
����������
�������

Citation: Danciu, G.M.; Dinu, A.

Coverage Fulfillment Automation in

Hardware Functional Verification

Using Genetic Algorithms. Appl. Sci.

2022, 12, 1559. https://doi.org/

10.3390/app12031559

Academic Editor: Ilaria Bartolini

Received: 15 December 2021

Accepted: 28 January 2022

Published: 31 January 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

applied
sciences

Article

Coverage Fulfillment Automation in Hardware Functional
Verification Using Genetic Algorithms
Gabriel Mihail Danciu and Alexandru Dinu *

Department of Electronics and Computers, Transilvania University of Bras, ov, RO-500036 Bras, ov, Romania;
gabriel.danciu@unitbv.ro
* Correspondence: alexandru.dinu@unitbv.ro; Tel.: +40-728-740-857

Abstract: The functional verification process is one of the most expensive steps in integrated circuit
manufacturing. Functional coverage is the most important metric in the entire verification process.
By running multiple simulations, different situations of DUT functionality can be encountered, and
in this way, functional coverage fulfillment can be improved. However, in many cases it is difficult to
reach specific functional situations because it is not easy to correlate the required input stimuli with
the expected behavior of the digital design. Therefore, both industry and academia seek solutions to
automate the generation of stimuli to reach all the functionalities of interest with less human effort
and in less time. In this paper, several approaches inspired by genetic algorithms were developed
and tested using three different designs. In all situations, the percentage of stimulus sets generated
using well-performing genetic algorithms approaches was higher than the values that resulted when
random simulations were employed. In addition, in most cases the genetic algorithm approach
reached a higher coverage value per test compared to the random simulation outcome. The results
confirmed that in many cases genetic algorithms can outperform constrained random generation of
stimuli, that is employed in the classical way of doing verification, considering coverage fulfillment
level per verification test.

Keywords: genetic algorithms; functional coverage; automation; artificial intelligence; hardware verification

1. Introduction
1.1. The Opportunity of the Present Research

Our society is highly influenced by the trend of digitalization. A continuously in-
creasing number of industry branches are turning their attention to automating their
manufacturing process to use robots and automated production lines to strictly monitor the
entire production flow and to centralize and digitize business-related data. The same trend
influences domestic consumers as well, as they are able to acquire many electronic devices
that increase their comfort and ease their daily activities. Furthermore, advances in elec-
tronics cause people to frequently change their electronic gadgets in order to benefit from
the latest discoveries materializing in new devices. Therefore, manufacturing of electronic
devices is highly requested in our society by a wide range of consumers. Consequently,
there are many companies which work in different stages of electronics production, and
any improvement in the manufacturing flow of these devices can have an important impact
over the entire society.

1.2. The Steps in Manufacturing of Integrated Circuits

Most electronic devices are controlled by an integrated circuit (IC), which vary in
complexity from the simple ones embedded, for example, into a bicycle safety light to the
very complex ones found, for example, in smartphones; these are known as System-on-
Chip [1] which either can (in the case of, e.g., microprocessors) or cannot (e.g., Application-
Specific Integrated Circuits, or ASICs) be programmed by the user.

Appl. Sci. 2022, 12, 1559. https://doi.org/10.3390/app12031559 https://www.mdpi.com/journal/applsci

https://doi.org/10.3390/app12031559
https://doi.org/10.3390/app12031559
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/applsci
https://www.mdpi.com
https://orcid.org/0000-0002-8561-1171
https://orcid.org/0000-0001-6285-1458
https://doi.org/10.3390/app12031559
https://www.mdpi.com/journal/applsci
https://www.mdpi.com/article/10.3390/app12031559?type=check_update&version=2

Appl. Sci. 2022, 12, 1559 2 of 23

Development of an ASIC can last from about a year to several years; in semiconduc-
tor factory, the minimum time for manufacturing is about six months. In addition, this
process involves tens of persons and, in most cases, several companies. Considering this
information, every improvement which might be represented by, for example, automating
a step in the logical design or the manufacturing process can save important resources
and permit reduction of the time-to-market period of the developed product. In order to
provide the reader with a short overview of the manufacturing flow of ICs as well as to
introduce the role of functional verification in this process, the principal manufacturing
steps of ASICs are enumerated below; see also Figure 1. The blue color indicates relation to
the design stage and the green color relation to the foundry stage, which is not in the focus
of this paper.

Figure 1. Steps in the manufacturing flow of an integrated circuit.

As observed in Figure 1, manufacturing of ASICs consists of two main parts: de-
sign flow (which implies several types of simulations performed involving the design in
question) and physical realization of the product (which implies manufacturing of the
integrated circuit in the semiconductor factory). The IC design stage can be divided into
two parts, front-end and back-end. Front-end design focuses on implementing the func-
tional characteristics of the design according to its specifications, while back-end focuses
on the steps required for building a physical implementation of the digital version of
the design such as floor planning, placement of logic cells to design a routable chip that
meets timing and other constraints, and routing [2]. In this step, multiple aspects such as
timing analysis, design rule checks, electromagnetic compatibility (EMC), thermal analysis
and other checks are considered. The functional characteristics of the ASICs are mainly
implemented in the front-end stage, which implies as principal steps the creation of system
specifications, development of Register Transfer Logic (RTL) design, implementation of
functional verification, and synthesis and pre-layout verification.

The behavior of a digital design is commonly assessed through conceptual valida-
tion of using a physical set-up, e.g., validation with a Field Programmable Gate Array
(FPGA) [3].

1.3. Functional Verification: Implementation and Challenges

Functional verification, the application of which is automated in the present work,
is one of the most time consuming steps in the manufacturing process of integrated cir-

Appl. Sci. 2022, 12, 1559 3 of 23

cuits [4]. This process consists in checking the design functionality (which is implemented
through a Hardware Description Language, or HDL) against the specification of the system.
Functional verification is implemented in the industry by applying the concepts found in
the verification methodologies.

According to [5], there are three types of verification methodologies: dynamic func-
tional verification (the most widespread method), hybrid functional verification and static
functional verification. In the current work, dynamic functional verification is used in light
of the Universal Verification Methodology (UVM). This methodology, widely employed
by verification engineers from all around the world [6–8], was developed by the Universal
Verification Methodology Working Group launched by the Accellera organization. This
methodology contains guidelines to create a testbench which can be used for functional
verification and embeds the experience of the three major players in the IC Verification
Industry, which have created tools to support this methodology: Mentor (now acquired by
Siemens), Cadence, and Synopsis.

The functional verification process is conducted using metrics, which are the elements
that allow verification engineers to measure the progress of verification. By far the most
important metric is coverage. Coverage can be performed over a large number of elements
which indicate whether the Design Under Test (DUT) contains bugs. The most important
coverage metric is functional coverage. Functional coverage is one aspect of the overall
coverage analysis process, and contains predefined presumptions and their corresponding
expected outcome [9]. In short, functional coverage has in focus all possible cases that
might occur when using a circuit. Verification engineers can be confident that a DUT is
problem-free if all situations of operation for the respective design are simulated without
any errors appearing. Because the currently developed DUTs have many input and output
ports, it is not feasible to generate all combinations of input values which could be driven
to a DUT [10,11]. Moreover, arranging the same stimuli into different sequences can
often bring DUTs into different states. Therefore, generating all combinations between a
DUT’s inputs does not assure that the design entered all possible operating states. On the
contrary, there will be plenty of DUT functionalities that remain uncovered. Fortunately,
generating all combinations of stimuli is not needed in order to perform a thorough DUT
verification. The number of DUT functionalities is considerably lower than the number
of stimuli combinations that the design can read. Coverage elements, which are special
data structures supported by UVM methodology, are in charge of registering each different
situation met during DUT simulation. Because the DUTs are very complex, combinations
between multiple coverage elements are frequently used to describe an operating state
of design.

However, it is not easy to bring the DUT into all its possible operating states. For each
situation of functionality the DUT needs to be supplied with specific sequences of input
values. The more complex the digital design, the more complicated these sequences of
stimuli must be. This problem is currently solved by verification engineers using four steps:

1. The functionality of the DUT is split into sub-functionalities; this happens even from
the creation of the verification plan at the beginning of the verification process.

