoff, P.J. Factors that affect heat production in lactating Jersey cows. J. Dairy Sci. 2021, 104, 346–356. [Google Scholar] [CrossRef] [PubMed]
- Chen, F.; Zhao, Y. Determinants and differences of grain production efficiency between main and non-main producing area in china. Sustainability 2019, 11, 5225. [Google Scholar] [CrossRef] [Green Version]
- Latruffe, L.; Bravo-Ureta, B.E.; Carpentier, A.; Desjeux, Y.; Moreira, V.H. Subsidies and technical efficiency in agriculture: Evidence from European dairy farms. Am. J. Agric. Econ. 2017, 99, 783–799. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Z.; Lu, C. Identification of maize yield trend patterns in the north china plain. Int. J. Plant Prod. 2020, 15, 125–137. [Google Scholar] [CrossRef]
- Rani, S.; Sharma, M.K.; Kumar, N. Impact of salinity and zinc application on growth, physiological and yield traits in wheat. Curr. Sci. 2019, 116, 1324–1330. [Google Scholar] [CrossRef]
- Anand, M.; Vivek, K.; Kavya, D. Spatial and Temporal Trends in the Yields of Three Major Crops: Wheat, Rice and Maize in India. Int. J. Plant Prod. 2020, 14, 187–207. [Google Scholar] [CrossRef]
- Wang, X.; Yamauchi, F.; Huang, J. Rising wages, mechanization, and the substitution between capital and labor: Evidence from small scale farm system in China. Agric. Econ. 2016, 47, 309–317. [Google Scholar] [CrossRef]
- Wei, H.H.; Meng, T.Y.; Li, X.Y.; Dai, Q.G.; Zhang, H.C.; Yin, X.Y. Sink source relationship during rice grain filling is associated with grain nitrogen concentration. Field Crops Res. 2018, 215, 23–38. [Google Scholar] [CrossRef]
- Baig, S.M.; Khan, A.A.; Ali, A.; Khan, M.Z.; Ali, G. Enhancing socioeconomic resilience and climate adaptation through value chain development of mountain products in Hindu Kush Himalayas. Environ. Dev. Sustain. 2021, 23, 8451–8473. [Google Scholar] [CrossRef]
- Li, X.; Chen, Y. Projecting the future impacts of China’s cropland balance policy on ecosystem services under the shared socioeconomic pathways. J. Clean. Prod. 2020, 250, 119489. [Google Scholar] [CrossRef]
- Xu, J.W.; Smith, S.; Smith, G.; Wang, W.Q.; Li, Y.H. Glyphosate contamination in grains and foods: An overview. Food Control 2019, 106, 106710. [Google Scholar] [CrossRef]
- Li, P.; Tian, Y.; Wu, J.J.; Xu, W.C. The Great Western Development policy: How it affected grain crop production, land use and rural poverty in western China. China Agric. Econ. Rev. 2021, 13, 319–348. [Google Scholar] [CrossRef]
- Zheng, X.Y.; Liu, W.P.; Xu, Z.G.; Ying, R.Y.; Ye, C.H. Restructuring grain production in China: Regional heterogeneity and its causality. China Agric. Econ. Rev. 2018, 10, 647–665. [Google Scholar] [CrossRef]
- Huang, H.; Yang, M.L.; Huang, G.Q. Construction and evaluation of engineering models for mechanized production of major food crops. Trans. Chin. Soc. Agric. Eng. 2013, 29, 53–61. (In Chinese) [Google Scholar]
- Li, W.; Wei, X.; Zhu, R.; Guo, K.Q. Study on factors affecting the agricultural mechanization level in china based on structural equation modeling. Sustainability 2018, 11, 51. [Google Scholar] [CrossRef] [Green Version]
- Li, M.Y.; Wang, J.J.; Zhao, P.J.; Chen, K.; Wu, L.B. Factors affecting the willingness of agricultural green production from the perspective of farmers’ perceptions. Sci. Total Environ. 2020, 738, 140289. [Google Scholar] [CrossRef] [PubMed]
- Baldoni, E.; Esposti, R. Agricultural Productivity in Space: An Econometric Assessment Based on Farm-Level Data. Am. J. Agric. Econ. 2020, 103, 1525–1544. [Google Scholar] [CrossRef]
- Zhang, L.L.; Xiong, L.C.; Cheng, B.D.; Yu, C. How Does Foreign Trade Influence China’s Carbon Productivity? Based on Panel Spatial Lag Model Analysis. Struct. Chang. Econ. Dyn. 2018, 47, 171–179. [Google Scholar] [CrossRef]
