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Abstract: In recent years, the application of artificial intelligence has been revolutionizing the man-
ufacturing industry, becoming one of the key pillars of what has been called Industry 4.0. In this
context, we focus on the job shop scheduling problem (JSP), which aims at productions orders to be
carried out, but considering the reduction of energy consumption as a key objective to fulfill. Finding
the best combination of machines and jobs to be performed is not a trivial problem and becomes
even more involved when several objectives are taken into account. Among them, the improvement
of energy savings may conflict with other objectives, such as the minimization of the makespan.
In this paper, we provide an in-depth review of the existing literature on multi-objective job shop
scheduling optimization with metaheuristics, in which one of the objectives is the minimization
of energy consumption. We systematically reviewed and critically analyzed the most relevant fea-
tures of both problem formulations and algorithms to solve them effectively. The manuscript also
informs with empirical results the main findings of our bibliographic critique with a performance
comparison among representative multi-objective evolutionary solvers applied to a diversity of
synthetic test instances. The ultimate goal of this article is to carry out a critical analysis, finding
good practices and opportunities for further improvement that stem from current knowledge in this
vibrant research area.

Keywords: job shop scheduling; energy efficiency; metaheuristics; multi-objective optimization

1. Introduction

The new industrial revolution, known as Industry 4.0 [1], is improving manufacturing
environments based on nine pillars: Big Data, simulation, additive manufacturing, cyber-
security, cloud computing, the Internet of Things, cyber–physical systems and robotics
integration, and augmented reality [2]. A key enabler of the Industry 4.0 paradigm is
the use of artificial intelligence (both machine learning and optimization), which can be
used to improve the production process by finding complex relationships between process
variables and their final quality [3], predictive maintenance [4], the prediction of demand
and sales [5], computer vision [6], the optimization of the furnace’s charge [7], parameter
optimization [8], industrial simulator optimizations [9], and many more similar use cases.

An important area in production environments is production planning, widely known
as the job shop scheduling problem (JSP) [10,11]. In the JSP, multiple jobs are processed
on several machines. Each job comprises a sequence of tasks that must be processed in a
given order, whereas each task must be processed on a specific machine. The problem is
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to schedule the tasks on the machines towards minimizing one or several measures of the
production efficiency (e.g., the time needed for all the jobs to be completed). The flexible JSP
(FJSP) extends the JSP by considering that a task can be processed by any machine from a
given set, so that the solution also includes the assignment of tasks to machines. There are a
number of practical factors that must be taken into account in order to carry out production
planning satisfactorily, such as the machines’ availability, jobs, materials, personnel, or
machine depreciation costs. The dimensions of these factors increase in larger factories due
to the equally increasing number of installed production assets, the continuous arrival of
more production orders, and other aspects that make the underlying production planning
processes even more difficult to tackle.

Finding the best combination for production planning is not a trivial task. The number
of possible combinations is in the order of (n!)m, n being the number of jobs and m the
number of machines [12]. For instance, five jobs can be assigned and scheduled in a factory
of just five machines in approximately 24.8× 109 different combinations. Consequently, the
use of exhaustive optimization techniques is not feasible in real-world industrial scenarios,
where the number of machines and jobs can be much higher than the aforementioned
example. Therefore, non-exact optimization techniques have been proposed as an alter-
native to cope with the complexity of JSP problems, including metaheuristics, a broad
family of optimization techniques that do not guarantee the discovery of optimal solutions,
but usually provide near-optimal solutions within reasonable times [13]. Evolutionary
computation, which is arguably the most widely known subfamily of metaheuristics, has
been applied to the JSP as well over the years [14].

The formulation of a JSP problem may consider more than one conflicting objective
to be minimized, such as the makespan (total time to complete a given production plan),
total tardiness, and machine changes. Consequently, the JSP can be formulated as a multi-
objective optimization problem, wherein the optimum is not a unique solution, but a
set of trade-off solutions differently balancing among the established objectives (known
as the Pareto set). From an algorithmic perspective, addressing several objectives and
approximating the Pareto set that optimally balances them even further increases the
complexity of designing an efficient and scalable optimization technique.

In addition to the common production-related goals mentioned previously (e.g.,
makespan, total tardiness), the reduction of the energy consumption is a crucial aspect of
today’s society, due to the effects of climate change and the rising concerns about the long-
term sustainability of the planet [15,16]. This objective has been prevalent over the years
during which JSP problems have been approached with metaheuristic algorithms, yet it has
not been until recently when energy efficiency has become of utmost relevance in the indus-
trial realm, in particular in energy-intensive industries. The growing importance of energy
consumption as a key indicator of industrial performance and efficiency has permeated
into practical planning processes. Consequently, the interests of the research community
working on metaheuristics for JSP problems have progressively steered towards energy
efficiency as another objective, giving rise to an upsurge of contributions dealing with
energy-aware multi-objective JSP problems for industrial production scheduling.

In light of this rising research trend, this survey aims to provide the readership of
this journal with a comprehensive survey of multi-objective meta-heuristic algorithms
applied to JSP problems where energy efficiency is considered among the objectives to be
optimized. The literature study offered in our work intends to pose itself as a reference
material for those interested in pursuing research in this area. To this end, we systematically
reviewed and critically analyzed the most relevant features of both problem formulations
and algorithms to solve them effectively. To do this, three taxonomies are proposed to
arrange the contributions so far as per (1) the JSP problem to be solved (i.e., type and
domain, number of objectives and secondary objectives), (2) practical constraints and
considerations that affect the formulation of the problem and the feasibility of the solutions,
and (3) the technique in use to solve the formulated problem (correspondingly, the adopted
algorithm, main parameter settings, etc.). After organizing and describing the contributions
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noted in this area, we highlight good practices identified in the reviewed corpus of literature,
a well as underscore research niches and poor practices that must be overcome to achieve
actionable insights and approaches of practical utility.

The manuscript also informs with empirical evidence the main findings of our bib-
liographic review. To this end, the survey includes an experimental study including
representative multi-objective evolutionary solvers applied to a number of synthetic JSP
test instances that have appeared in the literature [17]. These instances were augmented
with energy costs added in order to be representative of the area surveyed in this study.
The ultimate goal of this experimental study was to methodologically prescribe how to
perform a comparison among multi-objective metaheuristic solvers for energy-aware JSP
problems in a principled way, considering not only the quantitative significance of the
performance differences found among the algorithms under comparison, but also pausing
on the qualitative implications of such differences in practical settings. In order to promote
reproducibility and transparency, the source code of the software generating the discussed
results has been made public in a GitHub repository, together with the augmented JSP
instances under consideration.

The rest of this manuscript is structured as follows. Section 2 introduces the basic
concepts about multi-objective optimization, metaheuristic optimization, and a generic
description of the JSP problem. The literature collection methodology, the three proposed
taxonomies, and the literature review on multi-objective JSP problems with energy as one
of the objectives are provided in Section 3. This section is concluded with the summary of
critical points mentioned above, flowing into the experimental setup and results obtained
therefrom discussed in Section 4. Finally, conclusions are drawn and research directions are
outlined in Section 5, motivating the readership towards investing further research efforts
in this exciting research avenue.

2. Background

For the sake of the self-completeness of this survey, this section includes basic concepts
about multi-objective optimization (Section 2.1), metaheuristic algorithms (Section 2.2), and
the formulation of the JSP problem (Section 2.3). Before proceeding further, we note that the
explanations and definitions given in what follows are kept to the minimum required for
properly understanding the subsequent examination of the literature and the experimental
use case. Supportive references for the interested reader are given in place for further
details about any of the exposed concepts.

2.1. Multi-Objective Optimization

Multi-objective optimization is the discipline dealing with problems formulated
around two or more objective functions that have to be optimized at the same time [18,19].
These functions are usually in conflict, so improving one of them leads to the degradation
of the others. We assumed, without loss of generality, that all objective functions are to
be minimized.

Broadly speaking, the goal sought in a multi-objective optimization problem (MOP) is
to find a set of solutions that not only satisfy eventually imposed equality and inequality
constraints (as per the problem to be solved), but also best balance the trade-off between
the established objectives, i.e., solutions for which it is not possible to find any others that
improve (minimize) the values of the defined objectives. Mathematically:

Definition 1. (MOP) Find a vector ~x∗ =
[
x∗1 , x∗2 , . . . , x∗n

]
that satisfies m inequality constraints

gi(~x) ≥ 0, i = 1, 2, . . . , m and p equality constraints hi(~x) = 0, i = 1, 2, . . . , p (if any such
constraints exists) and minimizes the vector function ~f (~x) = [ f1(~x), f2(~x), . . . , fk(~x)]

T , where
~x = [x1, x2, . . . , xn]

T is the vector of decision variables.
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In the above definition, all the values of the vector of decision variables that satisfy
the constraints circumscribe the feasible region Ω, so any point ~x ∈ Ω can be referred to as a
feasible solution.