2. By analyzing each functionality, the verification engineers understand which inputs
of the design contribute to the activation of that functionality. Given the functional
specifications, the engineers search for the proper numerical ranges which must fit
the values of each input in order to generate appropriate stimuli for achieving the
functionality in focus. The numerical ranges found for each input must be inside the
legal range according to the functional specification.

3. By applying the constraints found in Step 2, the DUT is supplied with random values
through each input relevant for the functionality in focus. By running an appropriate
number of simulations, the coverage value related to the design functionality in focus
should be as close by 100% as possible. However, in some complex situations this
score can be considerably lower.

Appl. Sci. 2022, 12, 1559 4 of 23

4. The verification engineers analyze any coverage holes and aim to create specific
cases using directed tests to hit each DUT operating situation which was not met in
previously-performed simulations. This step represents tedious work and can take
a long time. The effort needed for building sequences of input values is consistent
because the dataflow required to achieve specific or corner-case DUT functionalities
can embed many steps. In addition, this activity requires good knowledge of the
design functionality and solid experience in functional verification activities.

In the normal flow of verification activities, the important steps of which are summa-
rized above, two problems can be observed:

i. The large amount of time needed to perform several random simulations to achieve a
value of coverage as high as possible with low human effort.

ii. The substantial effort needed to choose the exact values (or small interval of values)
for input stimuli to create directed tests that aim to reach the coverage holes existing
after the performance of random simulations.

Given these two problems, the functional verification process could be significantly
eased if an automatic mechanism for generating the input values needed to activate the
desired design functionalities were created. The present paper aims to solve this problem,
being part of several initiatives developed worldwide which focus on automating the
verification process. However, to the best of the authors’ knowledge, until now there has
not been a universal solution found that could fully automate the process of finding the
correlation between the input stimuli of a DUT and the coverage elements that characterize
the DUT’s functionalities. Another aim of the current work is to acquire shorter simulations
without loss of verification quality. With this achievement, it will be possible to more
quickly verify the entire set of DUT functionalities without significant time loss. This action
is required each time the DUT is modified due to a change request. Before presenting the
current progress in this topic by consulting the literature, it must be mentioned that an
appropriate candidate for realizing the correlation–causality effect (in this situation, the
causality is represented by the values driven to the DUT inputs and the effect is represented
by the fulfillment of coverage for elements in focus) is artificial intelligence. Running
multiple simulations and grading the input stimuli based on the coverage level achieved,
the input sequences can be modified to better activate a desired functionality of the DUT
or to cover all DUT functionalities related to different aspects of design operation. In the
current work, the authors propose to automatically modify the initial set of constrained
randomly generated sequences until all DUT functionalities in focus are reached. This
purpose is achieved using the evolutionary process provided by genetic algorithms. In
reading the relevant literature, the authors found that many studies concluded that genetic
algorithm-based approaches are the best way of generating sequences of inputs able to
reach the desired levels of coverage.

The paper is organized as follows: Section 2 provides information about related
approaches of functional coverage fulfillment automation using artificial intelligence tech-
niques, and the main differences between existing studies and the current research are
discussed. Section 3 introduces DUTs, verification environments, and the testbench used
to validate the approaches currently developed, gives some basic information about the
genetic algorithms, and presents the general implementation of the workflow used to
automate coverage fulfillment. Section 4 presents the results obtained in each of the three
use-cases introduced in current paper. Section 5 discusses the obtained results and em-
phasizes the key attributes which influenced the performance of the proposed approaches.
Finally, Section 6 concludes the paper and introduces a possible direction of future research
on this topic.

2. Literature Review

All major industry players and many academic institutions are looking for automated
mechanisms of coverage fulfillment, which can shorten the time spent by verification
engineers aiming to cover different functional corner-cases. One of the emerging directions

Appl. Sci. 2022, 12, 1559 5 of 23

is the automation of the verification process using artificial intelligence techniques. Thus,
presents a large number of approaches where the application of functional verification
is boosted by transferring a part of the human work to different algorithms running on
computers [12]. It can be observed that many parts of the verification process can be
automated, such as generation of tests to be used in simulations, generation of components
of the verification environments, coverage collection, bug detection, modelling of analog
design behavior, and assertions generation. Related to the smart generation of necessary
values to be driven at the DUT inputs to reach all operating states of the design [13],
collected and summarized many approaches tested on industrial DUTs which demonstrated
that the loop between coverage collection and stimuli generation can be successfully closed.
The variety of these methods (which can be based on probabilistic methods, data mining,
inductive logic programming, etc.) shows that achieving a high functional coverage value
related to DUT functionalities in a shorter time represents an important target that justifies
extended research activity. Research in [14] shows that between all proposed methods,
the application of genetic algorithms is the most lucrative way of influencing stimuli
generation to reach a higher coverage value. This conclusion is a driver of the current study,
which employs genetic algorithms for reaching the functional coverage fulfillment in a
shorter time.

Two relevant papers which aim to increase functional coverage using Genetic Algo-
rithms (GA) are [15] and [16]. In the first-mentioned work, individuals are represented
by a set of stimuli generation constraints. By creating multiple generations of individuals
and combining the best-performing ones, the aim of this work is to reach a high level of
functional coverage. Compared to [15], the current work focuses on generating the values
which will be transmitted to the DUT inputs, rather than generating the constraints which
should be applied at random generation process. In this way, the current work reduces
the randomness effect in the evolution of individuals, aiming to more quickly reach the
coverage target. Furthermore, in [15] the genetic algorithm-based approach was imple-
mented in C++. The current work proposes a modern implementation of genetic algorithms
using Python language [17], which is supported by a wide range of platforms and which is
commonly used in implementation of projects based on artificial intelligence [16]. Another
difference between [15] and the current study is that the approaches used in that study
were developed in work authored by Samarah et al. and tested over designs modeled in
SystemC. In contrast, the currently developed approaches were tested over designs mod-
eled in Verilog which are ready to be synthesized. The benefit of the currently presented
approach is that additional efforts for developing a SystemC validation environment can be
avoided, if applicable, for the project which benefits from this means of automation. In [18],
the individuals consist of sequences of 100 values. They are created and evaluated consid-
ering two types of functional coverage items related to differential pulse-code modulation
(DPCM). The best-performing sequences of stimuli in terms of coverage fulfillment are
further driven to the inputs of both the DUT and its reference model. The target of individ-
uals is to make DUT outputs reach a value higher than 50 or a value lower than −50 for a
predefined number of times. GA succeeded in generating a proper set of data for ensuring
the coverage fulfillment. Similar to [15], in the current work only a DUT input is driven
with data generated using genetic algorithms. However, in the case of the present paper
most individuals contain only 20 values, their size being considerably smaller compared
to the individuals developed in [18], which contained 100 values. Despite this difference,
the approaches currently developed reached the maximum coverage score several times.
This paper [19] can be considered a continuation of the work in [18]. One of the targets
of the mentioned work was to reach the same functional coverage items many times. To
reach this aim, multiple stimuli generation methods were tried, such as roulette-wheel and
tournament. Following their, in the current work various approaches based on genetic
algorithms were created and fine-tuned. An important difference between [19] and the
current work is that in [19] each individual consisted of values needed by multiple inputs

Appl. Sci. 2022, 12, 1559 6 of 23

of the DUT. In all three examples analyzed in the current work, the individuals are used to
build sequences of values to be driven at the same input of the DUT.

Several studies have aimed to accelerate functional coverage fulfillment without
using genetic algorithms. For example, in [20], supervised learning was used for training
models able to realize a correlation between DUT input stimuli and each coverage element
(called “coverage bin”). After running many simulations and extracting information from
generated reports, the author succeeded in reaching the coverage target by parsing all
coverage elements and generating, for each of them, the required stimuli to bring the DUT
to the desired state. In the current work, by using the genetic algorithms, the learning
phase necessary in the supervised learning approach could be skipped, thus shortening the
time required for the verification process. However, in the present work, as in [20], in order
to increase the efficiency of the training process the coverage elements are implemented in
Python, not in SystemVerilog.

