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Abstract: Skeleton-based human action recognition has attracted extensive attention due to the
robustness of the human skeleton data in the field of computer vision. In recent years, there is a
trend of using graph convolutional networks (GCNs) to model the human skeleton into a spatio-
temporal graph to explore the internal connections of human joints that has achieved remarkable
performance. However, the existing methods always ignore the remote dependency between joints,
and fixed temporal convolution kernels will lead to inflexible temporal modeling. In this paper, we
propose a multi-scale adaptive aggregate graph convolution network (MSAAGCN) for skeleton-based
action recognition. First, we designed a multi-scale spatial GCN to aggregate the remote and multi-
order semantic information of the skeleton data and comprehensively model the internal relations
of the human body for feature learning. Then, the multi-scale temporal module adaptively selects
convolution kernels of different temporal lengths to obtain a more flexible temporal map. Additionally,
the attention mechanism is added to obtain more meaningful joint, frame and channel information in
the skeleton sequence. Extensive experiments on three large-scale datasets (NTU RGB+D 60, NTU
RGB+D 120 and Kinetics-Skeleton) demonstrate the superiority of our proposed MSAAGCN.

Keywords: action recognition; skeleton sequence; graph convolutional network; attention mechanism

1. Introduction

With the development of Internet technology and the popularization of video acquisi-
tion equipment, video has become the main carrier of information. The amount of video
data is exploding, and how to analyze and understand the content of videos becomes more
and more important. As one of the important topics of video understanding, human action
recognition has become the focus of research in the field of computer vision.

Action recognition learns the representation and motion information in the video by
modeling the spatial and temporal information of the time sequence in the video, which
can establish the mapping relationship between the video content and the action category
and help a computer effectively be competent for the task of video understanding. Action
recognition has extensive application prospects in motion analysis, intelligent monitoring,
human-computer interaction, video information retrieval and so on.

In recent years, skeleton-based data has been used more and more widely in human
motion recognition. The skeleton data is a compact representation of human motion
information, usually composed of a series of time series of 3D coordinates of human
body joints, which can significantly reduce the redundant information in calculations.
Additionally, in complex scenes, compared with traditional RGB video or optical flow data,
human skeleton data is more robust because it can ignore the interference of background
information; therefore, the recognition performance will be better.

Earlier skeleton-based action recognition methods mainly used joint coordinates to
form feature vectors by hand-designed approaches [1–3], and then aggregated these features
for action recognition. However, it ignored the internal association of joint information,
resulting in insufficient recognition accuracy.
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In traditional deep learning methods, the skeleton sequence is usually fed into recur-
rent neural networks (RNN) or convolutional neural networks (CNN) for analysis, and its
features are captured to predict action labels [4–12]. However, the representation of skele-
ton data as pseudo-images or coordinate vectors cannot well express the interdependence
between the joints of the human body, which is particularly important for human body
action recognition. In fact, it is more natural to regard human skeleton information as a
graph, with human joints as nodes of the graph and human bones as edges. In recent years,
with the development of graph convolutional networks, it has begun to be successfully
applied to various scenarios.

Yan et al. [13] first used graph structure to model skeleton data and construct a
series of spatio-temporal graph convolutions on the skeleton sequence to extract features
for skeleton-based action recognition. Initially, the graph convolution is performed to
make the joints capture the local structure information of its neighbor nodes. With the
increase of GCN layers, the receptive field of joints will expand to capture a larger range of
neighborhood information. In this way, the spatio-temporal GCN finally obtains the global
structure information of the skeleton data.

However, there are some disadvantages in this method: 1. It only pays attention to the
physical connection between joints but ignores the remote dependence of joints. There may
also be potential connections between disconnected joints. For example, there is no direct
connection between the hand and the head in the action of making a call, which is very
important to recognizing the action. Ignoring the connection between these disconnected
joints will have an impact on the performance of action recognition; 2. It uses a fixed 1D
convolution to perform the temporal convolution operation. The receptive field of the
temporal graph is predefined and not flexible enough, which will also affect the accuracy
of action recognition; 3. A skeleton action sequence contains many frames, and each frame
contains multiple joint points. For action recognition, we often only need to focus on the key
frame and joint information, and too much redundant information will lead to a decrease
in recognition performance.

In order to solve the above problems, we use the high-order polynomial of the skeleton
adjacency matrix to perform graph convolution to realize the extraction of the long-distance
dependence relationship between the joints and the multi-scale structural feature. The
adjacency polynomial makes the distant neighbor joints reachable. We introduce high-order
approximation to increase the receptive field of graph convolution and build a multi-scale
adjacency matrix according to the hop distances between each joint and its neighbors, which
can help to better explore the joints in the spatial feature information. For the modeling
of the skeleton sequence in the temporal dimension, the temporal graph is composed of
the corresponding joints in consecutive frames connected by the temporal edges. Existing
methods [4,13–16] usually set a fixed temporal window length and use 1D convolution to
complete the temporal convolution operation. Since the time window is predefined, it lacks
flexibility when recognizing different actions. Thus, we propose a multi-scale temporal
convolution module that contains three scales: long, medium and short, to obtain the time
characteristics of different temporal domain receptive fields. Additionally, we introduce
weights to adaptively adjust and dynamically combine the used temporal domain receptive
fields, which can more effectively capture temporal features of the skeleton data.