The conflicting nature of the objectives ~f (~x) of an MOP implies the need for defining
what an optimal solution is. Connecting with the broad explanation of what an MOP
pursues that is given above, this leads to the definition of Pareto optimality:

Definition 2. (Pareto optimality) A point ~x∗ ∈ Ω is said to be Pareto optimal if for every ~x ∈ Ω
and I = {1, 2, . . . , k}, either ∀i∈I( fi(~x) = fi(~x∗)) or there is at least one i ∈ I such that
fi(~x) > fi(~x∗).

According to this definition, a vector (point or solution) ~x∗ is Pareto optimal if no
feasible vector ~x exists that would improve some criteria without causing a simultaneous
worsening of at least one other criterion.

Given two vectors corresponding to solutions of a given MOP, comparing them to
determine which is better in terms of objective minimization is not as simple as in single-
objective optimization. When dealing with a single objective, the vector having the lower
associated function value can be declared to be better than the other. By contrast, when
there are several objectives involved, the concept of Pareto dominance is introduced to
compare among solutions:

Definition 3. (Pareto Dominance) A vector ~u = (u1, . . . , uk) is said to dominate ~v=(v1, . . . , vk)
(denoted by ~u 4 ~v) if and only if ~u is partially less than ~v, i.e., ∀i ∈ {1, . . . , k}, ui ≤ vi ∧ ∃i ∈
{1, . . . , k} : ui < vi.

By using Pareto dominance, we can determine whether, given two solutions, one
dominates the other, or instead, they do not dominate each other. In this last case, they are
non-dominated solutions, and therefore, it cannot be said which of them is better in the sense
of the trade-off between the objectives of the MOP. Pareto optimality can be thus defined in
terms of dominance, as a Pareto-optimal point is one that is not dominated by any other
point in Ω.

Optimizing an MOP can be defined then as the process of finding the set composed
of all the Pareto-optimal solutions. This set is referred to as the Pareto-optimal set, or the
simply Pareto set, and can be defined as:

Definition 4. (Pareto-optimal set) For a given MOP ~f (~x), the Pareto-optimal set is defined as
P∗ = {~x ∈ Ω|¬∃~x′ ∈ Ω, ~f (~x′) 4 ~f (~x)}.

Each vector in the Pareto-optimal set has a correspondence in the objective function
space, leading to the so-called Pareto front:

Definition 5. (Pareto front) For a given MOP ~f (~x) and its Pareto-optimal set P∗, the Pareto front
is defined as PF ∗ = {~f (~x)|~x ∈ P∗}.

Finding the optimal solutions of an MOP is a first step in the full optimization process,
as it is followed by the decision-making step, where an expert in the problem domain has
to choose one of them satisfying some criteria [20]. Consequently, the algorithms used for
solving MOPs aim at finding an approximation of the Pareto set having a relatively low
number of diverse solutions, based on which the user in the application at hand (in our
case, the manager of the production plant) can eventually make informed decisions.

2.2. Metaheuristics and Evolutionary Algorithms

Searching for the full Pareto set of a given MOP can be unpractical for two reasons.
On the one hand, providing a huge number of the solutions can complicate the decision-
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making process; in general, the algorithms used for solving MOPs are aimed at obtaining an
approximation of the Pareto set having a relatively low number of solutions. On the other
hand, MOPs can be characterized by a number of features, making them very difficult to
solve, such as the NP-hard complexity, non-linear functions, epistasis, or several objectives
or a large number of decision variables, to mention a few [21].

As a consequence, the use of exact optimization techniques is frequently unfeasible in
practice. The alternative is to shift to other kinds of algorithms. In this context, metaheuris-
tics appear as a family of non-exact techniques that have gained much popularity since the
1990s. They can be defined as iterative strategies that guide and manage the operations
of subordinate heuristics to efficiently find high-quality solutions [13]. Metaheuristics are
usually non-deterministic and not problem specific, although they can incorporate domain
knowledge by virtue of the flexibility of their algorithmic design.

Sub-classes of metaheuristics include evolutionary algorithms (by far, the most well-
known metaheuristic), ant colony optimization, simulated annealing, and particle swarm
optimization. In fact, many metaheuristics have been designed, so a number of approaches
to classify them have been proposed. The most accepted taxonomy distinguishes be-
tween nature-inspired and non-nature-inspired metaheuristics. Table 1 contains a list of
representative metaheuristic algorithms according to this classification. A more thorough
compendium of nature-inspired metaheuristics can be found in any of the taxonomic
studies recently contributed by the community (see, e.g., [22] and the references therein).

Table 1. Classification of metaheuristics in nature-inspired and non-nature-inspired techniques,
together with some illustrative examples for each of these categories.

Nature-Inspired Non-Nature-Inspired

• Simulated annealing (SA) • Tabu search (TS)
• Swarm Intelligence • Variable neighborhood search (VNS)
− Particle swarm optimization (PSO) • Scatter search (SS)
− Ant colony optimization (ACO) • Iterated local search (ILS)
• Evolutionary computation (EC) • Guided local search (GLS)
− Genetic algorithm (GA) • Path relinking (PR)
− Evolution strategy (ES) • Greedy randomized adaptive
− Genetic programming (GP) Search procedure (GRASP)
• Artificial immune system (AIS)

Among nature-inspired metaheuristics, evolutionary algorithms are techniques in-
spired by biological evolution, where solutions are termed as individuals and grouped into
populations that are refined over the search process. The individuals evolve by the iterative
application of selection, reproduction, and replacement operators over the population of
individuals, which mimic the evolution of beings in an ecosystem. Within evolutionary
computation, we highlight genetic algorithms, which apply recombination and mutation in
the reproduction step. As in traditional single-objective optimization, metaheuristics have
been widely used to solve MOPs [18,19]. In particular, well-known multi-objective meta-
heuristics comprise evolutionary computation search operators and concepts at their core,
such as NSGA-II [23], MOEA/D [24], and SMS-EMOA [25]. These three exemplified MOP
metaheuristics are, respectively, representatives of the three commonly accepted categories
of multi-objective metaheuristics: Pareto dominance, decomposition, and indicator-based
MOP metaheuristics.

2.3. The JSP Problem

The job shop scheduling problem (JSP or JSSP) [26,27] is an optimization problem
focused on assigning production jobs to industrial resources at a particular time. It is
one of the main problems in today’s companies’ production planning, as they are dedicat-
ing resources in an attempt at efficiently finding optimal plannings. Given the NP-hard
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complexity of the JSP, in many cases, the assignment of tasks/jobs to resources is per-
formed by humans, which severely limits the possibility of successfully finding global
optimum assignments.

Therefore, the main goal of the JSP is to find a production plan taking into account vari-
ables and constraints that affect the production in the scenario under consideration. Such
aspects can be assorted in their nature, including the availability of machines, the minimum
quantities to be produced for each type of product, the quality and availability of materials,
the personnel qualifications, the eventual occurrence of breakdowns, etc. An objective that
is usually considered across the literature related to the JSP is the minimization of the total
production time needed to achieve certain production goals (commit), also referred to as
makespan. In general, the makespan can be regarded as the total time needed for all jobs to
be completed from the beginning [26]. Several studies presented in the 1980s and 1990s
approached the makespan minimization problem using optimization algorithms [14,28–30].
However, this seminal JSP formulation still has relevance and continues receiving the
interest of the research community working on metaheuristics [31,32].

Besides the continued consideration of the makespan as a core target of the JSP, energy
consumption has climbed up the priority ranking in the last few years, due to the global
awareness arising around climate change and the sustainability of the industrial value
chain [15]. There is a global challenge to curb emissions generated by countries, with
high penalties for non-compliers, which is also associated with higher energy costs due to
penalties for using energy production methods with a high environmental impact, such as
the use of coal.