The general approach based on genetic algorithms developed in this work is similar to
the one proposed by Subedha et al. [21]. The most important differences are the proposed
data and scenarios, as well as the parameter adjustments. In [21], the coverage elements
focus on the functionality of the software systems; however, in the current work the
verification of hardware designs has be automated. However, as both systems consist
in defining a logical order of operations to achieve a well-described functionality, the
developed approaches share many common points.

Using genetic algorithms, the current work aims to build high-performance verifica-
tion tests which can obtain a high coverage value for the DUT functionality in focus using
a limited number of stimuli. In addition, the we aimed to create multiple best performing
sets of stimuli for each coverage target. By running them, they uncovered hidden prob-
lems more quickly, usually correlated with functionality corner-cases of design. In this
work, the we demonstrate the efficiency of genetic algorithm approaches over constrained
random verification, considering the above-mentioned aspects. The originality and the
novelty of the article consist in the development of different implementations of genetic
algorithms. The various methods of generation of children based on their parents within
genetic algorithm approaches, the construction of following generations inheriting mem-
bers from previous generations, and the examples used for validating the efficiency of the
methods proposed in the current work represent original ideas that are further described
in this paper.

3. Materials and Methods
3.1. Employed DUTs and Coverage Targets

To assess the approaches developed under the current research, the team used three
testbenches consisting of one DUT and its corresponding Verification Environment (VE).

The first design implements an Arithmetic Logic Unit (ALU) which can perform the
four basic mathematical operations. It is used as an accumulator; in addition to the first
operation, its first operand always copies the result of the previous operation. During
simulations, the design receives the following data: the first value of the first operand,
20 values of the second operand (in each simulation, 20 operations are performed), and
20 operation codes (one code is assigned to each of the four basic operations). At each
operation, the ALU outputs the result of the operation (when calculation trigger arrives)
and an error bit for overflow and underflow situations. In experiments performed during
this study, both the operands and the result were 8 bits wide, as shown in Figure 2.

Appl. Sci. 2022, 12, 1559 7 of 23

Figure 2. The representation of a DUT representing the Arithmetic Logic Unit and of an example of
the data that the ALU receives during a simulation.

In Figure 2, all data contained by an individual are represented. The first operand
input receives the initial value from the individual, and the other values are received from
the output of the DUT. The second operand input receives all 20 values from the individual.
The operator receives the codes of the operations to be performed (2 bits are enough to
represent the four basic mathematical operations).

The range of values at the output of DUT is split into 10, 15 or 20 intervals. The target
of the implemented automation process consists of stimuli generation to obtain at least one
result in each of these intervals during the 20 operations performed.

The second design represents a smart lamp controller that can turn off a light bulb or
light a bulb at three different intensities: low light intensity, medium intensity and high
intensity. In [22], a device similar to the one verified in this paper is presented. These
intensities are controlled by a sensor or by receiving commands from a button. The readings
from the sensor are 8 bits wide, meaning 256 different outcome values. The target is to
monitor the values coming from the sensor and, similarly to the previous DUT, to count
the number of intervals in the available range of values for which at least a sensor value
was generated. Similarly with the previously described situation, in each test, 20 data
transactions were performed.

The third design implements an Ambiental controller receiving values from three
sensors: luminosity, humidity, and temperature. Such an electronic device finds its place
in any smart house [23]. Each sample from the input luminosity signal is 10 bits wide
(the maximum accepted value is 1024), although the outcome values of the controller are
limited to the 0–900 range. Ambiental controller operation can be enabled or disabled by
pressing a latching button. The coverage target consists in generating at least one value
inside all defined ranges of the luminosity signal. To achieve this, a sequence that emulates
a sensor performing 20 transmissions is employed. The second coverage target is to cover
all defined ranges of the luminosity signal only when module operation is enabled.

3.2. Verification Environments

The Verification Environments (VE) followed the Universal Verification Methodology
(UVM) [24] and were written in SystemVerilog language [25]. The verification environment

Appl. Sci. 2022, 12, 1559 8 of 23

for DUT, consisting of an accumulator, does not inherit components from UVM, although
it is designed using UVM concepts. The verification environments built for the smart lamp
controller and Ambiental light controller inherit components from the UVM library. As
represented in Figure 3, stimuli generated in Python by genetic algorithms are written
in text files. These files are read by sequences from the verification environment during
verification tests. In addition, the tests run with ModelSim simulator [26] are started from
the Python environment. The software script can configure the verification environment
using parameters. The parameters are defined in VE top file and are propagated to any
components using them. Finally, the results of simulations are extracted from simulation
logs and are read by Python programs which will use them to generate the stimuli for the
next generations.

Figure 3. The information processing flow used in the current work.

A similar system of information transfer between Python program and verification
environment can be consulted in [27].

3.3. Description of General Approach (Entire Environment)

The implementation of the genetic algorithms was carried out in Python, the simula-
tion testbench was written in SystemVerilog, and the DUT was written in Verilog language.

The monitors contained by verification agents collect signal values from interfaces
and send them to coverage collectors to be registered. Additionally, certain values are
collected directly from scoreboards to check coverage fulfillment for the functionalities of
different DUTs. The value of coverage in focus is printed out at the end of each ModelSim
simulation. After the end of each simulation, the Python environment reads the simulation
report and extracts the coverage value. Thus, a correlation between input stimuli and their
outcome is obtained.

Appl. Sci. 2022, 12, 1559 9 of 23

3.4. Operation of Genetic Algorithms

Use of genetic algorithms is considered one of the best practices for speeding up
functional coverage fulfillment [13]. Two key attributes of these algorithms are that they
“ensure global optimization and have a high degree of parallelism” [14].

Using genetic algorithms, multiple stimulus sets are combined in a close-to-optimal
way. If two stimuli sequences provide a good coverage value, it can be considered that a
combination between them will be beneficial as well. Therefore, when combining these
lists of stimuli in different ways, other datasets are generated which have the potential
to improve the coverage fulfillment level. As genetic algorithms provide approximated
solutions close to the optimal one, more than one set of stimuli can be obtained as potential
results for a desired coverage.

Genetic algorithms begin with the generation of a random population of stimuli. A
population consists of individuals. Each individual contains a sequence of stimuli which
will be further driven to the DUT using the verification components usually employed
according to the UVM methodology (sequence, sequencer, and driver). In Figure 4, the
representation of an individual which contains values 8 bits wide can be seen. These values
are transmitted to the DUT input called the “first operand”. In some implementations,
multiple groups of individuals are generated for the same verification environment. Data
from each group are transmitted through a specific interface signal to the DUT.

Figure 4. The representation of an individual containing 20 values of data items, each 8 bits wide.

There are two main operators which are used in most implementations of genetic
algorithms in the industry, namely, crossover and mutation [28,29].

Crossover operators combine two individuals by breaking them into two parts at a
random position and switching their second part, as represented in Figure 5.

Figure 5. Crossover process representation.

The initial individuals are called parents, and the individuals resulting from combina-
tions of parents are called children [30]. The crossover process is mathematically described
for the first child using (1). The first child takes the genes of parent 1 until the breaking
point and the genes of parent 2 found after the breaking point. For the second child, the
complementary behavior can be easily deduced.

child1[i] =
{

parent1 [i], i f i ≤ random_number
parent2[i], i f i > random_number

, i ∈ [1, 2] (1)

where random_number is a randomly generated value in the range of the number of
bits/elements of the stimuli list. The random_number represents the crossing point (the
dashed line in Figure 5). In this way, if two parents obtained good performance in terms

Appl. Sci. 2022, 12, 1559 10 of 23

of functional coverage fulfillment, the children embedding the “best part” of each parent
could give even better results. Furthermore, two parents who initially were not valuable in
terms of coverage fulfillment could generate high-performing children by creating other
combinations of input stimuli. If more breaking points are employed, the same parents can
generate more than two children.

The mutation operator is applied by changing a few of their values (randomly selected);
in the current implementation, one or two values were altered inside the structure of
children. This helps the algorithm to avoid local maxima, represented by high coverage
values the population converges to which are not the best overall score. The effect of the
mutation operator is represented in Figure 6.

Figure 6. Mutation operator representation.

