Petroleum Hydrocarbon Composition of Oily Sludge and Contaminated Soils in a Decommissioned Oilfield Waste Pit under Desert Conditions
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Site and Sampling Methods
2.2. Laboratory Methods
2.3. Quality Assurance and Quality Control
3. Results and Discussion
3.1. Morphology of Sludge-Soil Profile
3.2. Petroleum Hydrocarbon Composition of the Oily Sludges
3.3. Petroleum Hydrocarbon Composition of the Contaminated Soils
3.4. Relationship between Sludge-Borne Hydrocarbon and Soil-Borne Hydrocarbon
3.5. Implications for Management of the Oilfield Waste Pits in Desert Areas
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Hui, K.; Tang, J.; Lu, H.; Xi, B.; Qu, C.; Li, J. Status and prospect of oil recovery from oily sludge: A review. Arab. J. Chem. 2020, 13, 6523–6543. [Google Scholar] [CrossRef]
- Mazlova, E.; Meshcheryakov, S. Ecological characteristics of oil sludges. Chem. Technol. Fuels. Oil 2007, 35, 49–53. [Google Scholar] [CrossRef]
- Wang, S.; Yan, Z.; Guo, G.; Lu, G.; Wang, Q.; Li, F. Ecotoxicity assessment of aged petroleum sludge using a suite of effects-based end points in earthworm Eisenia fetida. Environ. Monit. Assess. 2010, 169, 417–428. [Google Scholar] [CrossRef] [PubMed]
- Gorlenko, N.V.; Timofeeva, S.S. Assessment of environmental damage from oil sludge to land resources in the Irkutsk region. IOP Conf. Ser. Earth Environ. Sci. 2019, 408, 012021. [Google Scholar] [CrossRef] [Green Version]
- Leonard, S.A.; Stegemann, J.A. Stabilization solidification of petroleum drill cuttings: Leaching studies. J. Hazard. Mater. 2010, 174, 484–491. [Google Scholar] [CrossRef]
- Da Silva, L.J.; Alves, F.C.; de França, F.P. A review of the technological solutions for the treatment of oily sludges from petroleum refineries. Waste. Manag. Res. 2012, 30, 1016–1030. [Google Scholar] [CrossRef]
- Hu, G.; Li, J.; Zeng, G. Recent development in the treatment of oily sludge from petroleum industry: A review. J. Hazard. Mater. 2013, 261, 470–490. [Google Scholar] [CrossRef]
- Hu, G.; Li, J.; Hou, H. A combination of solvent extraction and freeze thaw for oil recovery from petroleum refinery wastewater treatment pond sludge. J. Hazard. Mater. 2015, 283, 832–840. [Google Scholar] [CrossRef]
- Heidarzadeh, N.; Gitipour, S.; Abdoli, M.A. Characterization of oily sludge from a Tehran oil refinery. Waste Manag. Res. 2010, 28, 921–927. [Google Scholar] [CrossRef]
- Gopang, I.; Mahar, H.; Jatoi, A.; Akhtar, K.; Omer, M.; Azeem, S. Characterization of the sludge deposits in crude oil storage tanks. J. Fac. Eng. Technol. 2016, 29, 482–485. [Google Scholar]
- Imohimi, A.; Enweani, I.; Eguavoen, O. Characterization and Treatment of Sludge from the Petroleum Industry. Afr. J. Biotechnol. 2006, 5, 461–466. [Google Scholar]
