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Abstract: Reclamation of post-mining areas is one of the most important duties of an entrepreneur
involved in mining mineral resources with the use of surface techniques. There are various forms of
reclamation activities that depend on the chosen reclamation direction and intended function of the
reclaimed object as well as from the type of the mined mineral. When there is water present in the
mining excavation, we are talking about the aquatic direction of reclamation. This particular type of
post-mining area requires a particular shape—especially if its intended future function is recreational.
This research addresses optimization-related analyses and calculations of slope inclination in water
reservoirs formed in post-mining excavations of both clastic and clay rock raw materials. Considering
the conditions of stability and load-bearing capacity of water reservoir slopes, their optimum slopes
were determined using the FlexPDE v 6.0 program, based on a two-dimensional elastoplastic model
from the Coulomb–Mohr criterion. The inclinations of 1:5 and 1:15 are proposed, respectively, for the
above-waterline and below-waterline slopes that serve a beach function. Slopes that do not serve
a beach function are proposed to have an inclination of 1:2. Obviously, the strength conditions in
the soil medium as well as the comfort of users were key drivers when it comes to selection of the
slope inclinations.

Keywords: reclamation of post-mining excavations; optimization; mathematical modelling; soil
mechanics; Coulomb–Mohr criterion; slope stability

1. Introduction

The final phase of each mining projects is, last but definitely not the least, reclamation
of a post-mining area. Reclamation means providing or restoring functional properties to
post-mining areas after the mineral production process is finished. It is an obligation that
each mining entrepreneur involved in a mining activity should be aware of. However, the
scope of the reclamation requirement varies and depends on the advancement of a mining
activity and the accumulation of the obligations. Reclamation as a concept in mining is
expressed in the form of a reclamation direction. Normally, the reclamation direction
should be precisely defined with respect to the expected future function of the area, and
this requirement influences the scope (and the cost) of basic reclamation. Reclamation costs
are an element of the operating costs of a mining company (Figure 1). Due to the specific
character of rock mining, entrepreneurs frequently render the mining area available for
reclamation only at the end of the mine life, i.e., in the last phase of mining operations (the
closure phase). In many cases, this last phase is the least profitable in the mine’s typical
lifecycle—the production lowers so the revenue flow from mining production significantly
decreases or even completely stops. At the same time, the expenditures related to the
reclamation tasks which occur at that time may be even as high as the costs of the deposit
development (the pre-investment phase) [1–4]. Therefore, reclamation works should be
performed at the stage of deposit extraction, on the condition that they remain in line with
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the planned future function of the reclaimed area. In many cases, this last phase is the
least profitable in the mine’s typical lifecycle—the production lowers so the revenue flow
from mining production significantly decreases or even completely stops. Additionally,
appropriate planning of the scope of such works to be performed already at the mineral
production stage may even result in decreasing the final reclamation costs. An example
can be found in the aquatic direction of reclaiming a post-mining excavation which is
intended to serve as a recreational area with a water reservoir for bathing, sunbathing,
and recreational activities in the greenery. The literature [4–8] mentions the preferred
profiles for bathing areas in old excavations of rock raw materials. However, the slope
inclinations suggested in the above publications (1:5–1:10 for any slope serving as a beach
and 1:30–1:60 for any underwater slope) require a very broad scope of basic reclamation
works, and this fact entails significant financial expenditures. Considering the fact of
shaping the reservoir slopes in the final phase of the mine liquidation, when the income is
reduced, it is a big financial challenge. Moreover, the literature does not provide justification
for the proposed slopes in terms of soil stability as well as for the comfort concerns.
Therefore, the aim of the research presented in this article is to propose and optimize the
reclamation works (change in slope inclination) related to the inclinations of slopes of water
reservoirs used as bathing areas considering the safety standards and comfort requirements
but also the economical dimension of such a project. It is also worth noting that such an
optimization may bring an additional benefit by decreasing the scope of works, and thus
also the reclamation costs.
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Figure 1. Schematic diagram of financial flows during the entire mine life cycle (own material based
on Paulo [9]).

2. Requirements of Aquatic Reclamation with Recreational Function

In the case of an aquatic reclamation direction, the reclaimed objects may serve various
(i.e., from recreational to industrial) functions. However, the main focus in this article is
on the reclamation in the aquatic direction, with the use of an area for recreational and
leisure activities or water sports. In the case of such objects, an additional advantage may
result from arranging green recreational spaces around such objects, so as to improve the
functionality of such an object.