- Hoffer, A.; Humphreys, B.R.; Ruseski, J.E. State cigarette taxes and health expenditures: Evidence from dynamic spatial lag panel models. Pap. Reg. Sci. 2019, 98, 925–950. [Google Scholar] [CrossRef]
- Wongjaikham, W.; Wongsawaeng, D.; Ratnitsai, V.; Kamjam, M.; Assabumrungrat, S. Low-cost alternative biodiesel production apparatus based on household food blender for continuous biodiesel production for small communities. Sci. Rep. 2021, 11, 13827. [Google Scholar] [CrossRef] [PubMed]
- Tian, X.; Yi, F.; Yu, X. Rising cost of labor and transformations in grain production in china. China Agric. Econ. Rev. 2020, 12, 158–172. [Google Scholar] [CrossRef]
- Deng, F.; Zhu, H.; Huang, Y.; Liang, X. The impact of trade on scale efficiency in grain and oil-bearing plant production in china. Emerg. Mark. Financ. Trade 2018, 57, 1–13. [Google Scholar] [CrossRef]
- Wang, Q.; Li, F.; Yu, J.; Fleskens, L.; Ritsema, C.J. Price decline, land rental markets and grain production in the North China Plain. China Agric. Econ. Rev. 2021, 13, 141–166. [Google Scholar] [CrossRef]
- Jin, Y.A.; Qian, W.B.; Wu, B.C. Off-farm employment and grain production change: New evidence from China. China Econ. Rev. 2020, 63, 101519. [Google Scholar] [CrossRef]
- Muyanga, M.; Jayne, T.S. Revisiting the farm size-productivity relationship based on a relatively wide range of farm sizes: Evidence from kenya. Am. J. Agric. Econ. 2019, 101, 1140–1163. [Google Scholar] [CrossRef]
- Ali, D.A.; Deininger, K. Is There a Farm Size-Productivity Relationship in African Agriculture? Evidence from Rwanda. Land Econ. 2015, 91, 317–343. [Google Scholar] [CrossRef]
- Khanna, M.; Chen, L.Y.; Basso, B.; Cai, X.M.; Field, J.; Guan, K.Y.; Jiang, C.; Lark, T.J.; Richard, T.L.; Spawn-Lee, S.A.; et al. Redefining marginal land for bioenergy crop production. GCB Bioenergy 2021, 13, 1590–1609. [Google Scholar] [CrossRef]
- Shi, Y.; Pinsard, C.; Accatino, F. Land sharing strategies for addressing the trade-off between carbon storage and crop production in France. Reg. Environ. Chang. 2021, 21, 92. [Google Scholar] [CrossRef]
- Chou, H.; Li, X.H.; Yu, J.L. China’s Corn Industry: Development Trends and Policy Recommendations. Issues Agric. Econ. 2021, 4–16. (In Chinese) [Google Scholar] [CrossRef]
- Zhang, Y.L.; Wang, Y.H.; Bai, Y.L. Knowing and Doing: The Perception of Subsidy Policy and Farmland Transfer. Sustainability 2019, 11, 2393. [Google Scholar] [CrossRef] [Green Version]
- Alwang, J.; Sabry, S.; Shideed, K.; Swelam, A.; Halila, H. Economic and food security benefits associated with raised-bed wheat production in egypt. Food Secur. 2018, 3, 589–601. [Google Scholar] [CrossRef] [Green Version]
- Takeshima, H.; Hatzenbuehler, P.L.; Edeh, H.O. Effects of agricultural mechanization on economies of scope in crop production in Nigeria. Agric. Syst. 2020, 177, 102691. [Google Scholar] [CrossRef]
- Theuerl, S.; Klang, J.; Prochnow, A. Process disturbances in agricultural biogas production—Causes, mechanisms and effects on the biogas microbiome: A review. Energies 2019, 12, 365. [Google Scholar] [CrossRef] [Green Version]
Variable | Variable Meaning | Variable Symbol | Description | Mean | S.D. | C.V. | Min | Max |
---|---|---|---|---|---|---|---|---|
Corn production cost | Corn production cost | CPC | Corn production cost | 7.470 | 0.282 | 0.038 | 6.877 | 8.215 |
Land management scale | Sown area per labor | Land | Corn sown area/Number of laborers | 8.868 | 0.877 | 0.099 | 7.117 | 10.750 |
Labor structure | Proportion of non-agricultural population | Citizen | Non-agricultural population/Total population | 0.507 | 0.086 | 0.170 | 0.291 | 0.696 |