In Figure 6, the element with value 4 and index 8 was mutated. In this way, a fresh
offspring appeared in the available population of individuals. Considering the information
above, the number of children can exceed the number of parents. Therefore, after creating
all of the desired children, a selection process is applied, as can be observed in (2). Therefore,
only the best individuals are retained in the selected population to participate in the genetic
operations (cross-over and mutation).

SP =
{

x[i] : x[i] ∈ IP, ∀ i < npop
}

(2)

where SP represents the selected population (whose elements will perform cross-over
process), IP represents the initial population generated in the previous iteration (which
now has elements arranged in descending order), and npop represents the basic number of a
population. First, each child is evaluated individually during a ModelSim simulation and
the obtained value of coverage in focus is correlated with the individual which generated it.
Secondly, a few of the best performing parents (which thus survive in the next generation;
in the current situation, 20% of parents survived) and all obtained children are ordered
in descending order considering their coverage value. In the end, a limited number of
individuals (which can be equal to the number of parents from the previous generation)
become the parents in the new generation, as shown in (2). In this way, it is expected
that the population evolves from one generation to another, and that in the end the best
individuals will obtain the maximum possible coverage value.

3.5. Description of Developed Programming Ecosystem Based on Genetic Algorithms

Development of all functions entitled to implement the genetic algorithm focuses on
creating a programming ecosystem that can deliver good results as quickly as possible.
In the first instance, the coverage targets are stated using different parameters. The most
important parameters used in the current work are the number of intervals in a signal
value range that should be hit, the number of generated transfers, the width of signals to be
covered, the number of generations (or iterations), the number of parents in each generation,
and the number (percentage) of individuals that converge to the desired outcome.

The steps in the application of genetic algorithms in the current work are depicted in
Algorithm 1.

Appl. Sci. 2022, 12, 1559 11 of 23

Algorithm 1 Genetic Algorithm

1 Initialize population with random values in accepted range
2 Initialize algorithms parameters:
3 n_iter number of iterations

4 no_of_operations
number of operations which are executed before coverage is
collected

5 r_mut mutation probability
6 width width of operators
8
9

n_bits
pop

no_of_operations * width
population existing into a generation

10 n_pop number of individuals in a population

11 r_cross
crossover rate (20% of best genes are directly copied as future
parents

12 no_of_coverage_intervals number of coverage intervals for result value
13 best_eval score for the best evaluated individual, initially 0
14 Initialize pop with random generated individuals
15 repeat n_iter times
16 Evaluate each individual using OBJECTIVE→ array named scores is obtained
17 for i in [1 .. n_pop]
18 if scores[i]> = best_eval
19 best_eval = scores[i]

20
insert individual in sorted array named
best

21 select best n_pop/2 performing individuals from scores→ array named selected
22 sort selected array in descending order based on the evaluation score
23 for i in [1 .. len(selected)]
24 p1, p2 = selected[i], selected[I + 1]
25 if (i<1-r_cross)g*n_pop
26 children.append(p1)
27 apply crossover operator between p1, p2→the children c1, c2 are obtained
28 if (random < r_mut)
29 apply mutation on c1 or c2
30 children.append(c1,c2)
31 pop = children
32 return best

The general description of the objective function, which represents the fitness function
in the current approach, is found in Algorithm 2:

Algorithm 2: Objective

1 Input:
2 x Individual representation as an array

3 width
the width (measured in bits) for each
gene in individual

4 path_to_sim
Path to folder where the simulator
is located

5 no_of_coverage_intervals
Number of desired coverage
intervals in which the values of data
of interest is split

6 Output: the coverage value for x

7
Using x data, generate a stimuli file in which the values of interest (i.e., luminosity values)
are prepared to be used in the next step: simulation

8 Using input parameters, call a subprocess that simulates the DUT behavior in ModelSim
Extract coverage values from calling the simulation report

10 return coverage value

For better understanding, the steps for applying the genetic algorithms seen in Al-
gorithm 1 are further explained here. First, the initial population is randomly generated,

Appl. Sci. 2022, 12, 1559 12 of 23

containing a fixed number of elements (the population size). Each population contains a
sequence of data items representing the stimuli for each performed transaction during a
simulation, as represented in (3). The elements can be represented either as binary or as
decimal numbers (the researchers used both options during the current work). Because
inside each generation there will be the same number of parents, each of them having the
same structure, the next part of the program is common for all generations (represented by
consecutive program iterations).

X = {x ∈ N : min ≤ x ≤ max}, |X| = NOOPS (3)

where min and max represent boundaries of legal values range for each individual (i.e.,
0–900 is the legal range of luminosity values employed in case of Ambiental controller),
and NOOPS is the abbreviation for “Number of Operations Per Simulation” and represents
the population size. As an exception, in the case of ALU the individuals contain the
values of the operands B, the initial value of operand A, and the operator codes for each
operation performed. In the case of a smart lamp controller and an Ambiental controller,
each individual contains only a fixed number of values provided by only one sensor.

During each generation, the score for each individual is computed. This means
that a ModelSim simulation is started for each individual where the DUT is provided
with corresponding stimuli. At the end of the simulation, the obtained coverage value
is associated with the individual used for running the simulation. This coverage value
represents the fitness function cost. Further, the stimuli provided by the best performing
individual (there can be several individuals who obtained the highest score until that
moment) are saved on disk, representing a precious output of the programming ecosystem.
As a key element in this work, the best performing individuals are stored into a list in order
to avoid saving the same set of stimuli multiple times. The concept used for saving the best
individuals in each generation on disk is mathematically represented in (4):

SE = {I ∈ CG : score(I) = max_score, I /∈ BIL} (4)

where SE (Saved Element) represents, one by one, each element saved onto disk, I repre-
sents each individual in the current generation, CG (Current Generation) represents the
set of individuals from the current generation, max_score represents maximum coverage
value reached at computation moment by all individuals, and BIL (Best Individuals’ List)
represents the list created by Python program which contains all individuals having the
maximum score at the time they were generated. Therefore, after calculation of SE, SE will
be copied to BIL.

After each individual is associated with its coverage value, the individuals are ordered
in descending according to their scores.

When creating the new population, the best performing individuals from the previous
generation are always kept (a configuration parameter dictates how many parents are
copied to the following generation) in order to allow the algorithm to converge.

Multiple ways to select the combinations of parents presented were tried during this
study. A comparison of these approaches is provided in the results section. After the cross-
over process finishes, the mutation operator is applied over randomly selected children.
During the current study, there were cases when children were not saved if they were
identical to their parents. In this situation, if at the end of the crossover operations over all
parents the number of children is less than the initial number of elements in the population,
other individuals are randomly generated.

At the end of each iteration, the children become the parents of the next generation,
and the steps described above are reloaded.

4. Results

During the current work, several approaches based on genetic algorithms were devel-
oped in an attempt to achieve the best results with the minimum processing time. Below,

Appl. Sci. 2022, 12, 1559 13 of 23

differences between different employed methods of automating the coverage fulfillment
are presented for each DUT along with the results obtained.

If not explicitly mentioned, each generation (the number of parents per generation)
for the above-mentioned trials contains 20 individuals (n_pop = 20).

4.1. Coverage Collection for ALU Operating as an Accumulator

The design represents an arithmetic logic unit (ALU) operating as an accumulator (the
first operand is fed with the value of the previous operation result), which performs the
four basic mathematical operations. The operands (called operand A and operand B) and
the result are 8 bits wide, and there is an error bit that signals both overflow and underflow
situations. The range of the resulting values was split into 10, 15, and 20 ranges during the
many trials performed. All coverage ranges contained the same number of values, except
for the last group which accommodated only the remaining values, as depicted in (5). The
coverage target consists in obtaining results from the DUT, the values of which fit each of
the intervals computed in (5) after 20 consecutive operations were performed.

ULs =

{
c ∈ N, c = max

(
bottom + i +

top− bottom
n

, top
)
|i ∈ (0, n− 1)

}
, (5)

where ULs (upper limits) represents the list of the upper limits of the ranges of values
corresponding to the intervals of values which must be covered (the list of lower limits
can be easily deduced as the coverage intervals are arranged back-to-back); top and bottom
represent a maximum and minimum value which can be reached by the signal to be covered
(e.g., if the signal is 8 bits wide, and there are no other constraints imposed by functional
specification, the top value is 255 and the bottom value is 0).