With the rise of the attention mechanism [17–20], we can introduce attention modules
into the network. From the spatial dimension, an action often only has close connections
with a few joints. From the temporal dimension, an action sequence has a series of frames,
each of which has a different importance for the final recognition accuracy. From the feature
dimension, each channel also contains different semantic information. Therefore, we added
spatial attention, temporal attention and channel attention modules to focus on key joints,
frames and channels that have a great impact on action recognition.

We propose a novel architecture for skeleton-based action recognition; the basic struc-
ture in our proposed model is the spatio-temporal-attention module (STAM), which is
composed of a multi-scale aggregate graph convolution network (MSAGCN) module,
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a multi-scale adaptive temporal convolution network (MSATCN) module and a spatio-
temporal-channel attention (STCAtt) module, as shown in Figure 1. We propose a multi-
scale GCN to construct a multi-order adjacency matrix to obtain the dependence of joints
and their further neighbors in the spatial domain, thereby effectively extracting wider
spatial information features. Then we propose a MSATCN containing three temporal
convolution kernels to model temporal features in three different ranges of long, medium
and short. We introduce the STCAtt module to focus on more meaningful frames and joints
from the spatio-temporal and channel dimensions, respectively. Additionally, we have
added residual links between the modules, which can effectively reuse the spatio-temporal
and channel features, to capture the local and global features of the skeleton sequence.
This network architecture can better model the spatial and temporal features of human
actions for skeleton-based action recognition. In order to verify the effectiveness of our
proposed GCN model, extensive experiments were performed on three large-scale datasets:
NTU-RGBD, NTU-RGBD120 and Kinetics, and our model achieved great performance on
these datasets.
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Figure 1. The architecture of the proposed spatial-temporal-attention module (STAM). It contains a 
multi-scale aggregate graph convolution module for modeling spatial information of the skeleton 
sequence. Multi-scale adaptive temporal convolution module is used to capture temporal features 
of different time ranges (T1, T2 and T3), and the attention module is applied to focus on meaningful 
information. The residual connection is applied on each STAM. ⊕ denotes element-wise sum, and ⊗ denotes element-wise multiplication. 

The main contributions of our work are as follows: (1) We propose a multi-scale ag-
gregate GCN, which increases the connection between disconnected joints to better extract 
the spatial features of the skeleton data. (2) We design a TCN with a multi-scale convolu-
tion kernel to adaptively capture the temporal correlation of the skeleton sequence in dif-
ferent temporal length ranges and improve the generalization ability of the model. (3) We 
introduced an attention mechanism to focus on more meaningful joints, frames and chan-
nel features. (4) Extensive experiments have been performed on three public datasets: 
NTU-RGBD, NTU-RGBD120 and Kinetics, and our MSAAGCN has achieved very good 
performance. 
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Figure 1. The architecture of the proposed spatial-temporal-attention module (STAM). It contains a
multi-scale aggregate graph convolution module for modeling spatial information of the skeleton
sequence. Multi-scale adaptive temporal convolution module is used to capture temporal features of
different time ranges (T1, T2 and T3), and the attention module is applied to focus on meaningful
information. The residual connection is applied on each STAM. ⊕ denotes element-wise sum, and ⊗
denotes element-wise multiplication.

The main contributions of our work are as follows: (1) We propose a multi-scale
aggregate GCN, which increases the connection between disconnected joints to better
extract the spatial features of the skeleton data. (2) We design a TCN with a multi-scale
convolution kernel to adaptively capture the temporal correlation of the skeleton sequence
in different temporal length ranges and improve the generalization ability of the model.
(3) We introduced an attention mechanism to focus on more meaningful joints, frames and
channel features. (4) Extensive experiments have been performed on three public datasets:
NTU-RGBD, NTU-RGBD120 and Kinetics, and our MSAAGCN has achieved very good
performance.

2. Related Work
2.1. Skeleton-Based Action Recognition

In the task of human action recognition, skeleton data has received more and more
attention due to its robustness and compactness. Traditional methods usually use hand-
crafting [21–23] or learning [24,25] features of human joints to model the human body
structure. However, these methods have the problem that the design process is too com-
plicated, and they often ignore the internal relationship between the joints and cannot
achieve satisfactory results. With the development of deep learning, CNN-based and
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RNN-based methods have gradually become the mainstream method for skeleton-based
action recognition.

CNN-based methods [4–8] usually define a series of rules to formulate skeleton data
into pseudo-images and feed them into the designed CNN network for action classification.
RNN-based methods [9–12] usually model the skeleton sequence as a set of 2D or 3D joint
coordinates, focusing on modeling the time dependence of the input sequence.

CNN-based methods: Li C et al. [26] proposed an end-to-end convolutional co-
occurrence learning method, using CNN to learn co-occurrence features from skeleton data
through a hierarchical aggregation method. Liang et al. [27] proposed a three-stream convo-
lutional neural network method by fusing and learning three motion-related features (3D
joints, joint displacements and oriented bone segments) to make full use of skeleton data,
adding multi-task integrated learning to improve the generalization ability of the model.
Zhang et al. [28] proposed a view adaptive method, which automatically adjusts the view-
points of each frame to obtain the skeleton data representation under the new viewpoints,
determines the appropriate viewpoint according to the input data and finally performs the
action recognition through the main Long Short-Term Memory (LSTM) network.