- Helmy, Q.; Kardena, E. Petroleum Oil and Gas Industry Waste Treatment; Common Practice in Indonesia. J. Pet. Environ. Biotechnol. 2015, 6, 241. [Google Scholar] [CrossRef] [Green Version]
- Ul Haq, I.; Ahmad, W.; Ahmad, I.; Yaseen, M. Photocatalytic oxidative degradation of hydrocarbon pollutants in refinery wastewater using TiO2 as catalyst. Water Environ. Res. 2020, 92, 2086–2094. [Google Scholar] [CrossRef] [PubMed]
- Bacosa, H.; Suto, K.; Inoue, C. Preferential degradation of aromatic hydrocarbons in kerosene by a microbial consortium. Int. Biodeteriorat. Biodegrad. 2010, 64, 702–710. [Google Scholar] [CrossRef]
- Di Toro, D.M.; McGrath, J.A.; Stubblefield, W.A. Predicting the toxicity of neat and weathered crude oil: Toxic potential and the toxicity of saturated mixtures. Environ. Toxicol. Chem. 2007, 26, 24–36. [Google Scholar] [CrossRef]
- Farhad, N.; Hoag, G.E.; Liu, S.; Carley, R.J.; Zack, P. Detection and remediation of soil and aquifer systems contaminated with petroleum products: An overview. J. Pet. Sci. Eng. 2000, 26, 169–178. [Google Scholar]
- Ekundayo, E.O.; Obuekwe, C.O. Effects of an oil spill on soil physico-chemical properties of a spill site in a Typic Paleudult of midwestern Nigeria. Environ. Monit. Assess. 1997, 45, 209–221. [Google Scholar] [CrossRef]
- Yavari, S.; Malakahmad, A.; Sapari, N.B. A Review on Phytoremediation of Crude Oil Spills. Water Air Soil Pollut. 2015, 226, 279. [Google Scholar] [CrossRef]
- Amro, M.; Benzagouta, M.; Karnanda, W. Investigation on crude oil penetration depth into soils. Arab. J. Geosci. 2011, 6, 873–880. [Google Scholar] [CrossRef]
- Pazoki, M.; Hasanidarabadi, B. Management of toxic and hazardous contents of oil sludge in Siri Island. Glob. J. Environ. Sci. Manag. 2017, 3, 33–42. [Google Scholar] [CrossRef]
- Tanzharikov, P.; Erken, A.; Abilbek, Z.; Sarabekova, U.; Ermukhanova, N. The technology of preparation of the oil sludge pit with polymerorganic screen for oil waste. ARPN J. Eng. Appl. Sci. 2018, 6, 14. [Google Scholar]
- Kuwayama, Y.; Roeshot, S.; Krupnick, A.; Richardson, N.; Mares, J. Pits versus Tanks: Risks and Mitigation Options for On-Site Storage of Wastewater from Shale Gas and Tight Oil Development; Resources for the Future: Washington, DC, USA, 2016; p. 65. [Google Scholar]
- Park, I.; Park, J. A novel total petroleum hydrocarbon fractionation strategy for human health risk assessment for petroleum hydrocarbon-contaminated site management. J. Hazard. Mater. 2010, 179, 1128–1135. [Google Scholar] [CrossRef] [PubMed]
- Daučík, P.; Višňovský, J.; Ambro, J.; Hájeková, E. Temperature dependence of the viscosity of hydrocarbon fractions. Acta Chim. Slovaca 2008, 1, 43–57. [Google Scholar]