The approaches used to generate sequences of stimuli are labeled and their character-
istics described in Table 1.

Table 1. The characteristics of genetic algorithm-based approaches developed in the present work.

Version of GA Characteristics of Genetic Algorithms-Based Approach

Version 1

• the data contained by each individual which commands the
accumulator to perform a sequence of 20 operations are stored
in this order: the first value of operand A, the first value of
operand B, the first code of operator, the second value of
operand B, the second code of operator, . . . the 20th value of
operand B, the 20th code of operator;

• the crossover is done using a random position in the data stream
that represents an individual;

• two parents generate exactly two children;
• only the best parents (the first half of the total number of parents

which are extracted after ordering the individuals) are used to
generate children in the next population (parent 1 is combined
with parent 2, parent 2 is combined with parent 3, . . . , parent
n_pop/2-1 is combined with parent n_pop/2);

• 20% of the parents (randomly selected) are transferred unaltered
to the next generation;

• mutation probability is 2%.

Version 1.1 (compared
with v1.1)

• all parents are used to generate the next population (parent 1 is
combined with parent 2, parent 3 is compared with parent 4,
. . . , parent n_pop-1 is combined with parent n_pop).

Version 1.2 (compared
with v1.1)

• the best 20% of parents are copied as children; the parents
copied as children are not randomly selected as in previous
versions.

Appl. Sci. 2022, 12, 1559 14 of 23

Table 1. Cont.

Version of GA Characteristics of Genetic Algorithms-Based Approach

Version 2 (compared
with v1)

• the data contained by each individual are stored in this order:
the first value of operand A, the first value of operand B, the
second value of operand B,, the 20th value of operand B,
the first code of operator, the second code of operator, The
20th code of operator.

• the best 20% of parents are copied as children, then these
parents are not recombined anymore

• the crossover is done using two breaking points: one breaking
point is set to split the values of operands B into two datasets,
and one breaking point is set to split the values of the operators
into two datasets, as can be seen in Figure 7. Thus, many
children are generated by combining these datasets.

Version 2.1 (compared
with v2)

• the individuals copied from one generation to another are
combined and generate children

Version 3 (compared
with v2.1)

• this version is identical with v2.1; the code was not changed in
functionality, only modified for better control using parameters

Version 3.05 (compared
with v3)

• the best parents are not copied as children; instead, the children
are obtained only by crossover, and can be modified by
mutation.

Version 3.1 (compared
with v3)

• now. the parents are combined in random order (until now,
parent 1 was combined with parent 2, parent 2 was combined
with parent 3, etc.)

Version 3.2 (compared
with v3)

• the children who are identical with one of their parents are
ignored; therefore, two parents can have no children; if after all
crossover processes the minimum number of children (the size
of population) is less than n_pop, new random individuals are
generated

Version 3.3 (compared
with v3)

• mutation coefficient is not 2% anymore; rather, it increases
proportionally with iterations from 0 to 1

Figure 7. Breaking points (sometimes called crossover points) in the structure of individuals from v2.

The described approaches were tested over multiple coverage targets to check their
performance. The obtained results can be seen in Tables 2–4, and are grouped by the
number of ranges into which the result was split. To emphasize the performance of genetic
algorithm approaches over the classical verification technique (known as “constrained-
random verification”), the team ran several sets of simulations using randomly generated
stimuli. They used multiple metrics to compare the performance of employed approaches:

Appl. Sci. 2022, 12, 1559 15 of 23

Table 2. Results for ALU when values of result were split in ten ranges.

Version of GAApproach
Index 2 of First

Individual Having
100% Coverage

Index of Generation
with at Least 50% of all

Individuals Having
Maximum Coverage

Index of Generation
Having Maximum

Coverage in all Cases

v1 19 n/a 1 n/a
v1.1 62 n/a n/a
v1.2 252 n/a n/a
v2 101 6 7

v2.1 25 3 3
set 1 of random generations 19 n/a n/a
set 2 of random generations 15 n/a n/a

1 Situations that were not possible to reach under the corresponding approach are marked in tables with n/a.;
2 The index of each individual is calculated considering the generation the individual belongs to and the index of
the individual in the respective generation.

Table 3. Results for ALU when values of result were split in 15 ranges.

Version of Genetic Algorithms Approach Obtained Results

v3 100% coverage was obtained (beginning with
13th generation) by a stimulus set

v3.05 93.3% coverage was obtained (beginning with
21st generation) by a stimulus set

v3.2 100% coverage was obtained (at 4th and 5th
generation) by two stimulus sets

v3.3 93.3% coverage was obtained (at 8th
generation) by a stimulus set

random generations 86.7% coverage was obtained by only four
items in a population of 400 individuals

Table 4. Results for ALU when values of result were split in 20 ranges.

Version of Genetic Algorithms Approach Obtained Results

v3 90% coverage was obtained, even after waiting 40
generations to evolve

v3.05 85% coverage was obtained, even after waiting 35
generations to evolve

v3.1 80% coverage was obtained at the 37th generation

v3.2 85% coverage was obtained (at 4th generation), even
after waiting 40 generations to evolve

v3.2 90% coverage was obtained when there were 100
individuals/generation from the 16th generation

v3.3 90% coverage was obtained (at the 11th generation)
by a set of stimuli

random generations 85% coverage was reached by only a sequence of
stimuli in a population of 400 individuals

• Index of the first individual (first set of stimuli) to obtain the maximum coverage value
• Index of the generation (iteration) when at least 50% of parents obtained the maximum

coverage value
• Index of the generation when all individuals obtained the maximum coverage value;

as in all cases it is possible that multiple identical parents exist, the percentage of
identical parents was diminished in approach v3.2

Situations that were not reachable under the corresponding approach are marked in
tables with n/a.

When the values range of the result was split into ten parts, the coverage target was
reached easily using constrained verification (random generations), as well. The advantage
of a genetic algorithm can be considered as the convergence reached by v2 and v2.1 to the
global maximum (100% coverage fulfillment for all individuals after 3 or 7 generations).
However, these program versions allow multiple identical parents to be generated, and
only a few unique stimuli sequences may have been obtained.

Appl. Sci. 2022, 12, 1559 16 of 23

When the values range of the operation result was split into 15 intervals, the results
shown in Table 3 were obtained. In this case, considering that v3.2 had the best performance,
ignoring children which were identical to their parents proved to be very beneficial. An
important observation is that all approaches based on genetic algorithms outperformed the
coverage fulfillment score reached when only random generations were performed.

However, considering the results from Table 4, where the values range of result was
split into 20 intervals, ignoring children identical with parents is not a universal best solu-
tion, and randomness in generating the initial individuals remains highly influential in the
performance of the genetic algorithm approaches employed. The fact that 100% coverage
was not reached is explicable; 100% coverage means that each performed operation hits
another result interval, which is very difficult to achieve, thus, 90% coverage means that
only 18 different intervals were hit, which represents a very good result.

In this case, only the v3 and v3.3 program versions outperformed the score of the series
of random generations, and v3.2 only did so after running thousands of simulations (the
case when only 100 parents/generation were kept, although the number of children can
be up to six times larger), exceeding the score reached by strategy emulating constrained
random generation.

4.2. Coverage Collection for Smart Lamp Controller

The design represents a lamp controller. The lamp has four levels of luminosity: off,
low, medium, and high intensity. The lamp can operate in two modes: automatic, when
it switches its level of luminosity based on values received from a luminosity sensor, or
manual, when pressing a button moves the lamp between the four possible light states. In
this use case, the lamp was used only in automatic mode, where its luminosity is influenced
only by the values supplied by the light sensor. The signal coverage was in focus, the range
of signal possible values being split into 15 or 20 intervals.

Unlike in previous cases, for individuals containing values from the sensor, the
crossover was accomplished using only one breaking point. The important differences
between the versions of genetic algorithm approaches which were developed are presented
in Table 5; the number of versions was chosen to correspond with the approaches used for
previous DUT.