RNN-based methods: Wang et al. [29] proposed a two-stream RNN architecture. In the
temporal stream, it uses stacked RNN and hierarchical RNN to extract temporal features
from joint coordinate sequences in different temporal ranges. In the spatial stream, the
spatial graph of the skeleton is converted into the joint sequence, and then it inputs the
sequence into the RNN to learn the spatial dependence of the joints. Li S et al. [30] proposed
an independent recurrent neural network. The neurons in the same layer are independent
of each other and are connected through cross-layers; it solves the common problems
of gradient disappearance and explosion in traditional RNN and LSTM and can handle
longer sequences and build a deeper network to learn the long-term dependencies in the
skeleton sequence.

However, both CNN-based and RNN-based methods ignore the co-occurrence be-
tween spatial and temporal features in the skeleton sequence because the skeleton data
is embedded in non-Euclidean geometric space, and these methods cannot handle non-
Euclidean data well. In recent years, the graph convolutional network (GCN) has received
more and more attention and is widely used in social networks and other fields. In fact,
researchers find that it is more natural to describe skeleton data as a graph with human
joints as nodes and bones as edges. GCN can effectively process non-European data and
model-structured skeleton data. Yan et al. [13] first proposed a spatio-temporal graph
convolution network to directly model the skeleton sequence into a graph structure and
construct graph convolution to extract spatio-temporal features for action recognition,
which achieved better performance than previous methods.

2.2. Graph Convolutional Network and Attention Mechanism

Graph convolutional network: Recently, GCN has been introduced to skeleton-based
action recognition and has shown good performance. The principle of constructing GCNs
on graphs is mainly divided into spatial methods [31,32] and spectral methods [33,34]. The
spatial methods directly perform convolution operation on the graph node and its neighbor
nodes to extract features based on the design rules. Additionally, the spectral methods use
the eigenvalues and eigenvectors of the graph Laplacian to perform graph convolution in
the frequency domain. Most of the existing GCN-based methods [13,15,16,35,36] focus on
the design of graph topology.

Yan et al. [13] first proposed to utilize GCN to model the skeleton sequence. Shi et al. [15]
proposed a two-stream adaptive graph convolutional network, which parameterizes the
graph structure of the skeleton data, inputs it into the network and learns and updates
features together with the model to increase the flexibility of GCN. Li M et al. [16] in-
troduced the encoder–decoder structure to capture the implicit joint correlation between
specific actions. It also expands the existing skeleton graph to express higher-order depen-
dencies and combines actional and structural links to learn spatial and temporal features.
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Wen et al. [14] proposed a motif-based GCN, which models the dependency between
physically connected and disconnected nodes to extract high-order spatial information and
proposed a variable temporal dense block to capture temporal information in different
ranges. Cheng et al. [37] proposed to use a lightweight shift operation to replace the 2D
convolution operation, achieving excellent performance at a small computational cost.
Ye et al. [35] introduced a lightweight and effective Context-encoding Network (CeN) to
explore the context encoding information and added it to the GCN to automatically learn
the skeleton topology. Peng et al. [36] applied the neural structure search and replaces
the predefined graph structure with a dynamic graph structure to explore the generation
mechanism of different graphs under different semantics.

Attention mechanism: The attention mechanism can help neural networks pay at-
tention to the more important feature parts of the input information. Many researchers
have added the attention mechanism to the action recognition tasks to better model the
spatio-temporal graph structure. Liu et al. [17] focused on the joint information in the frame
through the global context memory cell and introduced a recurrent attention mechanism,
which solves the problem of the original LSTM network not having an explicit attention
mechanism. Similarly, Zhang et al. [18] also proposed to add Element-wise-Attention Gate
(EleAttG) to RNN, which enables RNN neurons to have the attention ability to adaptively
modulate the input. Wen et al. [14] employed the non-local block to capture dependencies,
which enhances the ability of the network to extract global temporal features. Xia et al. [38]
proposed a spatial and temporal attention mask, which reuses important spatio-temporal
features and enables GCN to aggregate global context information of the skeleton sequence.

3. Multi-Scale Adaptive Aggregate Graph Convolutional Network

The data of the human skeleton is usually obtained from video by multimodal sensors
or a pose estimation algorithm. The skeleton data is a series of frames containing the
corresponding joint coordinates. The 2D or 3D coordinate sequences of the joints are fed
into the network, and we construct a spatio-temporal graph. The joints are regarded as
nodes in the graph, and the bones connected by adjacent joints are regarded as edges in
the graph. We design a multi-scale adaptive GCN, which can model the long-range spatial
dependence of the human body structure and extract richer spatial action features. Then
we concatenate the multi-order feature maps obtained by the spatial graph convolution
operation and then feed them into temporal module, whose purpose is to process temporal
information and learn the joint movement information in the temporal sequences to add
temporal features for the graph. Additionally, the MSATCN we proposed can extract
three forms of different temporal range feature information and aggregate them to obtain
high-level feature maps. Moreover, we apply the STCAtt to enhance the representation
of features.