Degree of mechanization | Comprehensive Mechanization Level of Corn Cultivation and Harvest | Machine | 0.4 × Mechanized farming level + 0.3 × Mechanized planting level + 0.3 × Mechanized harvesting level | 0.549 | 0.272 | 0.495 | 0.004 | 0.997 |
Socioeconomic conditions | Per capita annual net income of farmers | Income | (Total income of rural households-various expenses)/Number of permanent residents of the household | 18.160 | 0.439 | 0.024 | 17.120 | 19.160 |
Proportion of non-agricultural output value | Nonagrigdp | (The added value of the secondary industry + the added value of the tertiary industry)/GDP | 0.883 | 0.039 | 0.045 | 0.759 | 0.956 |
Region | 2008 | 2018 | ||||||||
---|---|---|---|---|---|---|---|---|---|---|
Labor Cost | Seed Cost | Fertilizer Cost | Pesticide Cost | Mechanical Operation Costs | Labor Cost | Seed Cost | Fertilizer Cost | Pesticide Cost | Mechanical Operation Costs | |
Nation | 42.11 | 6.78 | 28.69 | 2.28 | 15.02 | 53.04 | 6.82 | 16.83 | 2.09 | 17.02 |
Northern spring corn area | 39.90 | 5.93 | 27.53 | 1.80 | 16.96 | 49.43 | 7.15 | 16.72 | 1.74 | 19.50 |
Huang-Huai-hai summer corn area | 42.97 | 7.23 | 29.49 | 2.61 | 14.01 | 54.14 | 6.25 | 16.57 | 2.27 | 16.74 |
Southern hilly corn area | 55.52 | 6.06 | 21.60 | 1.51 | 8.24 | 70.54 | 5.41 | 11.66 | 1.23 | 6.88 |
Year | Global Moran’s I | Z Value | p Value |
---|---|---|---|
2008 | 0.338 | 3.080 | 0.005 |
2009 | 0.360 | 3.262 | 0.001 |
2010 | 0.348 | 3.164 | 0.003 |
2011 | 0.367 | 3.345 | 0.001 |
2012 | 0.367 | 3.310 | 0.002 |
2013 | 0.361 | 3.266 | 0.001 |
2014 | 0.374 | 3.354 | 0.002 |
2015 | 0.375 | 3.373 | 0.001 |
2016 | 0.355 | 3.191 | 0.002 |
2017 | 0.364 | 3.267 | 0.002 |
2018 | 0.347 | 3.130 | 0.003 |
Inspection Method | Observations | Statistic | p Value |
---|---|---|---|
220 | 83.108 | 0.000 | |
220 | 14.672 | 0.000 | |
220 | 82.636 | 0.000 | |
220 | 14.199 | 0.000 | |
220 | 38.50 | 0.000 |
Variables | Model 1 | Model 2 | Model 3 | Model 4 | Model 5 |
---|---|---|---|---|---|
Land | −0.1307 *** | −0.1074 *** | −0.0051 ** | −0.0715 *** | −0.0938 *** |
(0.0190) [−0.1552] | (0.0182) [−0.1275] | (0.0174) [−0.0061] | (0.0150) [−0.0849] | (0.0172) [−0.1114] | |
Citizen | 1.3074 *** | 0.5960 *** | 1.0308 *** | 1.2618 *** | |
(0.2100) [0.0887] | (0.1830) [0.0405] | (0.2092) [0.0700] | (0.2250) [0.0856] | ||
Machine | −0.7672 *** | −0.6581 *** | −0.6304 *** | ||
(0.0704) [−0.0564] | (0.0579) [−0.0484] | (0.0580) [−0.0463] | |||
Income | −0.8103 *** | −0.8644 *** | |||
(0.0739) [−1.9699] | (0.0755) [−2.1014] | ||||
Nonagrigdp | −0.7205 ** | ||||
(0.2888) [−0.0852] | |||||
LogL | 6.2322 | 25.2782 | 72.0440 | 118.2547 | 121.2806 |
R-squared | 0.1527 | 0.2177 | 0.4289 | 0.3814 | 0.3868 |
Number of obs | 220 | 220 | 220 | 220 | 220 |
Model setting | SLPDM | SLPDM | SLPDM | SLPDM | SLPDM |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ouyang, S.; Hu, J.; Yang, M.; Yao, M.; Lin, J. Temporal and Regional Differences and Empirical Analysis on Sensitive Factors of the Corn Production Cost in China. Appl. Sci. 2022, 12, 1202. https://doi.org/10.3390/app12031202
Ouyang S, Hu J, Yang M, Yao M, Lin J. Temporal and Regional Differences and Empirical Analysis on Sensitive Factors of the Corn Production Cost in China. Applied Sciences. 2022; 12(3):1202. https://doi.org/10.3390/app12031202
Chicago/Turabian StyleOuyang, Shumiao, Jie Hu, Minli Yang, Mingyin Yao, and Jinlong Lin. 2022. "Temporal and Regional Differences and Empirical Analysis on Sensitive Factors of the Corn Production Cost in China" Applied Sciences 12, no. 3: 1202. https://doi.org/10.3390/app12031202
APA StyleOuyang, S., Hu, J., Yang, M., Yao, M., & Lin, J. (2022). Temporal and Regional Differences and Empirical Analysis on Sensitive Factors of the Corn Production Cost in China. Applied Sciences, 12(3), 1202. https://doi.org/10.3390/app12031202