Mathematically, the JSP (and its FJSP extension) can be formulated departing from
a set J of N independent jobs {jn}N

n=1. Each job has its own processing order through
M machines available in the production plant, which are denoted asM = {mi}M

i=1. Each
job jn comprises a number On of ordered tasks [Tn

1 , . . . , Tn
On

], which must be completed
for job jn to be declared as processed. As such, task Tn

k can be assumed to be processed (1)
on a predefined machine mj ∈ M (as in the JSP) or (2) on any machine in a given subset
of qualified machinesMj ⊆ M. When task Tn

k is assigned to machine mj, a cost Cj,n,k is
incurred (e.g., processing time or energy consumption). In other words, the naive JSP can
be regarded as a sequence optimization problem as the assignment of tasks to machines is
established beforehand; the FJSP, however, also seeks an optimal assignment (routing) of
each task Tn

k to a machine from the qualified set Mj, together with the order of tasks on
the machines. The discovery of the optimal assignment and/or task sequence is driven by
the minimization of the total cost to produce all N jobs in their entirety, which is driven by
the values of the costs Cj,n,k. While typically, for only one objective (minimization of the
makespan, wherein Ctime

j,n,k denotes the processing time of task k of job jn on machine mj),
the search can be driven by several conflicting costs (for instance, besides the makespan,
energy consumption, i.e., Cpow

j,n,k, is measured in units of consumed power to produce the
task), in this case, the goal of the multi-objective JSP/FJSP is to find a set of different
assignment and/or ordering solutions that optimally balance (in the Pareto sense) between
the makespan and the total energy required to process the production commit.

In this regard, there can be found several studies considering multiple objectives in
a single JSP [33,34]. Our study complements them by performing an extensive review of
the literature addressing the JSP as a multi-objective problem with energy as one of its
objectives. The examination of the contributions considered in our study and the critical
insights extracted from the analysis of this literature are presented in the next section.

3. Literature Survey and Critical Analysis

To conduct the survey on the energy-aware JSP, a thorough literature collection and
crosscheck were performed, yielding a selection of more than 60 references related to
multi-objective optimization applied to JSP problems with energy as one of their objectives.
Even though we tried to encompass a wide and thorough review, it is important to clarify
that the aim was not to be comprehensive, but rather to analyze representative studies that
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showcase the current status of the research area. This being said, other works may not have
been included in the study.

The section is divided into three different parts. First, Section 3.1 details the method-
ological steps followed to compile the related literature and to end up with the selected
corpus of contributions considered in the survey. Section 3.2 follows with the analysis of the
literature based on three taxonomies: problem features, constraints and considerations, and
the multi-objective optimizer in use. Finally, the section ends with a summary of our main
findings after the analysis of the literature; as such, Section 3.3 stresses the lessons learned,
good and poor practices, and opportunities for further research in the examined area.

3.1. Literature Collection and Filtering Methodology

The search process carried out is depicted schematically in Figure 1. The source of the
bibliographic search was SCOPUS [35], using as search terms “multi-objective job shop
scheduling”, without any type of limitation. The search query using these terms returned a
total of 772 results, over which a first filter was applied: duplicated works were removed,
as well as those contributions that did not relate at all to industrial and/or manufacturing
processes. Likewise, works that were not peer-reviewed were excluded from the search
results, so as to retain only journal articles and conference papers. This first filtering exercise
reduced the amount of returned documents to 420 results.

Figure 1. Search and filtering methodology flowchart.

A second filter selected those papers that had terms such as job, shop, job shop, flow
shop, job-shop, and industry-focused and with at least two objectives, one of them focused
on energy. After this filtering, we were left with 61 references.

Figure 2 shows the number of papers published per year until 2020. We can observe
an almost linear growth since 2017, indicating that the field of multi-target JSPs considering
energy has been gaining momentum in recent years. This suggests the need for a reflexive
compendium of the research activity reported in these studies, which is the motivation of
the literature analysis presented in the subsections following hereafter.

Figure 2. Number of publications per year for the multi-objective JSP problem with energy as one of
the targets.
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3.2. Taxonomies and Literature Analysis

Once the search and filtering of papers produced a list of the most relevant works, we
proceeded to analyze them. To do so, we defined three taxonomies that covered different
aspects that deserve to be studied:

• Problem features: type of problem, number of objectives, the energy objective, and
secondary objectives;

• Constraints and other considerations that have been taken into account in the analyzed works;
• Multi-objective optimizer, including the algorithm in use, compared algorithms, and

values of the main parameters.

The three taxonomies are described in detail and analyzed next.

3.2.1. Taxonomy 1: Problem Features

From the point of view of the features of the problem, four taxonomic features of
interest were considered: (1) number of objectives; (2) energy objective; (3) secondary
objectives; (4) the type of JSP formulation. The classification of the works according to these
taxonomy criteria [36–94] is shown in Figure 3.

We started our analysis of the literature through this first taxonomy by analyzing the
first of the problem features: the number of objectives. This feature is about the formulation
of the optimization problem in terms of the number of objectives. The higher this number
is, the more complex the problem can be thought of to be, as the search space grows (the
curse of dimensionality) and decision-making becomes harder to handcraft in practice. We
can observe in Figure 3 that 75.44% of the reviewed references considered two objectives,
more than 22% had the objectives, and only one paper focused on a problem with more
than three objectives. As will be later discussed, this predominance of references with
two or three references aligns with the characteristics of real-world problems, in which we
rarely find JSPs that are governed by more than three conflicting objectives.

We now turn the focus of the analysis to the specific energy objective defined in
the formulated JSP. Indeed, the generic objective of reducing energy consumption can be
defined by means of different indicators. We considered four criteria: energy consumption,
electric power costs, non-processing energy, and idle energy. Based on this criteria, we
found that 81.97% of the analyzed works were based on the consumption point of view,
expressed in kWh. By contrast, 11.48% of the contributions referred to the cost of energy
consumption, which does not necessarily have to be the same as consumption due to the
different energy policies applied in each region, such as, for example, hourly discrimination.
In this sense, an algorithm could find, for example, that it is better to produce at night at
high rates, consequently increasing the energy consumption, but with a low impact on the
energy cost, as opposed to producing at lower speeds in the evening (higher consumption,
lower cost). The consumption of energy not used in production and the energy consumed
in machine waiting times were taken into account in 4.92% and 1.6% of the reviewed
literature works, respectively.

Therefore, less than 10% of the works under analysis studied the idle energy consump-
tion when the machine is on standby. As the reduction of the makespan is directly affected
by the waiting times, the consumption of machines during waiting times can be of great
importance, e.g., in a steel or smelting furnace, where energy consumption during the
standby of production assets is critical. Ignoring this part of the behavior can be a great
waste of energy.
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Problem Features

Number of
objectives

Two objectives
• Ratio: 75.44%
• # Articles: 46

[36] [37] [38]
[39] [40] [41]
[42] [43] [44]
[45] [46] [47]
[48] [49] [50]
[51] [52] [53]
[54] [55] [56]
[57] [58] [59]
[60] [61] [62]
[63] [64] [65]
[66] [67] [68]
[69] [70] [71]
[72] [73] [74]
[75] [76] [77]
[78] [79] [80]
[81]

Three objectives
• Ratio: 22.96%
• # Articles: 14

[82] [83] [84]
[85] [86] [87]
[88] [89] [90]
[91] [92] [93]
[94]

More than
three objectives
• Ratio: 1.6%
• # Articles: 1

[95]

Energy objective

Energy consumption
• Ratio: 81.97%
• # Articles: 50

[37] [38] [40]
[41] [82] [83]
[84] [42] [44]
[45] [46] [47]
[48] [86] [87]
[51] [52] [53]
[54] [55] [56]
[57] [88] [89]
[58] [90] [59]
[60] [61] [91]
[62] [92] [65]
[66] [67] [69]
[70] [71] [95]
[73] [74] [75]
[76] [77] [78]
[79] [80] [93]
[81] [94]

Electric power costs
• Ratio: 11.48%
• # Articles: 7

[36] [49] [63]
[64] [89] [68]
[72]

Non-processing
energy
• Ratio: 4.92%
• # Articles: 3

[39] [43] [50]

Idle energy
• Ratio: 1.6%
• # Articles: 1

[85]

Secondary
objective

Makespan
• Ratio: 70.5%
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Figure 3. Taxonomy of the reviewed literature by problem features.

Since the survey addressed works dealing with multi-objective formulations of the
JSP where energy consumption is minimized jointly with other secondary objectives , we
continued our examination of the first taxonomy by evaluating which other objectives
not related to energy have been in use. The secondary objective that appeared most
frequently was, as expected (as the research has been performed in industrial environments),
makespan, with 70.5% of the reviewed articles. This objective gauges the total amount
of time that is necessary to produce and complete a set of scheduled jobs (production
commit). The lower the makespan is, the more production efficient or the higher the
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production capacity of a plant is. Therefore, makespan is an objective to be minimized.
This objective can conflict with the energy objective, since a shorter production time may
require higher production speeds or the use of more machines, thereby consuming more
energy. This is the most addressed case, although it is possible to find a global optimum
that guarantees the minimum makespan and the minimum energy, wherever waiting times
between operations are the only aspect of the plant that allows energy to be minimized.
However, this is not generally the norm, paving the way for the adoption of multi-objective
optimization solvers.