3.1. Multi-Scale Aggregate Graph Convolution Module

For better action recognition based on skeleton graphs, multi-scale spatial structural
features need to be paid attention to, while traditional methods only consider the physical
connections between joints, ignoring that there are also potential correlations between
disconnected joints in the structure. For example, there are multi-hop connections between
the left hand and the right hand, but it is very important to recognize the action of clapping.
Therefore, we propose a multi-scale aggregate graph convolution module to explore the
relevance of human skeleton data in the same frame. As shown in Figure 2, we build the
multi-order adjacency matrices and adopt an adaptive method in each adjacency matrix to
learn the topological structure of the graph to improve the flexibility of modeling semantic
information, and finally we aggregate the obtained multi-order information to explore the
spatial feature information of the skeleton sequence.
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Figure 2. Spatial graph of the skeleton (left) and multi-scale aggregate graph convolution module
(right). In the graph, the solid nodes represent the body joints, and the edges represent the bones that
connect the joints. The edges of different colors intuitively reflect the relationship between nodes
with different hop connections.

In the graph convolutional network, we construct a graph G(V, E, A) to represent
human skeleton data, where V is the set of nodes that symbolizes the joints of the human
body; E is the set of edges of the skeleton connected by adjacent joints; and A ∈ RN×N

represents the adjacency matrix of the edge, which encodes the connection of the edge,
that is, if the node Vi and Vj are connected, then Ai,j = 1; otherwise, Ai,j = 0. We define
Ã = A + In, where In represents the identity matrix, and Ã is the adjacency matrix with
self-connection. Since Ã cannot be multiplied directly, we first need to standardize it.
According to [39], the standardized Laplacian L can be formulated as L = D−

1
2 ÃD−

1
2 ,

where the diagonal matrix D ∈ RN×N , Di,i =
n
∑

j=1
Ai,j.

For the input X, the graph convolution with filter fθ can be expressed as Y = fθ(L)X =
U fθUTX; U represents the eigenvector matrix of L; UTX is the Fourier transform of the
graph of X; and fθ can be regarded as a function of the eigenvector of L. Hammond et al. [40]
have mentioned that fθ can be approximated by Chebyshev polynomials, which is formu-
lated as

Y ≈
K

∑
k=0

θkTk

(
L̃
)

Fin (1)

where L̃ = 2
λmax
− In, and θk represents the k-order Chebyshev coefficient. Moreover, a

Chebyshev polynomial is defined as Tk

(
L̃
)
= 2L̃Tk−1

(
L̃
)
− Tk−2

(
L̃
)

, k ≥ 2, T0

(
L̃
)
= 1,

T1

(
L̃
)
= L̃.

According to [39], for the signal x, it satisfies(
L̃x
)
(i) = ∑

j∈Ni

ai,j
(
xi − xj

)
(2)

L̃X means to calculate the difference between each vertex and its one-hop neighbor
nodes. When k > 1, L̃kX means the k-order connection, and L̃kX means the difference
between each vertex and its k-hop neighbor nodes, so it is possible to perform convolution
operations on more neighbor nodes in a larger receptive field. Moreover, the spatial graph
convolution with a receptive field of k can also be regarded as a linear transformation of the
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k-order Chebyshev polynomial. Finally, we define the spatial graph convolution operation
as follows:

Y = δ

(
K

∑
k=0

Tk

(
L̃
)

XWk + b

)
(3)

where Wk ∈ RN×N is the weight matrix of θk, which can be learned by training in the
network, and b ∈ RN×N represents the bias; δ denotes the ReLU activation function.

We have observed that after each convolution operation in GCN, the network will
aggregate the information of the joint and its neighbors connected via bones. This means
that after multiple convolution operations, each node finally contains global information,
but the early local information will be ignored. He et al. [41] proposed the concept of a
residual link by introducing the residual structure, adding identity mapping to connect
different layers of the network, and the input data information can be directly added to
the output of the residual function. We consider adding residual links to reuse the local
information of the node to obtain richer semantic information.

As shown in Figure 2, we define graph transformations of different orders according to
the distance of hop connections between nodes, where 1-hop connection indicates a physical
connection between nodes, and we aggregate multi-scale information through concatenate
operations. The identity transformation is passed through the residual connection.

In order to improve the flexibility of the convolutional layer, inspired by the data-
driven method from [15], we add the global graph and individual graph learned from the
data to each order of the adjacency matrix and apply data-dependent and layer-dependent
biases to the graph transformations of the matrix for more flexible connections so as to better
learn the adaptive graph topology. Moreover, we add a graph mask, which is initialized to
1 and updated with the training process.

Feature aggregation: After the feature extraction of the adjacency matrix of each order
is performed through the graph convolution transformation, the number of output features
becomes 1/n, and then we aggregate them together through a concatenation layer, which
consists of a batch normalization layer, a ReLU layer and a 1× 1 convolutional layer to
maintain the original feature number.

3.2. Multi-Scale Adaptive Temporal Convolution Module

In the defined graph structure, the same joints between consecutive frames are con-
nected by temporal edges (green lines in Figure 1). We choose to decompose the spatio-
temporal graph into two spatial and temporal sub-modules instead of directly performing
graph convolution operations on the spatio-temporal graph. This is because the strategy
of the spatio-temporal decomposition method is easier to learn [14]. For the graph of
frame t, we first feed it into the spatial graph convolution and then concatenate its output
information with the time axis to obtain a 3D tensor, which is fed into the temporal module
for action recognition.