- Chang, W.; Dyen, M.; Spagnuolo, L.; Simon, P.; Whyte, L.; Ghoshal, S. Biodegradation of semi- and non-volatile petroleum hydrocarbons in aged, contaminated soils from a sub-Arctic site: Laboratory pilot-scale experiments at site temperatures. Chemosphere 2010, 80, 319–326. [Google Scholar] [CrossRef] [PubMed]
- Yaron, B.; Sutherland, P.; Galin, T.; Acher, A.J. Soil pollution by petroleum products, II. Adsorption-desorption of “kerosene” vapors on soils. J. Contam. Hydrol. 1989, 4, 347–358. [Google Scholar] [CrossRef]
- Madadian, E.; Gitipour, S.; Amiri, L.; Alimohammadi, M.; Saatloo, J. The application of soil washing for treatment of polycyclic aromatic hydrocarbons contaminated soil: A case study in a petrochemical complex. Environ. Progress Sustain. Energy 2014, 33, 107–113. [Google Scholar] [CrossRef]
- Bykova, M.V.; Alekseenko, A.V.; Pashkevich, M.A.; Drebenstedt, C. Thermal desorption treatment of petroleum hydrocarbon-contaminated soils of tundra, taiga, and forest steppe landscapes. Environ. Geochem. Health 2021, 43, 2331–2346. [Google Scholar] [CrossRef]
- Qin, J.; Lin, C.; Almebayedh, H.; Albader, M. Decomposition of long-chain petroleum hydrocarbons by Fenton-like processes: Effects of ferrous iron source, salinity and temperature. Ecotoxicol. Environ. Saf. 2019, 169, 764–769. [Google Scholar] [CrossRef]
- Sarkar, D.; Ferguson, M.; Datta, R.; Birnbaum, S. Bioremediation of petroleum hydrocarbons in contaminated soils: Comparison of biosolids addition, carbon supplementation, and monitored natural attenuation. Environ. Pollut. 2005, 136, 187–195. [Google Scholar] [CrossRef]
- Lu, M.; Zhang, Z.; Qiao, W.; Wei, X.; Guan, Y.; Ma, Q.; Guan, Y. Remediation of petroleum-contaminated soil after composting by sequential treatment with Fenton-like oxidation and biodegradation. Bioresour. Technol. 2010, 101, 2106–2113. [Google Scholar] [CrossRef]
- Huguenot, D.; Mousset, E.; Van Hullebusch, E.D.; Oturan, M.A. Combination of surfactant enhanced soil washing and electro-fenton process for the treatment of soils contaminated by petroleum hydrocarbons. J. Environ. Manag. 2015, 153, 40–47. [Google Scholar] [CrossRef] [PubMed]
Location | C16–C21 | C21–C35 | C35–C40 |
---|---|---|---|
1 | 2400 | 35,000 | 4400 |
2 | 2500 | 31,000 | 3000 |
3 | 20,000 | 110,000 | 12,000 |
4 | 3700 | 36,000 | 4100 |
5 | 1400 | 28,000 | 3500 |
6 | 1100 | 33,000 | 3600 |
7 | 1200 | 23,000 | 2300 |
8 | 6600 | 33,000 | 3500 |
9 | 7200 | 45,000 | 3900 |
10 | 870 | 27,000 | 330 |
11 | 8100 | 56,000 | 4800 |
12 | 4500 | 35,000 | 3400 |
13 | 3500 | 27,000 | 2800 |
14 | 15,000 | 100,000 | 11,000 |
15 | 920 | 13,000 | 1400 |
16 | 14,000 | 100,000 | 11,000 |
Mean | 5812 | 45,750 | 4689 |
SD | 5808 | 30,108 | 3481 |
Location | C12–C16 | C16–C21 | C21–C35 |
---|---|---|---|
1 | 110 | 1500 | 7800 |
2 | 130 | 1100 | 6400 |
3 | 230 | 6200 | 24,000 |
4 | 0 | 2000 | 9800 |
5 | 0 | 850 | 6000 |
6 | 0 | 1300 | 9200 |