Table 5. The characteristics of the genetic algorithm-based approaches developed during the present
work related to the smart lamp controller DUT.

Version of GA Characteristics of Genetic Algorithms-Based Approach

Version 3.2
• all children identical with their parents are ignored;
• the crossover is performed between parent 1 and parent

2, parent 2 and parent 3, parent 3 and parent 4, etc.

Version 3.3
• the children identical with their parents are not ignored;
• the crossover is performed between parent 1 and parent

2, parent 2 and parent 3, parent 3 and parent 4, etc.

Version 3.4
• the children identical with their parents are not ignored;
• the crossover is performed between parent 1 and parent

N, parent 2 and parent N-1, parent 3 and parent N-2, etc.

Version 3.5
• the children identical with their parents are not ignored;
• the crossover is performed between parents which are

randomly selected

By generating 20 random values 8 bits wide and applying multiple genetic algo-
rithm approaches, the results from Table 6 were obtained. For evaluation reasons, the
constraint random verification methodology was applied by running 400 simulations with

Appl. Sci. 2022, 12, 1559 17 of 23

random stimuli. Most genetic algorithm approaches outperformed the scores obtained by
random simulations.

Table 6. Results obtained when the smart lamp controller was stimulated with values provided by
programs based on genetic algorithms.

Criterion 15 Intervals 20 Intervals

v3.2 v3.3 v3.4 v3.5 Random
Stimuli 5 v3.2 v3.3 v3.3 v3.5 Random

Stimuli 5

maximum reached
coverage [%] 100 100 100 100 93.3 90 95 100 85 85

Parents/generation 20 20 20 20 400 20 20 100 20 400

first iteration
containing a

dataset which
leads to maxi-

mum coverage

12 4 9 5 1 7 18 9 4 1

first generation
when at least

n_pop/2 elements
having maximum

coverage
were obtained

n/a 15 22 13 n/a n/a 28 21 n/a n/a

number of
stimulus sets

achieving maxi-
mum coverage

1 144 2 60 1 11 1 7 2 1 43 2 173 2 13 3 3

1 all data sets were obtained by mutating the same root stimuli dataset; 2 in addition to one set of stimuli (the
one which was first generated), all data sets are based on the same root sequence; 3 the sets were based on four
different datasets; 5 equivalent to constrained-random generation of stimuli.

Considering Table 6, it can be seen that most of the approaches based on genetic
algorithms had good performance (over 85% coverage). v3.3 obtained the best scores
in terms of how quickly the element was reached with the highest coverage score and
how many different data sets were generated, even though the population which counts
20 parents was used. If the number of parents was increased to 100, then 100% coverage
value was reached. The large number of “winning” stimulus sets appeared due to mutation
mechanisms (only one or two elements are different between data sets). In the last row
of Table 6 the number of root stimulus sets appears (the base roots, which generated
many mutations).

Because v3.4 achieved the worst performance compared with the other genetic algorithm-
based approaches when values of the result were split into 15 intervals, it was not tested
anymore when 20 intervals were used. The best-performing variants were v3.2 and v3.3.

Figure 8 presents the evolution of the maximum coverage level reached by each gener-
ation. This picture shows the advantage of genetic algorithms; by performing additional
combinations between individuals iteratively, a higher coverage value is obtained. The
individual having the highest score is retained in the next generation. Thus, in a successful
simulation, the individuals evolve over time until reaching the maximum possible coverage
value. In the current case, 95% coverage was the highest score; when the population had
only 20 individuals, this performance was achieved by the v3.3 approach. Orange dots
represent the number of sequences that can be used to reach maximum coverage level at
one time. Each time a new stimulus set obtains a high score, this number is reset to “1”. For
example, although both examples reached the same maximum value of coverage, it can be
considered that the version from Figure 8b outperformed the one presented in Figure 8a.
The reason for this is that the first-mentioned approach discovered almost 190 stimulus
sets for maximum coverage value, while the situation in Figure 8a supplied less than
50 high-performing stimulus sets.

Appl. Sci. 2022, 12, 1559 18 of 23

Figure 8. Two examples for evolution of a population of 20 individuals across 40 generations during
the v3.3 approach: (a) represents the visual description of the numerical data inTable 6; (b) represents
the visual description of another result of the same v3.3 approach.

4.3. Coverage Collector for Ambiental Controller

The DUT which implements the Ambiental controller functionality receives input
values from humidity, light, and temperature sensors. Based on the received values, the
design controls several actuators which are common in a smart house environment (A/C,
dehumidifier, blinds). The signal for which the coverage is measured is used to supply
the DUT with the values from the luminosity sensor. The legal luminosity values are
constrained between 0 and 900 lumens/squared meter. As in the previously described
cases, the values range is split into 15 or 20 intervals. The current design reuses the
approaches developed for the smart lamp controller. The main difference between the two
approaches is that in the case of the Ambiental controller, although the signal is 10 bits
wide, the values from 901 . . . 1023 are illegal.

As can be observed in Table 7, only the v3.2 and v3.3 genetic algorithm approaches
were tested for the current DUT, as these versions performed best in the case of the smart
lamp controller.

Table 7. Results obtained when the Ambiental controller was stimulated with values provided by
programs based on genetic algorithms.

Criterion 15 Intervals 20 Intervals
v3.2 v3.3 Random

Stimuli 2 v3.2 v3.2 v3.3 Random
Stimuli 2

maximum reached coverage [%] 100 100 93.3 90 95 100 85

Parents/generation 20 20 400 20 200 20 400

first iteration containing a dataset
which leads to maximum coverage 12 9 1 13 3 29 1

first generation when at least
n_pop 3/2 elements having

maximum coverage were obtained
23 14 n/a n/a n/a 35 n/a

number of stimulus sets achieving
maximum coverage 10 1 128 1 15 1 2 30 1 1

1 all data sets were obtained by mutating the same root stimuli dataset; 2 equivalent to constrained-random
generation of stimuli.; 3 n_pop represents the initial size of population, which remains the reference number for
computing the number of parents during each generation.

Considering the results in Table 7, v3.3 again obtained the best results in terms of
coverage fulfillment. Although for v3.2 a trial with 200 parents per generation was run,
when the values range was split into 20 intervals the 100% coverage value was not reached.
However, as expected, having multiple individuals per generation was beneficial, as the
coverage value increased from 90 to 95. As can be seen in Table 7, the approaches based
on genetic algorithms outperformed random simulations depicting constrained-random
verification. In the case of random simulations, even if 400 sequences of stimuli were

Appl. Sci. 2022, 12, 1559 19 of 23

transmitted to the DUT, none of them reached the maximum coverage level achieved by
genetic algorithm-based approaches. v3.3 even succeeded in reaching a 100% coverage
target when the value of the result was split into 20 intervals; this means that each stimulus
in the 20 element sequence reached a different interval of values.

In Figure 9, it can be seen that the evolution of the best-performing approach was
v3.3 when values were grouped in 20 intervals. After obtaining the first stimulus set
with 100% coverage, there were many generations when no other winning sequence was
found. However, by increasing mutation coverage more and more, similar data sets began
to appear.

Figure 9. Representation of coverage fulfillment process using best performing approach, v3.3.

Furthermore, in Figure 9 the orange dots show a close-to-ideal evolution process. Even
in the situations where the coverage level does not increase, more and more sets of stimuli
which achieve the maximum meet the coverage level. When the coverage remained at 90%
over more than ten generations, the number of stimulus sets generated with a coverage
value of 90% exceeded 30 items.

5. Discussion

Genetic algorithms represent a welcome means of automation for the verification
process, if properly configured. During the current work, multiple approaches using ge-
netic algorithms for automation of coverage collection were tested. In this way, important
conclusions about the proper configuration of methods used to correlate the coverage value
with the input stimuli and about the use of these correlations for accelerating the coverage
fulfillment were found. Before presenting our observations, it must be stated that one of the
important contributions of the authors of this study is the way in which genetic operations
were performed to create several efficient evolution processes. According to Algorithm 1,
the fitness function for each individual is represented by the results of ModelSim® simula-
tions. This aspect allows the currently developed approach to be successfully used even in
more complex cases when the DUT cannot be completely emulated. In this case, because a
complete reference model cannot be created in a software-based system, the only way to
obtain details about DUT operation is to use its RTL code.