For temporal convolution, current methods [13] usually use 1D convolution to obtain
temporal features. Since the convolution kernel size is fixed to 9× 1, it is often difficult to
flexibly capture some temporal correlations of the skeleton data. Moreover, different action
classes in the dataset may require different temporal receptive fields. For example, there are
actions that can be judged within a short time range, such as falling down, and actions that
can be judged within a longer time range, such as carrying a plate. Therefore, we designed
a multi-scale temporal convolution module to adaptively extract the feature correlations
on the temporal sequence. We use three convolution kernels with kernel sizes of T1 × 1,
T2 × 1 and T3 × 1 to model the features in three different temporal scales of short, middle
and long terms, respectively, and add the weight coefficients to adaptively adjust the scales
of different importance. The proposed multi-scale temporal convolution operation can be
formulated as

Xl+1
t = Concat

(
Xl

t (k)|k = T1, T2, T3

)
Wt (4)
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where Concat(·) denotes the concatenate operation. Wt denotes the weight, which is used to
adjust the importance of time features at different scales. Through the dynamic adjustment
of the weight, the model can adaptively extract temporal features in different scales to
improve the generalization ability of the temporal convolution module.

3.3. Spatial-Temporal-Channel Attention Module

The attention mechanism is a resource allocation mechanism, which redistributes the
originally evenly allocated resources according to the importance of the focus. Inspired
by [42,43], here we propose an attention mechanism, which contains three modules of
spatial attention, temporal attention and channel attention mask.

Spatial attention module: In the spatial dimension, the movement range and dynamics
of each joint in different actions are different. We can use the attention mechanism to help
the model adaptively capture the dynamic correlation of each joint in the spatial dimension
based on different levels of attention. By using the spatial relationship of features to
generate the spatial attention mask Ms, average pooling can learn from the target object
and calculate spatial statistics [19,44], and maximum pooling can extract another important
clue of object features to infer more refined attention. Using both types of pooling can
improve the network representation ability [42]. It is formulated as

Ms = σ( fs(Avgpool( fin)‖Maxpool( fin))) (5)

where fin ∈ RC×T×N is the input feature map, C, T, N represent the number of channels,
frames and joints, respectively; Avgpool(·) and Maxpool(·) represent the average-pooling
and max-pooling operation; ‖ represents the connection operation; fs represents the 2D
convolution operation; and σ represents the s

.
igmoid activation function. Ms ∈ R1×1×N , as

shown in the attention module in Figure 1; we calculate the product of the attention map
Ms and the input feature map, and then the input is connected with the result to refine.

f1 = fin ⊗Ms + fin (6)

where ⊗ denotes element-wise multiplication.
Temporal attention module: In the time dimension, there is a correlation between the

joint points of different frames, and the correlation between frames of different actions
is also different. Similarly, we can use the attention mechanism to adaptively give them
different weights. It is formulated as

Mt = σ( ft(Avgpool( f1); Maxpool( f1))) (7)

Mt = σ( ft(Avgpool( f1); Maxpool( f1))) (8)

where Mt ∈ R1×T×1, and other symbols are similar to the spatial attention module.
Channel attention module: according to [19], each layer of the convolutional network

has multiple convolution kernels, and each convolution kernel corresponds to a feature
channel. The channel attention mechanism allocates resources between each convolution
channel. We first perform feature compression through the squeeze operation, use global
average-pooling to generate the statistics of each channel and then utilize the excitation
operation to explicitly model the correlation between the feature channels through parame-
ters and generate weights representing importance for each feature channel. Finally, we
reweight the feature map, which is weighted to the previous feature channel by channel
through multiplication. Similarly, we can formulate it as

MC = σ(δ(Avgpool( f2)W1)W2 + δ(Maxpool( f2)W1)W2) (9)

fout = f2 ⊗Mc + f2 (10)
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where W1 and W2 are learnable weights; W1 is used for dimensionality reduction; W2 is
used to calculate attention weights; and δ represents the ReLU activation function.

3.4. Multi-Stream Framework

The skeleton-based action recognition methods usually utilize the coordinate in the
joint information of the input skeleton sequence. Shi et al. [15] found that the bone informa-
tion connected by the joints is also very helpful for the action recognition and proposed a
two-stream framework using joint and bone information. Moreover, the motion informa-
tion of the joints has a potential effect on action recognition. For example, standing up and
sitting down have no difference only from the joint coordinates and bone information, but
it is easy to recognize by adding the motion information. In our work, the input data is
mainly divided into node information, bone information and motion information.

First, we define the original 3D coordinate set of a skeleton sequence as
X =

{
x ∈ RC×T×V}, where C represents the joint coordinates, and T and V denote the

numbers of frames and joints, respectively.
We suppose that the joint feature set is F =

{
xt,v ∈ RC

∣∣t = 1, 2, . . . , T; v = 1, 2, . . . , V
}

,
where x:,t,v represents the coordinates of the v-th joint in the t-th frame. Additionally, the
relative coordinate set is S = {ri|i = 1, 2, . . . , V}, where ri = x:,:,i − x:,:,c, and x:,:,c denotes
the center joint of the skeleton sequence. We concatenated these two sets into a sequence as
the input of the joint information stream.