The next most important secondary objective is the total tardiness, which was ac-
counted for in 14.76% of the works organized in the taxonomy. Total tardiness refers to the
delay time and is critical for production, as it can incur serious production cost overruns
due to late deliveries. This objective is related to the makespan, and if we consider both
together, around 90% of the papers included production efficiency in one form or another as
a secondary objective. The total workload appeared as the next-most-addressed secondary
objective, appearing in 4.92% of the jobs. Finally, the remaining 22.96% included other key
performance metrics not necessarily related to production efficiency, such as noise, worker
costs, and product quality (among others), which have less impact on production when
searching for an optimal scheduling plan.

We end the analysis of our first proposed taxonomy by pausing on the type of JSP
formulated in every work. In most contributions, the authors defined each use case by
mapping it to a specific type of problem. Although all of them were related to JSP problems,
in many cases, they showed problem types that were too specific to be generalized to other
practical use cases. This implies that many reported cases described by the authors are
only applicable under the conditions of the particular setup they considered in their work.
This could be observed in 57.38% of the papers reviewed, in which the type of problem
was unique for that study and defined under acronyms that do not provide any relevant
information to the reader. The next largest group referred to the flexible JSP (FJSP), which
was described in 21.32% of the contributions. Similarly, 16.40% of the cases referred to
the hybrid flow shop scheduling problem (HFSP), whereas 4.92% were about a naive JSP
problem, without any further formulation specifics whatsoever.

3.2.2. Taxonomy 2: Constraints and Considerations

We continued our examination of the literature by analyzing contributions through the
lenses of the constraints and practical aspects considered in the underlying MOP, beyond
the objectives themselves. The variability of constraints and aspects is high, so it is difficult
to arrange them in a coherent fashion. Nevertheless, several patterns and trends [36–95]
were identified, which are shown in Figure 4 and discussed in the rest of this subsection.

To begin with, most of the reviewed papers considered similar constraints that are
posed to tell when a good solution as per the objectives defined for the JSP at hand is
feasible. These constraints that are in common over most studied literature include:

• A job can only be assigned to one machine;
• The number of jobs assigned to a machine cannot exceed the net production capacity

of the machine;
• The processing time of a batch is equal to the longest time of the jobs on the machine;
• A job cannot start before the previous job is finished on the machine;
• No machine can do more than one job at a time;
• Each operator can only operate one machine at a time;
• Jobs are independent of each other.
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However, there are other constraints and considerations that pose a difference in the
way in which the authors approached the problem. In this way, some works assumed overly
idealistic production environments, inserting several constraints that can be considered far
from being realistic. These are shown in Figure 4 include:

• Machines are always available from the start: this first assumption does not hold in
many practical circumstances, because not always are all machine available in real
environments. This may occur for a manifold of reasons. For example, a machine can
be broken, under maintenance, or can be blocked to produce only one type of unit.
Surprisingly, all the reviewed papers assumed this start point;

• Once a job is started at a machine, the job cannot be stopped: this second assumption
is not always possible either due to breakdowns, production priorities arising during
the production cycle, and other assorted reasons. Therefore, in some cases (especially
when there are many sub-processes flowing inside the same machine), the production
of a unit has to be stopped and does not necessarily resume in the same unit. Possible
issues derived from these circumstances during the manufacturing process were
considered in [71];

• Each operation should begin immediately after the previous one has been completed:
this third assumption is not always the best practice due to production bottlenecks:
if a machine has a cycle time higher than other assets, it is a good practice to start
the next/previous machine before the other ends. All the papers reviewed made
this assumption;

• The production buffer between machines is unlimited: this assumption may hold
sometimes, but it is not always true. Now that lean manufacturing is becoming a
revolution in factories and that one of its pillars is based on producing only what is
indispensable by reducing the length of the batches, assuming unlimited buffers will
violate this principle [43];

• Transportation time within the plant and production chain is negligible: this is not
always feasible, as the time needed to transport from one part to another one of
the productive process can be even higher than that of the productive process itself.
Lean manufacturing strives to reduce waste, so improving the product routing inside
the factory is important. This constraint will be opposite the route and transport
optimization, and its influence in the makespan is mostly considered as negligible.
Nevertheless, some works have stepped aside this trend and considered this aspect in
the problem formulation [55];
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• The change time is negligible: this sixth constraint can be mainly assumed in the
production of large batches, but currently, most factories are required to manu-
facture small batches of products. This entails that tooling changes happen more
frequently, so their aggregate impact on production makespans can no longer be
neglected [53,55–57].

Another important aspect that is not always taken into account is the impact on
energy consumption of idle and standby time. Idle time is a period of time in which an
asset (machine or employee) is ready and available, but is not doing anything productive.
Standby time is the time during which a part of the process is waiting for a previous
operation to finish. The energy consumption of these states of industrial assets is relevant
and has been considered in several works [40,42,44,56,74,76,80].

Finally, we pause on an important and relevant root cause of energy consumption: the
processing velocity of machines endowed with the capability to produce at different rates.
Higher production speeds usually imply a higher energy consumption. Since this capacity
of machines is specific to the industrial sector and type of product, only a few works have
paid attention to this matter [48,51,61].

3.2.3. Taxonomy 3: Multi-Objective Optimizer

The analysis of the literature arrives at the third criterion followed to perform opti-
mization in a principled manner: the algorithmic procedure by which every JSP under
consideration has been optimized. In this regard, we used four criteria [36–95] to orches-
trate the literature in the taxonomy shown in Figure 5: (1) specific algorithm utilized; (2) the
algorithm(s) to which the proposal has been compared; (3) crossover parameters; (4) mu-
tation parameters. In what follows, we discuss the general design and methodological
patterns stemming from this third systematic analysis.

We begin the discussion by considering the specific multi-objective algorithm used in
every contribution. This classification is focused on the multi-objective algorithm used to
optimize the problem. A priori, here, we expected to find widely known multi-objective
evolutionary algorithms, such as NSGA-II, MOEA/D, or SPEA-2. However, after carrying
out the review, most of the papers analyzed referred to new optimization techniques that
attempt to improve the performance of the aforementioned algorithms. This is why this
feature does not account for the specific algorithm in use, but rather ascertains whether
a new algorithm has been developed for the study or not. Surprisingly, we found that
88.5% of the articles included in the review developed new algorithms or improvements of
existing ones, whereas only in 9.8% of the cases, no new algorithm was proposed. This fact
links to one of the critical points elaborated later in Section 3.3.

We turn the scope of the discussion to the algorithm for comparison included in
benchmarks. For this criterion, we considered those techniques that the authors of every
contribution used to compare their performance to that elicited by their own proposed
algorithms. As expected, NSGA-II prevailed in the area as a comparison counterpart, with
32.47% of the papers featuring it in their benchmarks. This multi-objective evolutionary
algorithm is followed by SPEA-2, which was used in 10.39% of the cases. MOEA/D,
another popular multi-objective evolutionary algorithm, appeared in 9.09% of the analyzed
literature, while the remainder included comparisons with other algorithms such as NSGA-
III, MOGWO, SPEAR, etc.

Another fact to take into account in this category is that commercial software for
optimization such as CPLEX is quite frequently employed in this area. This statement is
buttressed by Figure 6, where we can observe that the three aforementioned algorithms
predominated over the rest.
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Multi-Objective Optimizer

Algorithm used

New algorithm
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• # Articles: 52

[36] [37] [38]
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[36] [38] [39]
[40] [84] [42]
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[57] [58] [90]
[59] [61] [91]
[92] [63] [66]
[43] [55] [72]
[76]

SPEA-2
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• # Articles: 8

[73] [36] [56]
[58] [92] [63]
[48] [54]

MOEA/D
• Ratio: 9.09%
• # Articles: 7

[66] [95] [38]
[40] [74] [43]
[42]

GA
• Ratio: 3.90%
• # Articles: 3
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• # Articles: 5

[44] [49] [88]
[70] [71]

Other
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• # Articles: 29

[82] [83] [46]
[47] [85] [55]
[60] [64] [65]
[67] [68] [72]
[76] [94] [39]
[42] [48] [87]
[53] [57] [90]
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[43] [56] [58]
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Not defined
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• # Articles: 24
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[59] [61] [91]
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• # Articles: 15
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• # Articles: 10
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• # Articles: 1
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• # Articles: 3
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• # Articles: 18
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• # Articles: 24
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Figure 5. Taxonomies by multi-objective optimizer.
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Figure 6. Most utilized algorithms for benchmarking and comparison.