As a first general observation related to the measurable results obtained in the current
paper, it was demonstrated that it is beneficial to propagate the best parents from the
previous generations to the next generation and to use them in the cross-over process.
A relevant example is the performance of v2.1 over v2, as seen in Table 2. By using the
best individuals of each generation in the cross-over process, the first individual having
100% coverage was obtained in about 25% of time compared to the situation when the best
individuals were not use for obtaining new children.

In addition, it was demonstrated that the convergence of the genetic-based approaches
to a high coverage value is possible only if the best parents are propagated in the next
generation. Otherwise, even if high coverage values are obtained after applying genetic
operators (cross-over and mutation), these have a chance to be lost from one generation
to another. Relevant examples include the outcomes of the v3.05 approach noted in

Appl. Sci. 2022, 12, 1559 20 of 23

Tables 3 and 4, where lower maximum coverage values were obtained (93.3% and 85%)
compared to the other approaches.

The opportunity of employing genetic algorithms depends on the situation. For
easily-reachable targets, constrained random verification can provide high-performing
stimulus sets in a shorter time frame. This statement is confirmed by the results in Table 2,
where both sets of random generations achieved 100% coverage fulfillment significantly
more quickly than the implemented genetic algorithm-based approaches. However, if the
coverage target is not easy to fulfil by a randomized approach (i.e., the score of constrained-
random generation (CRG) of stimuli used for coverage fulfillment in case of ALU DUT
did not exceed 86.7%), genetic algorithms represent the ideal solution (see Tables 3 and 4).
For both easily reachable and more difficult to reach coverage targets, the importance of
random generation cannot be neglected. The performance of genetic algorithms is greatly
increased if the initial population is well-randomized.

Additionally, in complex DUTs there are a high variety of coverage targets. Those
which are simpler to achieve can be approached using classical CRG; however, the more
complicated coverage targets involve the development of more advanced methods for
generating stimuli, such as GA. Hence, we consider that the combination of CRG and GA
approaches can be the best recipe for achieving coverage fulfillment for a DUT with the
lowest effort.

The current work offers several types of GA implementations, which were tested in
three different examples, conferring the advantage of analyzing the problem of coverage
fulfillment using additional points of view. For this reason, the obtained results can help in
obtaining better results for a wider range of verification targets.

Mutation represents a genetic operator that can help genetic algorithm approaches to
avoid local maxima and search for the global maximum. Its application proves beneficial
depending on how often mutation is performed in different contexts. For example, in the
case of v3.3, the change in the percentage of mutation rate from 2% to (1 divided by the
number of generations %) lowered the performance obtained by v3, as shown in Table 3.

Another interesting result is notable by analyzing the outcome of the v3.1 approach in
Table 4, (where the lowest performance, only 80% coverage fulfillment, was found, and
the v3.5 approach in Table 6, where 20 coverage intervals were used and where the lowest
performance, 85% coverage fulfillment, was found. Combining parents randomly and not
combining the best parents with the best parents, medium parents with medium parents
and low-performance parents with low-performance parents provided bad results. A
similar conclusion was proven by the development and testing of v3.4 (Table 6), where each
coverage score of a high-performing parent was combined with the score of an opposite
individual. Due to of random generation of individuals (here it must again be noted that
an initial population of well-distributed values is able to highly boost the performance of a
GA), exceptions to this rule can be expected to appear, as seen in the performance of the
v3.5 approach, when 15 coverage intervals were employed and the value of 100% coverage
was obtained after only five generations (Table 6).

As expected, if each generation embeds more individuals, better results are obtained
(see v3.3 performance for 20 coverage intervals in Table 6). However, the time needed
for running the program evolves in an exponential manner in this case. Although a
generation with 100 individuals represented a successful combination of constrained ran-
dom verification and genetic algorithms, in this work, generations of 20 individuals were
used. This approach allowed us to better compare the performance of different genetic
algorithm-based approaches, diminishing the contribution of randomness in the generation
of individuals. However, a mutation that alters an item at a random position remained
very important for coverage fulfillment automation performance in the current work.

There are multiple ways to configure the evolution of populations, and this paper
provides only a few examples; other approaches are worth attempting. As demonstrated in
this study, the same approach can perform better in some cases (v3.2 outperformed v3.3
when the ALU design was the focus) while having lower performance in other situations

Appl. Sci. 2022, 12, 1559 21 of 23

(version 3.3 exceeded the performance of v3.2 in the case of the next two presented projects).
However, v3.2 and v3.3 can both be considered the best in the current study. These versions
managed to achieve high values of coverage for all three tested DUTs. In all cases, these
approaches obtained better performance than random simulations depicting constrained-
random verification.

6. Conclusions

Using genetic algorithms, we showed how DUT functional coverage can be fulfilled
by offering a set of approaches and observing the results. The work presented here would
not have been possible without creating a mechanism for corelating the input stimulus
sets with their obtained coverage score. One advantage of using genetic algorithms is that
even with a high number of stimuli, a close to maximum coverage value can be achieved in
reasonable time.

By using the presented GA-based approaches, multiple sequences of stimuli able to
reach the desired coverage value were discovered and stored for further use. A potential
industrial application of the proposed method is to replace the ranked regressions generated
by commercial simulators with verification tests which run the stimulus sequences found
here. Ranked regressions contain all of the tests which can be used to obtain a high coverage
value. If a test or several tests developed using a genetic algorithm approach can replace
ranked regression, a significant amount of simulation time can be saved. By generating
shorter tests using only the input data contained by an individual and thereby achieving a
high coverage value, another aim of the current work was successfully met. In addition, by
transferring to the algorithms a part of the tedious work which in most cases is currently
accomplished by verification engineers (when directed tests are created for fulfilling the last
missing fractions of coverage percentage), the verification job itself becomes more pleasant
for the engineers.

Overall, given the scenarios analyzed in the current paper, the GA based approaches
outperformed CRG in achieving the maximum coverage value for the analyzed targets.
CRG is the first step in the industry-standard mechanism used for generation of stimuli in
functional verification, with the second step being the creation of directed tests, which is
supported by UVM methodology as well. In Table 2, as well as in all tables summarizing
the results, CRG did not manage to deliver 100% coverage fulfillment.

However, the above-mentioned benefits of GA do not wholly take CRG out of the
landscape of coverage fulfillment tasks. CRG is considered the best candidate for easy-to-
achieve coverage objectives, as it requires the least effort when using a tool that provides
good randomization mechanisms. Moreover, application of mutation (an important repre-
sentative of randomness within genetic algorithm-based approaches) to alter an item at
an individual’s random position retains a steady place in coverage fulfillment automation
powered by GA.

Considering the work presented in this paper, genetic algorithms can be seen as
a technique with high potential for increasing levels of coverage fulfillment. However,
because they require several iterations to reach maximum coverage value, they may not fit
all verification needs. Testing the performance of approaches based on genetic algorithms
in more complex scenarios is required in order to control multiple streams of DUT stimuli.
This topic represents a further step to be accomplished in the journey toward automation
of functional verification using artificial intelligence techniques.

Author Contributions: Conceptualization, G.M.D. and A.D.; methodology, G.M.D. and A.D.; soft-
ware, G.M.D. and A.D.; validation, A.D.; formal analysis, G.M.D. and A.D.; investigation, A.D.;
resources, G.M.D. and A.D.; data curation, A.D.; writing—original draft preparation, A.D.; writing—
review and editing, G.M.D. and A.D.; visualization, G.M.D. and A.D.; supervision, A.D. All authors
have read and agreed to the published version of the manuscript.

Funding: This research received no external funding.

Institutional Review Board Statement: Not applicable.