Then we calculate the bone and the motion information based on the joint information.
Additionally, these two information streams expand the matrix by filling in 0 elements to
compensate for the change in dimensionality. Suppose that the bone length information set
is L = {li|i = 1, 2, . . . , V}, where li = x:,:,i − x:,:,in denotes the neighbors of joint i. The bone
length angle set is A = {ai|i = 1, 2, . . . , V}, and the angle ai can be calculated by

ai = arccos
x1x2 + y1y2 + z1z2√(

x2
1 + y2

1 + z2
1
)
(x2

2 + y2
2 + z2

2)
(11)

where {x, y, z} represents the joint coordinates. We concatenate these two sets into a
sequence as the input of the bone information stream.

Additionally, we suppose that the motion velocity information set
M = {mt|t = 1, 2, . . . , T}, where mt = x:,t+1,: − x:,t,:, and the motion velocity difference
information set is D = {dt|t = 1, 2, . . . , T}, where dt = mt+1 − mt = x:,t+2,: − x:,t,:. We
concatenate these two sets into a sequence as the input of the motion information stream.

We separately input the joints, bones and motion data into our network, and we add
the so f tmax scores of these streams to obtain the final classification result.

3.5. Network Architecture

As shown in Figure 3, the main architecture of our network is a stack of 9 basic
modules named STAM (as shown in Figure 1), which contains MSAGCN, MSATCN and
STCAtt blocks. Additionally, we introduced residual links to connect each module and
each block in the module to capture more abundant context information. First, the original
skeleton data passes through the batch normalization (BN) layer for data normalization,
and then the normalized data is input into the MSAGCN block. The input and output
channels of these modules are (6, 64), (64, 64), (64, 64), (64, 128), (128, 128), (128, 128), (128,
256), (256, 256) and (256, 256). The features extracted from the last module are sent to the
global average-pooling layer, and then the So f tmax classifier is used to obtain the final
classification result.
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4. Experiments
4.1. Datasets

NTU-RGB-D 60: NTU-RGB-D [45] is currently the most widely used action recognition
dataset. It consists of 56,880 video clips in a total of 60 classes of actions performed by
40 subjects aged 10 to 35 years old. Each video clip contains an action, and each clip has
4 modalities: RGB video, depth map sequence, 3D skeleton data and infrared video. The
data is captured by three Microsoft Kinect v.2 cameras at the same time, and the cameras
are set at three different horizontal angles: −45◦, 0◦ and 45◦. We used the 3D skeleton
data in the experiment, which was obtained through the skeleton tracking technology in
the Kinect camera. It is composed of the 3D position coordinates (x, y, z) of the 25 main
body joints of the human body, and there are at most two people in each clip sample. Two
benchmarks are recommended in the dataset: cross-subject (X-sub) and cross-view (X-view).
(1) For the cross-subject setting, the data is divided into training set and validation set,
which contain 40320 video clips and 16,560 video clips, respectively. The subjects in the
two sets are different, and 40 subjects are divided into a training group and a test group,
each group containing 20 subjects. (2) For the cross-view setting, we select 18960 video
clips captured by camera view 1 at −45◦ for testing, 37,920 clips captured by camera views
2 and 3 at 0◦ and 45◦ for training. There are 302 video samples that need to be ignored.
Following the convention in [45], we report the Top-1 accuracy on both benchmarks to
evaluate recognition performance.

NTU-RGB-D 120: NTU-RGB+D 120 [46] is an extended version of the NTU-RGB+D
dataset. It consists of 114480 video clips in a total of 120 classes of actions performed
by 106 distinct subjects from 15 different countries, and each subject has a consistent ID
number. The author of the dataset recommends two benchmarks: cross-subject(X-sub) and
cross-setup(X-setup). (1) For the cross-subject setting, 106 subjects are divided into training
group and testing group (including 63,026 and 50,922 clips respectively), half of which are
used for training and the other half are used for testing. (2) For the cross-setup setting, the
training data comes from 54,471 video clips with even setup ID numbers, and the testing
data comes from 59,477 clips with the remaining odd setup ID numbers. Among them,
532 bad video samples should be ignored. Following the convention in [46], we report the
Top-1 accuracy on both benchmarks.

Kinetics: Kinetics [47] is a large-scale video dataset for human action recognition,
which contains about 300,000 video clips collected from YouTube; each clip is about 10 s.
There are 400 action classes in the dataset, and there are at least 400 videos for each action.
Since Kinetics only contains the original video clips, Yan et al. [13] used the OpenPose
toolbox to extract the skeleton data of the original data and estimated the position of each
person’s 18 joints on each frame. The tool can generate 2D coordinates (x, y) and confidence
scores c from the video clip, and we use (x, y, c) to represent the joint. We selected the two
people with the highest joint confidence if a clip contained multiple people. The dataset
provides 240,000 clips as the training set and 20,000 clips as the validation set. We trained
the model on the training set, and we used the Top-1 accuracy rate and Top-5 accuracy rate
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to evaluate the model on the validation set. Following the convention in [47], we used two
metrics: (1) Top-1 accuracy and (2) Top-5 accuracy to evaluate the validation set.

4.2. Implementation Details

In the experiment, the deep learning framework we used was PyTorch. In order to save
computing resources and improve computing efficiency, we chose SGD with a Nesterov
momentum of 0.9 and weight decay of 0.0001 to optimize the model, and cross-entropy loss
was used as the loss function. In the MSATCN, we set the kernel size T1, T2, T3 = {5, 9, 11}.
All our models were trained on two NVIDIA Tesla V100 GPUs.