Table 2 provides a complete list, ordered by publication year, of the algorithms used,
the algorithm taken as a starting point to develop the newly proposed approach, and the
algorithms against which it was compared. We can clearly observe that most of the papers
focused their efforts on developing their own algorithm. It is also worth noting that none
of the newly developed metaheuristics over the years makes a comparison with previously
defined solvers in the table. This indicates that research works reported in this area mainly
attempted beating generic algorithms (e.g., NSGA-II, ILS, MOGA) and did not include in
the comparison algorithms specifically designed to solve JSP instances.

Since most of the metaheuristics used to solve multi-objective formulations of the
JSP are genetic algorithms (i.e., evolutionary algorithms using crossover and mutation
operators in the variation step), we now analyze the crossover operators in use and, in
particular, the value of the crossover probability parameter (see again Figure 5). In the
experimental phase, the authors of the papers carried out different experiments varying the
crossover and mutation values, so that in many cases, more than one value was provided for
these operators. Therefore, we decided to group them by quartiles, with the first quartile Q1
being the probability of crossover set between [0, 0.25), Q2 between [0.25, 0.5), Q3 between
[0.5, 0.75), and Q4 between [0.75 and 1].

The crossover operator was not always given, sometimes because the algorithm does
not make any use of it (as in, e.g., PSO-based proposals). However, when used, there were
a high number of papers that did not provide detailed information: in 39.34% of cases, the
crossover operator was not specified; in 24.59% of the cases, the crossover probability was
high, belonging to Q4; in 16.39% of the cases, the crossover parameters were in the third
quartile; 1.6% and 4.92% had crossover probabilities belonging to the second quartile and
the first quartile, respectively.

It is remarkable that a large number of papers did not provide the crossover parameter
settings, so they cannot be reproduced in new studies. This practice detracts from the scien-
tific value of the publications because the statements and findings cannot be validated by
the community. A well-conducted study should transparently inform about the operators
and algorithms in use, so that interested researchers can replicate and advance the general
knowledge in the field. Moreover, it is striking that this type of information did not appear
when, in many cases, the studied problem was synthetic and there was no commitment
to confidentiality. Apart from that, the probability values used more were the higher ones
(i.e., in the Q4 range), as expected.
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Table 2. Algorithms found in the analyzed papers.

Year Reference Algorithm Used Initial Algorithm Algorithms Used for Comparisons

2011 [94] SPNE Dynamic game theory AL+CGA; PSO+TS; HSISAT

2013 [36] MOACO ACO NSGA-II; SPEA-2
[70] IGSAA SA -

2014 [82] BVNSGA-II NSGA-II -
[86] NSGA-II NSGA-II -

2015

[41] SAA GA -
[69] Continuous-time MILP - -
[67] GD-MOCDE MOCDE, Gradient descent (DC), MODE;
[68] ABC ABC IGAMU; CSO; SAGA

2016 [37] MILMO - -
[39] GAEJP NSGA-II NSGA-II; LEKING

2017

[84] MOGA Simplex lattice design NSGA-II;
[89] GA-based GA -
[66] HMOBSA MOEAs NSGA-II; MOEA/D;
[89] Enhanced GA Standard GA -
[94] SPNE DGT AL+CGA; PSO+TS; HSISAT

2018

[38] EA-MOA - NSGA-II; MOEA/D; DBEA; EADD
[44] IGALL IG -
[46] SFLA SFLA BVNSGA-II
[50] MCEAs - NSGA;
[57] Multi-objective DE - NSGA-II; AMGA
[88] Bee Colony Artificial bee colony (ABC) -
[92] HMOGWO GWO; GA NSGA-II; SPEA2; MOGWO; MOGWO1; MOGWO2
[63] TEPSO PSO; TABOO NSGA-II; SPEA2
[64] NBI Normal boundary intersection -
[65] TTLBO - IGSA; GA
[95] NSGA-III NSGA-III NSGA-III-NIG; EFR-RR; crEA

2019

[40] MOBSO Basic BSO NSGA-II; MOEA/D
[42] MDABC MOEA NSGAII; EAMOA; CMFOA; MOEA/D; iMOEA/D
[43] EOMO (MOEA/D). SPGA-II; NSGA-II; MOEA/D
[45] MOHPIOSA PIO NSGA-II
[85] IMOMVO MOMVO; MOPSO; MOALO; NSGA-II
[71] MOGSA MOGA -
[93] DCRO CRO -
[56] MOCGWO MOG NSGA-II; NSGA-II + NDM; SPEA2; SPEA2 + NDM; MOCGWO
[55] iMOEA/D MOEA/d HMOBSA; NSGA-II
[56] MOCGWO GWO and CA NSGA-II; SPEA2; MOCGWO
[58] MOWSA Whale swarm algorithm NSGA-II; SPEA2; PAES
[61] COA NSGA-II; IMEA/D
[91] ILS ILS NSGA-II
[54] New MOGA MOGA -
[80] MOGA-LS ILS; VILS -

2020

[83] PH-MOEAD MOEAD EMBO; GA; GAR; DPSO; DABC
[47] DEMO - MODWWO; MPVNS; MOMBO
[48] MHACO - NSGA-II; MODEA; SPEA-II
[49] CPLEX (not provided) - -
[87] EMA NSGA-II; NNIA; NSGA-III
[51] EDA GA
[52] Own algorithm - -
[53] 2-echelon iMOEA/D MOEA/D NSGA-II; MOGLS
[90] HEA - NSGA-II; NNIA
[59] iIMOALO ALO NSGA-II; MOPSO
[60] NMA MA MA
[73] NSGA-II NSGA-II SPEA2
[74] NSGA-II NSGA-II -
[75] EE-VBIH; EE-IG; IG-ALL
[76] MDSS-MOGA-DE MOABC; MOACO; MOCS
[77] NSGA-II; SPEA-2 NSGA-II; SPEA-II NSGA-II; SPEA-2
[78] NSGA-II NSGA-II
[81] PSO_SWS; PSO_LWR PSO PSO_SWS; PSO_LWR; PSO

2021 [72] HPSO PSO i NSGA-II; HPSO-LS

We end the analysis of the literature through the third taxonomy by assessing the
mutation operator adopted by the selected contributions. To analyze the mutation operator,
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we defined, as in the crossover operator, quartiles, with the first quartile Q1 being the
probability of mutation set between [0, 0.25), Q2 between [0.25, 0.5), Q3 between [0.5, 0.75),
and Q4 between [0.75 and 1]. In general, the mutation probabilities were low, as can be
told from the most-used quartile for this parameter (34.2% in the first quartile and 15.8% in
the second one). Similar to the crossover, a significant fraction of the papers (39.34%) did
not clearly indicate the mutation parameters chosen for the experimental part of the study,
which aggravates even further the reproducibility problems exposed previously.

3.3. Summary of Critical Points Identified in the Literature Analysis

Now that the literature falling in the intersection between energy-aware production
scheduling and multi-objective metaheuristics has been described, we now summarize the
main observations that emerged from the critical analysis of such works. Before proceeding
further, we claim that with this critique, we did not aim to discourage the readership from
performing research at these crossroads, but rather (1) to underscore realistic aspects and
assumptions that are tightly coupled to real-world settings, (2) to pinpoint poor practices
that should be avoided in prospective studies, and (3) to call for research efforts in directions
of inherent value for the field. Such observations are exposed in what follows:

• The first taxonomy given in Section 3.2.1 uncovered that most JSPs solved in the
analyzed literature corpus addressed two or three objectives. This conforms to real-
world settings, where production scheduling is often driven by a few key performance
indicators. Nevertheless, we emphasize that the potential of multi-objective meta-
heuristics to seamlessly cope with problems comprising several objectives should be
propelled by a real-world need for taking them into consideration. In this regard, most
cases reported in the literature posed sophisticated mathematical problem statements
without giving an explicit rationale connecting the problem statement itself to real-
world circumstances, KPIs, and constraints. This not only hinders the generalization
of the studies, but also questions whether the research is truly motivated by real-
world problems.