Appl. Sci. 2022, 12, 1559 22 of 23

Informed Consent Statement: Not applicable.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Dinu, A.; Craciun, A.; Alexandru, M. Hardware reconfiguration of a SoC. Rev. Air Force Acad. 2018, 1, 55–64. [CrossRef]
2. Yuan, F.L.; Wang, C.C.; Yu, T.H.; Marković, D. A multi-granularity FPGA with hierarchical interconnects for efficient and flexible

mobile computing. IEEE J. Solid-State Circuits 2014, 50, 137–149. [CrossRef]
3. Dinu, A.; Danciu, G.M.; Ogrut,an, P.L. Debug FPGA projects using machine learning. In Proceedings of the 2020 International

Semiconductor Conference (CAS), Sinaia, Romania, 7–9 October 2020; pp. 173–176.
4. Dinu, A.; Ogrutan, P.L. Opportunities of using artificial intelligence in hardware verification. In Proceedings of the IEEE 25th

International Symposium for Design and Technology in Electronic Packaging (SIITME), Cluj-Napoca, Romania, 23–26 October
2019; pp. 224–227.

5. Piziali, A. Functional Verification Coverage Measurement and Analysis; Springer Science & Business Media: New York, NY, USA, 2007.
6. Anilkumar, R.; Varaprasad, B.K.S.V.L.; Padmapriya, K. Automation of Translating Unit-Level Verification Scenarios for Test Vector

Generation of SoC. In Intelligent Sustainable Systems; Springer: Singapore, 2022; pp. 527–536.
7. Herdt, V.; Drechsler, R. Advanced virtual prototyping for cyber-physical systems using RISC-V: Implementation, verification and

challenges. Sci. China Inf. Sci. 2022, 65, 1–7. [CrossRef]
8. Krylov, G.; Friedman, E.G. EDA for Superconductive Electronics. In Single Flux Quantum Integrated Circuit Design; Springer:

Cham, Switzerland, 2022; pp. 95–114.
9. Foster, H.; Krolnik, A.; Lacey, D. Functional Coverage. In Assertion-Based Design; Springer: Boston, MA, USA, 2003; pp. 123–159.
10. Dinu, A.; Ogruţan, P.L. Coverage fulfillment methods as key points in functional verification of integrated circuits. In Proceedings

of the 42th International Semiconductor Conference (CAS), Sinaia, Romania, 9–11 October 2019; pp. 199–202.
11. Ismail, K.A.; Abd El Ghany, M.A. High Performance Machine Learning Models for Functional Verification of Hardware Designs.

In Proceedings of the 3rd Novel Intelligent and Leading Emerging Sciences Conference (NILES), Giza, Egypt, 23–25 October 2021;
pp. 15–18.

12. Ismail, K.A.; Ghany, M.A. Survey on Machine Learning Algorithms Enhancing the Functional Verification Process. Electronics
2021, 10, 2688. [CrossRef]

13. Ioannides, C.; Eder, K.I. Coverage-directed test generation automated by machine learning—A review. ACM Trans. Des. Autom.
Electron. Syst. (TODAES) 2012, 17, 1–21. [CrossRef]

14. Cristescu, M.-C. Machine Learning Techniques for Improving the Performance Metrics of Functional Verification. Sci. Technol.
2021, 24, 99–116.

15. Samarah, A.; Habibi, A.; Tahar, S.; Kharma, N. Automated Coverage Directed Test Generation Using a Cell-Based Genetic
Algorithm. In Proceedings of the IEEE International High Level Design Validation and Test Workshop, Monterey, CA, USA, 8–10
November 2006; pp. 19–26.

16. Van Rossum, G. Python Programming Language. In Proceedings of the USENIX Annual Technical Conference, Santa Clara, CA,
USA, 17–22 June 2007; Volume 41, p. 36.

17. Lutz, M. Programming Python; O’Reilly Media, Inc.: Sebastopol, CA, USA, 2001.
18. Ferreira, A.; Franco, R.; da Silva, K.R.G. Using Genetic Algorithm in Functional Verification to Reach High Level Functional Cov-

erage. Available online: https://www.inf.ufrgs.br/sim-emicro/papers/sim2013_submission_50.pdf (accessed on 14 December
2021).

19. Franco, R.A.P.; da Silva, K.R.G.; Rodrigues, C.L. Genetic Algorithm applied to the Functional Verification in Digital Systems. J.
Integr. Circuits Syst. 2018, 13, 1–9. [CrossRef]

20. Cristescu, M.-C.; Bob, C. Flexible Framework for Stimuli Redundancy Reduction in Functional Verification Using Artificial Neural
Networks. In Proceedings of the IEEE International Symposium on Signals, Circuits and Systems (ISSCS), Daegu, Korea, 22–28
May 2021; pp. 1–4.

21. Subedha, V.; Sridhar, S. An efficient coverage driven functional verification system based on genetic algorithm. Eur. J. Sci. Res.
2012, 81, 533–542.

22. Cihan, A.N.; Güğül, G.N. An Indoor Smart Lamp For Environments Illuminated Day Time. In Proceedings of the IEEE East-West
Design & Test Symposium (EWDTS), Varna, Bulgaria, 4–7 September 2020; pp. 1–5.

23. AlFaris, F.; Juaidi, A.; Manzano-Agugliaro, F. Intelligent homes’ technologies to optimize the energy performance for the net zero
energy home. Energy Build. 2017, 153, 262–274. [CrossRef]

24. Accelera. Universal Verification Methodology (UVM) 1.2 User’s Guide. Available online: https://www.accellera.org/images/
downloads/standards/uvm/uvm_users_guide_1.2.pdf (accessed on 14 December 2021).

25. Bergeron, J. Writing Testbenches Using System Verilog; Springer Science & Business Media: Berlin/Heidelberg, Germany, 2007.
26. Modelsim. Available online: https://eda.sw.siemens.com/en-US/ic/modelsim/ (accessed on 14 December 2021).
27. Stefan, G.; Alexandru, D. Controlling hardware design behavior using Python based machine learning algorithms. In Proceedings

of the 16th International Conference on Engineering of Modern Electric Systems (EMES), Oradea, Romania, 10–11 June 2021;
pp. 1–4.

http://doi.org/10.19062/1842-9238.2018.16.1.8
http://doi.org/10.1109/JSSC.2014.2372034
http://doi.org/10.1007/s11432-020-3308-4
http://doi.org/10.3390/electronics10212688
http://doi.org/10.1145/2071356.2071363
https://www.inf.ufrgs.br/sim-emicro/papers/sim2013_submission_50.pdf
http://doi.org/10.29292/jics.v13i1.20
http://doi.org/10.1016/j.enbuild.2017.07.089
https://www.accellera.org/images/downloads/standards/uvm/uvm_users_guide_1.2.pdf
https://www.accellera.org/images/downloads/standards/uvm/uvm_users_guide_1.2.pdf
https://eda.sw.siemens.com/en-US/ic/modelsim/

Appl. Sci. 2022, 12, 1559 23 of 23

28. Ji, X.; Ye, H.; Zhou, J.; Yin, Y.; Shen, X. An improved teaching-learning-based optimization algorithm and its application to a
combinatorial optimization problem in foundry industry. Appl. Soft Comput. 2017, 57, 504–516. [CrossRef]

29. Nugraheni, C.E.; Abednego, L.; Widyarini, M. A Combination of Palmer Algorithm and Gupta Algorithm for Scheduling Problem
in Apparel Industry. Int. J. Fuzzy Log. Syst. 2021, 11, 19–33. [CrossRef]

30. Eiben, A.E.; Raue, P.-E.; Ruttkay, Z. Genetic algorithms with multi-parent recombination. In Proceedings of the International
Conference on Parallel Problem Solving from Nature, Jerusalem, Israel, 9–14 October 1994; Springer: Berlin/Heidelberg, Germany;
pp. 78–87.

http://doi.org/10.1016/j.asoc.2017.04.029
http://doi.org/10.5121/ijfls.2021.11101

	Introduction
	The Opportunity of the Present Research
	The Steps in Manufacturing of Integrated Circuits
	Functional Verification: Implementation and Challenges

	Literature Review
	Materials and Methods
	Employed DUTs and Coverage Targets
	Verification Environments
	Description of General Approach (Entire Environment)
	Operation of Genetic Algorithms
	Description of Developed Programming Ecosystem Based on Genetic Algorithms

	Results
	Coverage Collection for ALU Operating as an Accumulator
	Coverage Collection for Smart Lamp Controller
	Coverage Collector for Ambiental Controller

	Discussion
	Conclusions
	References