For the NTU-RGB+D and NTU-RGB+D 120 datasets, each sample contained at most
two people. If the number of people was less than 2, then we filled it with 0. We set the
fixed number of frames in each sample to 300 frames. For samples less than 300 frames,
we fill themed up to 300 frames by repeating the samples. For these two datasets, we set
the batch size to 64, and the maximum numbers of training epochs were set to 50 and 60,
respectively. The learning rate was initialized to 0.1 and multiplied by 0.1 at epochs 30 and
40 for NTU RGB+D and at epochs 30 and 50 for NTU RGB+D 120. Additionally, in the first
5 epochs, we used the warmup strategy [41] to ensure the stability of training process.

For the Kinetics dataset, we used the data processing method in [13]; the batch size
was set to 128, and the training epoch was set to 70. The learning rate was initialized to
0.1 and was multiplied by 0.1 at epochs 40, 50 and 60.

4.3. Ablation Study

In this section, we examined the effectiveness of our proposed components in
MSAAGCN through experiments, and we used the recognition accuracy as an evaluation
metric.

4.3.1. MSAAGCN

We first added adjacency matrices of different orders and observed the changes in the
recognition accuracy of the model to prove the effectiveness of our proposed multi-scale
adaptive aggregate GCN. Since the maximum distance between the two joints in the NTU-
RGB-D dataset was 12, we chose the maximum number of scales N to be 12. As shown in
Table 1, we have verified the recognition accuracy of the model after aggregation of 1, 2, 4,
8 and 12-order adjacency matrices on the NTU-RGB-D X-sub dataset. Obviously, the more
adjacency matrices are aggregated, the better the recognition accuracy, which shows that
each adjacency matrix is useful for model performance. However, when we aggregate to
higher-order matrices, the performance improvement of the model becomes smaller. This
may be due to the small dependence of the recognition of most actions on the distant joints.
We used N = 12 for MSAGCN to conduct the following experiment.

Table 1. Recognition accuracy (%) with different scale aggregation on X-sub benchmarks of the NTU
RGB+D dataset.

Methods
Number of Scales

N = 1 N = 2 N = 4 N = 8 N = 12

MSAGCN(Ours) 86.2 86.7 87.1 87.6 87.8

In order to verify the effectiveness of the various modules in our proposed spatio-
temporal network, including MSAGCN, MSATCN and STCAtt modules, we conducted
experiments on a NTU-RGB-D X-sub benchmark to show the performance of the model
with and without these modules. As shown in Table 2, we used Js-AGCN (Joint stream
from 2s-AGCN [15]) as the baseline for comparison experiments. In order to ensure the
fairness of the experiment, we first used the original spatial convolution and temporal
convolution modules in Js-AGCN to test the recognition accuracy of the network model.
Then we replaced the original spatial convolution module with the MSAGCN modules,
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and we found that the accuracy of the model improved 1.1%. This shows that the multi-
scale aggregate graph convolution operation can extract more features from the input
skeleton sequence, which is helpful for better classification. Next, we used the MSATCN
module with kernel size T1, T2, T3 = {3, 5, 9} to replace the original temporal convolution
module, which improves the accuracy of the model by 0.6%. This shows that the use of
a fixed temporal convolution kernel will make the temporal features indistinct, and the
multi-scale temporal convolution can effectively capture the features of different temporal
ranges. Finally, we used both the MSAGCN and MSATCN modules to replace the original
modules, and the accuracy of the model increased to 87.8%, which shows that our proposed
MSAGCN and MSATCN can more effectively capture the spatio-temporal features of the
skeleton data.

Table 2. Recognition accuracy with different combination of MSAGCN and MSATCN on the NTU
RGB+D X-sub benchmarks.

Origin AGCN MSAGCN Origin TCN MSATCN X-Sub (%)

3 3 86.0
3 3 87.1

3 3 86.6
3 3 87.8

4.3.2. Attention Mechanism

To verify the advantages of the STCAtt module we proposed in Section 3.3, we first
separately tested the recognition accuracy of adding the spatial attention module, the tem-
poral attention module and the channel attention module, respectively. Then we evaluated
the performance of the model that concatenates the three modules sequentially. As shown
in Table 3, the results indicate that the model with STCAtt achieves the best performance
on NTU-RGB-D X-sub and NTU-RGB-D 120 X-sub120 benchmarks. We noticed that the
model accuracy is not significantly improved (+0.5%) on the X-sub benchmark, while there
is an obvious improvement (+1.9%) on the X-sub120 benchmark. We think this is because
the accuracy on the X- sub benchmark is already high enough, and STCAtt is more robust
to complex datasets such as NTU-RGB-D 120.

Table 3. Comparisons of the recognition accuracy with different attentions on the X-sub and X-sub120
benchmarks.