• The formulation of the JSP is based mainly on energy consumption and makespan.
This is not an issue, but rather a consequence of the fact that in most practical settings,
scheduling in industrial plants is governed mainly by production efficiency, i.e., the
production of as much product as possible. The relatively low number of scientific
works related to energy-aware production scheduling (slightly above 60 references)
is also symptomatic of the fact that it has not been until recently when energy effi-
ciency has become a concerning issue in real-world industries. Several reasons for
this growing concern can be speculated around the sharply increasing energy costs,
particularly noticeable in certain countries [96]. This fact is encouraging and should
catalyze efforts brought to the area surveyed in this work;

• On the negative side, and repeating previous claims, we encountered that most types
of JSPs tackled in the analyzed studies were largely specific for the use case under
target in the paper, leading to a loose generalization of the results to new real-world
setups. Again, this should not be considered an issue if the work at hand confined
the conclusions of its experiments to the JSP variant under consideration. However,
this was not the case in a subset of the references examined, wherein the novelty of
the JSP problem was entangled with the proposal of a novel metaheuristic algorithm
without any solid reason. This echoes the longstanding controversy about the role
of the metaphor in the design of nature-inspired metaheuristics. We also noted this
practice in several works resorting to new biologically inspired solvers over ad hoc JSP
formulations, avoiding (1) the inclusion of well-established multi-objective algorithms
in the comparisons and (2) the reproducibility of the results of the benchmark leading
to the claims about the performance of the new solver. Principled and thorough
performance studies should be performed in prospective works to clarify whether the
performance of such solvers corresponds to a truly better search capability of their
bio-inspired operators;
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• When it comes to the realism of the formulated problem, very few papers took into
account aspects that are prevalent across the production plants of a diversity of
industries, such as waiting times, maintenance cycles, machine downtimes, and other
aspects that impact the overall computation of the makespan. The intensity by which
the makespan can be affected by not considering these aspects is subject to the use
case under consideration. However, the growing capability of modern manufacturing
execution systems (MESs) to integrate and handle all sources of information related to
the production process should entail more realistic JSP formulations, showing that the
makespan computation and the set of imposed constraints can harness the availability
of external sources of information. Furthermore, new opportunities for dynamic
production scheduling could arise, depending on the rate at which information is
updated in the MES;

• Performance comparisons between algorithms should be made incremental. When
new algorithms are proposed, they should be evaluated over synthetic JSP instances
(i.e., leaving aside conditions/constraints imposed by real settings), so that advances
can be validated by the community and improved upon. Our literature analysis
revealed that reproducing an article dealing with a real-world scenario with a JSP at
its core is hard to achieve. Key information is not provided (in some cases, due to
confidentiality clauses), and source codes are not made available. Therefore, one can
easily question whether new algorithms are developed ex professo for the use case
under analysis, showing off a superior performance over a very scarcely compara-
bleJSP. This could be the reason why Table 2 evinces that almost no multi-objective
algorithm that falls out of the metaheuristic mainstream was used in studies published
after it was first presented. We definitely envision that the community should report a
fair and methodologically principled performance comparison between well-known
algorithms over diverse, yet synthetically generated energy-aware JSP problem in-
stances. This study could inform whether there is any value in the set of modern
metaheuristic approaches that lie within the boundaries of the aforementioned contro-
versy. Most importantly, by including customized/memetic/hybrid algorithm in the
benchmark, such a study would evince whether the customization of metaheuristic
algorithms provides any further value beyond solving better specific formulations of
the energy-aware JSP.

Emboldened by the deficiencies discussed above, we complement the literature analy-
sis conducted in this section with a rigorous experimental study, following the methodology
that is commonly used in comparative studies of multi-objective metaheuristics when ap-
plied to a particular set of problems. The study not only included the use of quality
indicators and statistical test to assess whether the differences of the results provided
by the algorithms are significant or not; to foster its reproducibility, we provide also the
source codes of the algorithms and the problems, which will be included in jMetal [97],
a Java-based framework for multi-objective optimization with metaheuristics, which is
widely used in the field, thus ensuring that they are available to the community.

4. Experimental Study

As commented in the closing paragraph of the previous section, we carried out an
experimental study to solve instances of a multi-objective formulation of the JSP, which
considers energy and makespan as the objectives to be simultaneously minimized. As our
purpose here was to illustrate how a comparative study should be conducted, we were
not interested in proposing a new algorithm. Instead, our overarching goal was to assess
the performance of three multi-objective metaheuristic solvers that are representative of
the state-of-the-art and compare them with established methodological tools. To ensure
reproducibility, all source code producing the results reported in this section and the energy-
aware JSP instances in use are available at: https://github.com/jMetal/JSP (accessed on 22
December 2021).

https://github.com/jMetal/JSP
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4.1. Problem Statement

One of the conclusions of the analysis of the taxonomies is that the problems were
mainly focused on two objectives: from the energy point of view, energy consumption
was a priority, and from the operational point of view, makespan was key. Therefore, we
propose to solve a bi-objective problem that tries to find the optimal solution for these two
objectives. Makespan is the total time needed to achieve the production needs, so it can be
calculated as the elapsed time between the beginning and the end of the production process.
Energy can be considered as the energy consumption of the machines that are needed to
achieve the production plan. In this case, we took into account the times and consumption
of the machines, the times and consumption of starting and stopping the machines, and
their speed. Makespan is expressed in units of time and energy in units of energy.

We generated a number of JSP instances based on existing ones [17], but they were
enriched with information related to energy. The data defining a given JSP instance were
stored in a file with the following format (the numbers are example values):

5 3
0 19 9 33 ...
9 11 10 22 ...
...

The first row indicates the number of jobs and the number of machines (5 and 3 in
the example), and the next ones contain pairs including the machine and time needed to
execute that part of the job. In this case, for example, the first job runs on 0 machines during
19 units of time. As mentioned above, we enriched these data with extra information about
energy, taking into account time stops, idle times, and machine velocities. To this end, new
fields associated with energy were included:

• Energy consumption per time unit:

– machineWorkingEnergy: Total energy consumption by unit time while a machine
is working;

– machineIdleEnergy: Total energy consumption by time unit while a machine is in
the idle state;

– machineWorkingToStopEnergy: Total energy consumption by time unit while a
machine stops from working;

– machineWorkingToIdleEnergy: Total energy consumption by time unit while a
machine changes from working to the idle state;

• Machine velocity variables:

– numberOfVelocities: Array of the velocities that a machine can have;

• Velocity energy penalization:

– velocityPenalty: Energy consumption penalization by different velocities;

• Unit time variables:

– machineTimeToIdle: Units of time that a machine needs to change from the idle
state to start or from start to idle;

– machineTimeToStop: Units of time that a machine needs to change from the work-
ing state to stop or vice versa.

With these new variables, we can define how much energy and time will be consumed
by a machine for a given job that runs in x number of time units. It is worth noting that the
user can configure different machine speeds and machine waiting times, allowing making
decisions such as leaving a machine in the idle state until the next operation or turning it
off and starting it again, depending on the energy consumption.

With all the considerations described above, we used these JSP instances:

• la04 [98], 5 machines and 10 jobs;
• la10 [98], 5 machines and 15 jobs;
• ft06 [99], 6 machines and 6 jobs;
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• orb01 [98], 10 machines and 10 jobs;
• abz5 [100], 10 machines and 10 jobs;
• swv20 [101], 10 machines and 50 jobs;
• ta12 [102], 15 machines and 20 jobs;
• dmu11 [103], 15 machines and 30 jobs;
• yn03 [104], 20 machines and 20 jobs;
• dmu40 [103], 20 machines and 50 jobs;
• ta77 [17], 20 machines and 100 jobs.

The criterion to select these problem instances was to cover at least one dataset of each
publications that has appeared in the analyzed literature, but trying to choose a sufficient
variety of instances, regarding the number of machines and the number of jobs, with the
gradual increase in the complexity of the problem, from lower to higher.

4.2. Benchmark and Comparison Methodology

To optimize a given multi-objective problem, it is necessary to implement it, which
implies making decisions about the problem encoding (i.e., how the solutions are repre-
sented) and, in the case of deciding to use evolutionary algorithms to solve it, defining the
variation operators (crossover and mutation; the plan was to use genetic algorithms). We
implemented our JSP in jMetal [97], so we could make use of algorithms already existing in
the framework.

In order to carry out a comparative study of the problem, we needed to select a
representative set of instances and choose which algorithms would be used to try to
find which one was the most promising one to solve the problem effectively. Once the
algorithms were selected, their control parameters were set, paying attention that they
were configured to ensure a fair comparison; thus, the size of the population, as well as the
stopping condition must be the same.

The next step was to define the number of independent runs per configuration (i.e.,
pair <algorithm, problem instance>), the indicators to measure the quality of the obtained
Pareto fronts applied, the statistical tests needed to analyze the results, and providing tables
and figures to support the analysis.