7 | 0 | 1100 | 7100 |
8 | 0 | 2100 | 7500 |
9 | 0 | 2400 | 9800 |
10 | 0 | 790 | 7500 |
11 | 0 | 2200 | 12,000 |
12 | 0 | 1600 | 7700 |
13 | 0 | 1400 | 6400 |
14 | 270 | 4700 | 23,000 |
15 | 0 | 510 | 2600 |
16 | 180 | 3900 | 18,000 |
Mean | 58 | 2103 | 10,300 |
SD | 95 | 1559 | 6110 |
Sampling Location | 1 | 3 | 5 | 6 | 7 | 8 | 9 | 11 | 12 | 13 |
---|---|---|---|---|---|---|---|---|---|---|
Naphthalene | <1.0 | <1.0 | <1.0 | <1.0 | <1.0 | <1.0 | <1.0 | <1.0 | <1.0 | <1.0 |
Acenaphthylene | <1.0 | <1.0 | <1.0 | <1.0 | <1.0 | <1.0 | <1.0 | <1.0 | <1.0 | <1.0 |
Acenaphthene | <1.0 | <1.0 | <1.0 | <1.0 | <1.0 | <1.0 | <1.0 | <1.0 | <1.0 | <1.0 |
Fluorene | <1.0 | <1.0 | <1.0 | <1.0 | <1.0 | <1.0 | <1.0 | <1.0 | <1.0 | <1.0 |
Phenanthrene | <1.0 | 5.2 | <1.0 | <1.0 | <1.0 | 2 | 1 | <1.0 | <1.0 | 1.2 |
Anthracene | <1.0 | <1.0 | <1.0 | <1.0 | <1.0 | <1.0 | <1.0 | <1.0 | <1.0 | <1.0 |
Fluoranthene | <1.0 | <1.0 | <1.0 | <1.0 | <1.0 | <1.0 | <1.0 | <1.0 | <1.0 | <1.0 |
Pyrene | 1.7 | <1.0 | <1.0 | 1 | <1.0 | <1.0 | <1.0 | <1.0 | <1.0 | <1.0 |
Benzo(a)anthracene | <1.0 | <1.0 | <1.0 | <1.0 | <1.0 | <1.0 | <1.0 | <1.0 | <1.0 | <1.0 |
Chrysene | <1.0 | 10 | 3.5 | 3.6 | 4.4 | 4.9 | 2.9 | 4.9 | 4.2 | <1.0 |
Benzo(a)pyrene | <1.0 | <1.0 | <1.0 | <1.0 | <1.0 | <1.0 | <1.0 | <1.0 | <1.0 | <1.0 |
Indeno(123-cd)pyrene | <1.0 | <1.0 | <1.0 | <1.0 | <1.0 | <1.0 | <1.0 | <1.0 | <1.0 | <1.0 |
Dibenzo(ah)anthracene | <1.0 | <1.0 | <1.0 | <1.0 | <1.0 | <1.0 | <1.0 | <1.0 | <1.0 | <1.0 |
Benzo(ghi)perylene | <1.0 | <1.0 | <1.0 | <1.0 | <1.0 | <1.0 | <1.0 | <1.0 | <1.0 | <1.0 |
Benzo(b)fluoranthene | <1.0 | <1.0 | <1.0 | <1.0 | <1.0 | <1.0 | <1.0 | <1.0 | <1.0 | <1.0 |
Benzo(k)fluoranthene | <1.0 | <1.0 | <1.0 | <1.0 | <1.0 | <1.0 | <1.0 | <1.0 | <1.0 | <1.0 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Al-Mebayedh, H.; Niu, A.; Lin, C. Petroleum Hydrocarbon Composition of Oily Sludge and Contaminated Soils in a Decommissioned Oilfield Waste Pit under Desert Conditions. Appl. Sci. 2022, 12, 1355. https://doi.org/10.3390/app12031355
Al-Mebayedh H, Niu A, Lin C. Petroleum Hydrocarbon Composition of Oily Sludge and Contaminated Soils in a Decommissioned Oilfield Waste Pit under Desert Conditions. Applied Sciences. 2022; 12(3):1355. https://doi.org/10.3390/app12031355
Chicago/Turabian StyleAl-Mebayedh, Hamad, Anyi Niu, and Chuxia Lin. 2022. "Petroleum Hydrocarbon Composition of Oily Sludge and Contaminated Soils in a Decommissioned Oilfield Waste Pit under Desert Conditions" Applied Sciences 12, no. 3: 1355. https://doi.org/10.3390/app12031355
APA StyleAl-Mebayedh, H., Niu, A., & Lin, C. (2022). Petroleum Hydrocarbon Composition of Oily Sludge and Contaminated Soils in a Decommissioned Oilfield Waste Pit under Desert Conditions. Applied Sciences, 12(3), 1355. https://doi.org/10.3390/app12031355