Methods X-Sub (%) X-Sub120 (%)

MSAAGCN (Joint only) 87.8 82.6

+SpatialAttention 88.1 84.0
+TemporalAttention 87.9 83.4
+ChannelAttention 88.1 83.9

MSAAGCN+STCAtt 88.3 84.5

4.3.3. Multi-Stream Framework

Here we verify the effectiveness of the multi-stream framework proposed in Section 3.4.
As shown in Table 4, we test the performance of the model when inputting three different
data streams of joint, bone and motion. Additionally, we obtain the results by inputting
different combinations of these streams. Obviously, the model combining the three streams
achieves the best recognition accuracy, and each stream contributes to the improvement of
model performance.
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Table 4. Comparisons of the recognition accuracy with a different input stream on the NTU RGB+D
X-sub benchmark.

Methods Input X-Sub (%)

Joint only 88.3
Single-modality stream Bone only 88.5

Motion only 87.2

Joint and Bone 89.7
Two-modality streams Joint and Motion 88.6

Bone and Motion 88.9

Three-modality streams Joint and Bone and Motion 90.9

4.4. Comparison with State-of-the-Art Methods

We compared our final model with state-of-the-art skeleton-based action recogni-
tion methods on the three datasets of NTU-RGB-D 60, NTU-RGB-D 120 and Kinetics.
These methods for comparison include RNN-based methods [7,11,17], CNN-based meth-
ods [26,28,45,48] and GCN-based methods [13–16,36,37,49–55].

In the NTU-RGB-D 60 and NTU-RGB-D 120 datasets, we obtained the top-1 recognition
accuracies on the two recommended benchmarks (X-sub, X-view) and (X-sub120, X-set120),
which are shown in Tables 5 and 6, respectively. Additionally, in the Kinetics dataset, the
human joints data was obtained by an OpenPose toolbox, which is not as standardized as
in NTU-RGB-D dataset, which can help verify the effectiveness of the model when the data
is inaccurate. The recognition task is more challenging due to the variety of actions; we
report the top-1 and top-5 recognition accuracies, as shown in Table 7. Our model achieved
great results on both of the datasets, which verifies the superiority of our proposed model.

Table 5. Comparisons of the Top-1 recognition accuracy with the state-of-the-art methods on the
NTU RGB+D dataset.

Methods X-Sub (%) X-View (%)

HBRNN [7] 59.1 64.0
ST-LSTM [11] 69.2 77.7

HCN [26] 86.5 91.1
VA-fusion [28] 89.4 95.0

ST-GCN [13] 81.5 88.3
DPRL [53] 83.5 89.8

SR-TSL [55] 84.8 92.4
Motif-GCN [14] 84.2 90.2

AS-GCN [16] 86.8 94.2
2s-AGCN [15] 88.5 95.1

SGN [49] 89.0 94.5
NAS-GCN [36] 89.4 95.7

DGNN [54] 89.9 96.1
Shift-GCN [37] 90.7 96.5

DC-GCN+ADG [50] 90.8 96.6
PA-ResGCN-B19 [51] 90.9 96.0

MSAAGCN 90.9 95.9
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Table 6. Comparisons of the Top-1 recognition accuracy with the state-of-the-art methods on the
NTU RGB+D120 dataset.

Methods X-Sub120 (%) X-Set120 (%)

ST-LSTM [11] 55.7 57.9
GCA-LSTM [17] 61.2 63.3
SkeMotion [48] 67.7 66.9

SGN [49] 79.2 87.5
2s-AGCN [15] 82.9 84.9
Shift-GCN [37] 85.9 87.6

DC-GCN+ADG [50] 86.5 88.1
MS-G3D [52] 86.9 88.4

MSAAGCN 87.1 87.9

Table 7. Comparisons of the Top-1 and Top-5 recognition accuracy with the state-of-the-art methods
on the Skeleton-Kinetics dataset.

Methods Top-1 (%) Top-5 (%)

ST-GCN [13] 30.7 52.8
AS-GCN [16] 34.8 56.5
2s-AGCN [15] 36.1 58.7

DGNN [54] 36.9 59.6
Shift-GCN [37] 37.5 60.2

MSAAGCN 37.7 60.4

4.5. Discussion

Our method achieves good performance, but there are still some actions that are
difficult to recognize. Figure 4 shows the recognition accuracy of our method on the NTU
RGB+D X-Sub dataset. We have observed that there are three actions with a relatively low
accuracy (less than 70%), which are reading, writing and playing with a phone. Figure 5
presents the five key frames of the actions writing and playing with a phone. It is easy
to find that both of the actions are performed by two hands, and they are very similar.
Moreover, the hands are abstracted into two joints in the dataset, which causes difficulty
in recognition. How to accurately model the finer correlations between the joints to better
recognize these actions is the next problem we plan to solve.
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5. Conclusions

In this work, we proposed a multi-stream model consisting of multi-scale aggregate
GCN, multi-scale adaptive TCN and STCAtt modules for skeleton-based action recognition.
We fed the skeleton sequence into the spatio-temporal module and constructed multi-order
adjacency matrices in the spatial module to obtain the remote dependence and multi-
scale semantic information of the joints. In the temporal module, we added a temporal
convolution kernel with three ranges of long, medium and short to provide a more flexible
receptive field for the temporal feature map. Additionally, we introduced an attention
mechanism to focus on distinct key joints and frames and channel information to avoid the
interference of redundant information. Moreover, we improved the utilization of features
through residual connections between blocks and modules. Finally, with extensive ablation
experiments and comparison experiments on three large-scale datasets, the results show
that our proposed model achieves good performance.
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