4.2.1. Encoding Strategy

The encoding of the problem regarding the makespan was based on an array of
integers of length equal to the number of jobs multiplied by the number of machines. To
include the machine velocity per job execution, we added another array of the same length
as the makespan one. Finally, a third array was used to include if the machine for a job
must be stopped or remain idle. Therefore, the encoding of the problem was the union of
these 3 arrays (makespan, velocity, and idle), with a length of three times the number of
jobs per number of machines. The three arrays were initialized as follows:

• Makespan array: To fill this array, random integer numbers between one and the
total number of available jobs were pushed to it, with the condition that a job number
cannot appear more times than the total number of machines to which the the job has
been assigned;

• Velocity array: This array contains random integer numbers between one and the
number of available velocities;

• Idle array: The contents of this array are random binary numbers.

Figure 7 illustrates the solution encoding strategy adopted in our experiments for the
sake of its better understanding by the reader.
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Figure 7. Example of an encoded solution to the energy-efficient JSP addressed in the experimental
part of this survey.

4.2.2. Multi-Objective Algorithms

To perform this experimental study, we selected three well-known algorithms that are
representative of the three categories of multi-objective evolutionary algorithms: NSGA-
II [23] (Pareto-based), MOEA/D [24] (decomposition-based), and SMS-EMOA [25] (indicator-
based). We remark that the purpose of this experimental study was to expose how to
properly conduct it using representative techniques, not to try find the best algorithm, nor
the most accurate configuration of the three we selected.

All of them were configured with a population size of 50 individuals and a stopping
condition of computing 300,000 function evaluations. They shared the same crossover
and mutation operators (see Table 3 below). MOEA/D was set with a neighbor selection
probability of 0.9, a neighbor size of 20, a maximum number of replaced solutions of 2, and
a Tschebyscheff aggregation scheme.

We implemented a crossover operator for integer encoding that works as follows: after
selecting two parent solutions, an array of the solution (makespan, velocity, idle) is chosen
randomly. After that, two random positions are selected again randomly, and they are
interchanged between the two parents, leading to two children. The crossover probability
was set to 90%.

The mutation operator works as follows: first, as in the crossover, a random selection
is performed between one of the three arrays composing the encoded solution (makespan,
velocity and idle); second, a random interchange position is performed between two
positions. The mutation probability was set to 100% (i.e., we always applied the mutation
operator).

Should the goal of the experimental study be the determination of which algorithm
performs best for every problem instance, these parameter values should be tuned by
resorting to any of the parameter tuning strategies known in the field of metaheuristics
(e.g., Bayesian optimization, extensive search over a grid of values, and other similar tech-
niques [105]). However, since the purpose of this experimental study was to exemplify
how to develop a principled performance comparison conforming to standards and good
practices, such parameters were left to their default values set in the reference implemen-
tation of every algorithm in jMetal. Table 3 summarizes the values of the parameters for
every algorithm.

Table 3. Summary of the operators and parameter values set in the multi-objective algorithms
considered in our experiments.

NSGA-II MOEA/D SMS-EMOA

Parameter Value Parameter Value Parameter Value

Selection Binary tournament Neighbor selection probability 0.9 Selection Random
Neighbor size 20

Maximum number of replaced solutions 2
Aggregation scheme Tschebyscheff

Common Parameters:
Population size: 50 individuals
Number of function evaluations: 3× 105

Crossover: 2-parent position exchange in uniformly selected array of the chromosome
Crossover probability: 0.9
Mutation: random exchange in uniformly selected array of the chromosome
Mutation probability: 1.0
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4.2.3. Constraints and Considerations

We applied no constraints to present a simplified model, but there are some considera-
tions that must be taken into account:

• Machines can be in the idle state, with an associated idle energy consumption;
• Machines can be switched off, with power off and power on energy consumption considered;
• Machines can run at different velocities.

4.2.4. Solution Evaluation

Evaluating a solution means calculating its total makespan and energy consumption.
As the makespan is the total time that elapses between the start and the end of all the jobs
for a given machine, the total makespan will be the maximum of all the makespans of
every machine. Energy consumption is the sum of all the unit times that the machines are
running multiplied by the energy consumption per unit time, added to the idle energy
consumption and the power on/off consumption. To calculate the unit times that a job
needs to run in a machine, the velocity and the velocity energy consumption penalization
were taken into account.

4.2.5. Quality Indicators

To measure the quality of the Pareto front approximation yielded by multi-objective
metaheuristics, two aspects are usually taken into account: minimizing the distance of
the obtained front to the Pareto front of the problem (convergence) and maximizing the
extension of solutions on the front so that the distribution is as uniform as possible (diver-
sity). There are different ways to measure these properties, so quality indicators have been
defined for that purpose. In our experimental study, we used the additive epsilon (EP) [106],
the normalized hypervolume (NHV) [107], and the inverted generational distance plus
(IGD+) [108]. The EP measures convergence, while the NHV and IGD+ give a measure of
both convergence and diversity; in all of them, the lower the indicator value, the better it is.
They are briefly described next:

• The EP is a measure of the absolute deviation needed to translate each solution in a
Pareto front approximation in such a way that it weakly dominates the front used as a
reference (it can be the true Pareto front or a subset of it);

• The NHV is computed as 1.0 minus the ratio between the hypervolume of the front to
be evaluated and the hypervolume of the reference front. The hypervolume metric
calculates the volume (in the space of objectives) covered by members of a given set of
non-dominated solutions with respect to a reference point;

• The IGD+ evaluates the convergence performance and the distribution performance
of the algorithm by calculating the sum of the minimum distances between each point
(individual) on the reference front and the front of solutions obtained by the algorithm.

Computing the quality indicators requires obtaining a reference front. As the Pareto
front of the considered problems is unknown, we constructed, for each problem, a reference
front by taking the non-dominated solutions of all the runs of all the algorithms per problem.

4.3. Results and Discussion

We report the median and interquartile range (IQR) of the indicator values correspond-
ing to the 20 independent runs per configuration in Tables 4–6. The best and second-best
results are highlighted with a dark and light grey background, respectively. We applied
the Wilkinson rank-sum test [109] (at a 5% level of significance) to determine whether the
differences were statistically significant. The results of the test are shown in Tables 7–9. In
each table, each symbol in the cells represent a problem instance, and there are different
symbols: a dark up triangle means that the algorithm in the row performed better than
the one in the column with confidence; a white down triangle stands for the opposite; a “-”
symbol means that no significant differences were found.
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From the results of the tables, we can observe that NSGA-II was the best-performing
algorithm, achieving the lowest indicator values in most of the cases. According to the
EP indicator (Table 4), which measures the diversity of the Pareto front approximations
found by the solvers, NSGA-II achieved the best values in seven out of nine benchmark
problems, while SMS-EMOA and MOEA/D yielded the fronts with the highest degree
of convergence in one instance. The Wilcoxon rank-sum test (Table 7) showed that the
differences between NSGA-II and SMS-EMOA and between NSGA-II and MOEA/D were
statistically significant in six problems and eight problems, respectively.

The data reported in Table 5 show that NSGA-II obtained the lowest NHV values in
seven instances. Here, we must note that values of 1.0 in the NHV indicator mean that
the evaluated fronts were dominated by the reference point, and consequently, their HV
was 0.0. This occurred, in particular, in all the algorithms when solving the dmu40 and
ta77 problems. As these are the most complex JSP instances, it is clear that the algorithms
would need more than 300,000 function evaluations as their stopping condition to find more
accurate Pareto front approximations. The Wilcoxon rank-sum test (Table 8) confirmed
that the differences in these two problems were not significant between the solvers in the
comparison.

Finally, the results of the IGD+ quality indicator, included in Table 6, confirmed again
the best performance of NSGA-II against the other two algorithms in the conducted study
with statistical confidence in most of the cases (see Table 9). We can observe that MOEA/D
achieved the best IGD+ value in instance ta77, so this algorithm performed the best, with
confidence, when solving the most complex JSP instance; this is coherent with its EP values
(see Tables 4 and 7).

Table 4. EP median and interquartile range. Dark and light grey background cells highlight the best
and second best results, respectively.

SMSEMOA NSGAII MOEAD
la10 2.34e− 012.2e−01 1.68e− 017.1e−02 9.01e− 011.6e−01
ft06 3.00e− 010.0e+00 3.00e− 010.0e+00 1.20e + 005.0e−01
orb01 3.38e− 013.5e−01 2.32e− 019.9e−02 1.15e + 004.1e−01
swv20 7.26e− 014.1e−01 4.83e− 014.2e−01 7.09e− 018.5e−01
ta12 1.59e− 017.2e−02 1.02e− 018.0e−02 3.79e− 011.8e−01
dmu11 3.71e− 011.4e−01 1.78e− 011.4e−01 4.14e− 013.2e−01
yn03 5.35e− 012.9e−01 1.97e− 012.0e−01 8.66e− 013.4e−01
dmu40 9.59e + 007.1e+00 5.85e + 003.6e+00 6.97e + 008.5e+00
ta77 2.64e + 019.4e+00 2.23e + 017.7e+00 1.93e + 001.4e+00

Table 5. NHV median and interquartile range. Dark and light grey background cells highlight the
best and second best results, respectively.

SMSEMOA NSGAII MOEAD
la10 3.14e− 012.0e−01 2.03e− 011.3e−01 8.88e− 012.2e−01
ft06 1.66e− 015.7e−02 1.06e− 015.4e−02 1.00e + 000.0e+00
orb01 5.05e− 013.2e−01 2.76e− 015.9e−02 1.00e + 001.0e−01
swv20 7.64e− 013.9e−01 4.60e− 014.4e−01 7.02e− 016.2e−01
ta12 1.45e− 017.0e−02 7.96e− 023.5e−02 3.67e− 011.8e−01
dmu11 3.79e− 011.4e−01 1.41e− 011.8e−01 4.03e− 013.2e−01
yn03 5.21e− 013.9e−01 1.62e− 012.1e−01 8.62e− 013.2e−01
dmu40 1.00e + 000.0e+00 1.00e + 000.0e+00 1.00e + 000.0e+00
ta77 1.00e + 000.0e+00 1.00e + 000.0e+00 1.00e + 000.0e+00
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Table 6. GD+ median and interquartile range. Dark and light grey background cells highlight the
best and second best results, respectively.

SMSEMOA NSGAII MOEAD
la10 1.78e− 011.3e−01 9.89e− 026.1e−02 5.54e− 011.4e−01
ft06 1.03e− 012.3e−02 7.72e− 022.7e−02 6.89e− 015.0e−01
orb01 2.90e− 012.2e−01 1.56e− 016.2e−02 8.27e− 014.1e−01
swv20 4.97e− 012.6e−01 2.78e− 013.1e−01 4.44e− 017.6e−01
ta12 6.01e− 023.5e−02 3.45e− 022.4e−02 2.08e− 011.4e−01
dmu11 2.82e− 011.1e−01 1.02e− 011.2e−01 3.01e− 012.5e−01
yn03 2.71e− 013.2e−01 6.61e− 021.3e−01 5.54e− 013.2e−01
dmu40 9.11e + 007.1e+00 5.34e + 003.5e+00 6.47e + 008.5e+00
ta77 2.68e + 019.3e+00 2.27e + 017.8e+00 1.58e + 001.8e+00

Table 7. Wilcoxon rank-sum test results (quality indicator: EP).

NSGAII MOEAD

SMSEMOA O – O O – O O O – N N N – N – N – O
NSGAII N N N N N N N – O

Table 8. Wilcoxon rank-sum test results (quality indicator: NHV).

NSGAII MOEAD

SMSEMOA O O O O O O O – – N N N – N – N – –
NSGAII N N N – N N N – –

Table 9. Wilcoxon rank-sum test results (quality indicator: IGD+).

NSGAII MOEAD

SMSEMOA O O O O – O O O – N N N – N – N – O
NSGAII N N N – N N N – O

To illustrate the fronts that were obtained, we selected the ta12 instance, consisting of
15 machines and 20 jobs. The reference front is shown in Figure 8, where we used different
symbols to represent the points contributed by each algorithm: triangles (NSGA-II), circles
(MOEA/D), and squares (SMS-EMOA). It can be seen how the best energy solution was
obtained by SMS-EMOA, while the best makespan solution corresponded to NSGA-II. This
brings an interesting observation: the quality indicators revealed that NSGA-II obtained
the best values, but in the particular case of ta12, if a decision maker is interested in the
energy, then SMS-EMOA could be the best choice.

If we choose the extreme points of this reference front, we obtain a solution with the
lowest energy consumption, but highest makespan and another one with the opposite.
Figure 9 shows these two extreme solutions: the one with the best (minimum) energy
consumption, above in the figure, with an energy of 603,908 units of energy and a makespan
of 2378 units of time, and below the solution with 610,910 units of energy and a makespan
of 1796 units of time.

Including machine velocity and idle/stop energy consumption to the usual makespan
problems has a big impact in the makespan and the energy consumption. There is a trade-
off between energy consumption and total production time that allows production plants
to gain flexibility in choosing, depending on the production needs, which job scheduling
plan must be applied.
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Figure 8. Reference front for the ta12 problem. The different symbols correspond to the contributions
of each algorithm.

Figure 9. Schedules of the ta12 instance with the extreme solutions (best energy solution and best
makespan solution).

5. Conclusions and Prospective

Multi-objective optimization with metaheuristics has become a hot research topic over
the last decades, as it has been proven to be an easy and effective approach for solving
real-world optimization problems. The survey carried out in this paper confirms this
fact when applied to energy-aware JSP problems in manufacturing industries. Our main
purpose was to provide the audience with a comprehensive review of relevant papers
related to the application of multi-objective metaheuristics to such problems, as a useful
source of information about the most salient studies in this area.

5.1. Summary of Critical Insights Drawn from the Literature Review

From the analyzed information, a summary of issues and best practices in the JSP
problem was given. From the point of view of the type of problem, most of the papers
reviewed described their own type of JSP problem, which in essence reduces to a particular
variant of a more general type of JSP. This can create a problem because, as in the case
of searching for a particular problem, it can be more complex to find other approaches
because it does not fit the particularities of the cases presented. On the other hand, it is
worth noting that the majority of the papers reviewed had two or at most three objectives,
which is helpful for decision making (the selection of the solution in the estimated Pareto
front). As for the non-energy objectives, the makespan was the main objective, which
conforms to real-world evidence since the makespan—or any other measure of production
efficiency—still remains as the primary concern for the manufacturing industry.

From the point of view of the constraints and considerations, some of them repeatedly
appeared in the reviewed articles, such as the assumption that machines must be available
at the beginning, the machine does not start the next job until it has finished the previous
one, and the existence of infinite buffers. However, it is striking how considerations such as
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waiting times, machine speeds, or possible machine shutdowns have not been taken into
account in the vast majority of the articles reviewed.

For the optimization features, the usually crossover and mutation operators were
in the usual values: high probability of crossover and low for mutation. However, this
information was not always provided, which jeopardizes the reproducibility of many of the
studies. It is also surprising to notice that many authors opted to generate new algorithms
to find solutions to the multi-objective problem for energy and makespan, but they omitted
considerations of energy consumption in real environments such as those produced by
waiting times. To test the performance of these algorithms, a benchmark was made against
existing algorithms, where the best-known ones, such as NSGA-II, MOEA/D, SPEA-2, etc.,
were usually found. Furthermore, the authors focused their efforts on developing new
algorithms that were not used again in studies contributed thereafter. This may be due to
the low reproducibility that existed in the articles: undefined operators, source code not
present in public repositories, etc.

5.2. Summary of Conclusions from the Experimental Results

The limitations observed in this study stimulated an experimental analysis of the clas-
sical JSP problem, which was augmented by taking into account the energy consumption
during waiting times or machine shutdowns, as well as different machine speed configu-
rations. After performing a study with nine augmented JSP instances and three types of
algorithms (namely, NSGA-II, SMS-EMOA, MOEAD), we concluded that the best results
were obtained by NSGA-II.A more thorough experimental study would require tuning the
parameters of the algorithms under comparison. Nevertheless, an important conclusion
can be drawn from the results obtained in our benchmark: the inclusion of machine velocity
and idle/stop energy consumption data to the usual makespan minimization considered in
naive JSP formulations may have a high impact on the schedule, costs, and sustainability
of real-world manufacturing industries.

5.3. Research Directions and Perspectives

Several research directions were identified through the critical analysis of our reviewed
literature. Among them, we highlight (1) the lack of rationale for the real-world applicability
of certain energy-aware JSP formulations, (2) the impact of exogenous factors on the energy
consumed during production (which could render solutions produced for the production
scheduling of no practical use), and (3) the opportunities unleashed by manufacturing
execution systems gathering information from several data sources over the plant.

More specifically, planned research efforts stimulated by this work will replicate this
study over a wider number and diversity of energy-aware JSP instances, including a larger
number of algorithms and searching for their optimal hyperparameter values. Furthermore,
we aim to develop a methodology to translate the performance gaps observed among
multi-objective metaheuristics to real-world KPIs. In many practical use cases requiring
solving a JSP, there is no guarantee that the observed superior performance of a given
algorithm in terms of multi-objective quality indicators translates directly to operational
gains of real impact. Elaborating on this crucial aspect of the real-world application of
metaheuristic algorithms [110] will be among our research priorities in the near future.
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