The literature indicates that the aquatic reclamation direction in the technical (basic)
phase is performed by means of regulating hydrogeological conditions (including the
construction of the necessary hydrotechnical objects and devices), building or rebuilding
access roads, reconstructing the layer of fertile soil with the use of technical methods, sepa-
rating toxic deposits, and moving ground masses, which includes shaping the relief of the
reclaimed land and reinforcing the slopes [10–17]. In addition, prior to the proper technical
reclamation works, several preparatory and clearing tasks must be performed, such as:
removing extra vegetation, demolishing the remaining parts of buildings, and clearing the
rubble and debris from the demolished buildings or storing it in a designated location.

Technical reclamation in the aquatic direction with a recreational function (a bathing
area) consists in shaping stable slopes, which depend on the physical and mechanical
properties of the ground. Designing such a reservoir is possible in the case of clay and
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clastic raw materials. This reservoir development direction requires at least the second
class of water quality and limited water table amplitude fluctuations (<0.5 m). The depth of
a recreational reservoir should be at least three meters. Moreover, such a reservoir should
have an approximately 40 m above-water land strip with an inclination of 1:5 to 1:10 and
serving as a beach, and a gentle descent to the water, i.e., an underwater slope 50–100 m
in width with an inclination of 1:30 to 1:60. The slopes should also be covered with a
layer of sand or gravel 5–15 cm in thickness. A recreational reservoir should also have
a dedicated shallow area for non-swimmers. Its surface should be at least 4 ha and its
maximum depth—1.5 m [4–6].

Typical recreational reservoirs have a defined beach area, while the remaining part
of the reservoir may be used for fishing or water sports, e.g., sailing or diving. Such
objects have different requirements which mostly depend on the technical and geological
conditions. The inclination of the above-water slopes which are not beaches should be
1:2 or 1:3 for clastic rocks and 1:1.5 or 1:2 for clays, while in the case of underwater slopes,
it should be 1:5 [5,7,8]. Figure 2 is a schematic view of a bathing area (a lido) located in an
old excavation of rock raw materials.
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Figure 2. Profile of a lido in an old excavation pit of rock raw materials (own material based on
Uberman and Uberman [4]).

Another method for the reclamation of water-filled excavations resulting from the
extraction of rock materials is to create fishing and watersport facilities. Reservoirs for
diving should have a varied bed shape and reservoirs for sailing should have a considerable
depth and area. Reservoirs can also be a landscape feature that increases the value of the
area. The requirements regarding slope inclinations are in such a case similar to the
inclinations of above-water and underwater slopes which do not serve as beaches in
recreational reservoirs.

Typically, reclamation in the aquatic direction is performed along with other directions
of future land use (agricultural, forest, or green areas). The reclamation of areas adjacent to
a water reservoir should involve the restoration of soil, for example, with the use of the
technical soil restoration method. It consists in the covering of barren ground with a layer
of fertile soil or with formations stimulating the soil development and plant vegetation [18].

The last stage of the technical reclamation process in the aquatic direction is to build
access roads, as well as pedestrian and cycle paths in order to make the reclaimed area
accessible. When reclaiming water reservoirs, safety measures must be accounted for.
Therefore, reservoir slopes not intended for direct access must be protected by installing
fences or growing special plants, for instance bushes.

The biological phase of the reclamation process is limited in the case of aquatic di-
rection. It involves ensuring slope stability by providing a biological enforcement lining,
as well as initiating and stimulating hydrobiological processes. The reinforcement lining
of reservoir slopes can be divided into an upper part (typically the steeper strip of the
slope) and the lower part. The border between the two parts is defined by the groundwater
table. After performing agricultural works and applying mineral or organic fertilizer, the
upper part of the slope and the protective buffer zone are sown with legume plants which
form a humus and anti-erosion layer. In the final stage of the biological reclamation, the
slope is covered with xerophilous plants (e.g., black locust, common alder, etc.). In the
lower part of the slope, only hydrophilic plants are introduced (e.g., common reed, cattail,
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etc.). The biological reclamation is finished by maintaining the plants, i.e., by removing
weeds, loosening the soil around the seedlings and providing fertilizer to the plants in
the areas surrounding the reservoir. If some plants wither, they should be replaced with
new seedlings.

3. Optimization of Reclamation Works in the Aquatic Direction

The excavation and water are recognized as two of the main factors that cause slope
instability. The stress field adjustment and rock–soil mass deformation triggered by ex-
cavation unloading may result in primary crack expansion and new crack generation in
the slope. Meanwhile, water infiltration can promote the propagation of cracks, increase
the rock–soil mass weight, and reduce the rock–soil mass shear strength [19–22]. An op-
timization of the scope of reclamation works with respect to the shaping of the reservoir
slopes mainly involves defining the limit values of their stability and load-bearing capac-
ity. The stability and load-bearing capacity of post-mining slopes can be determined by
rock strength models, which are generally parameterized using estimates of rock proper-
ties [22–25]. The growing popularity of computer applications and of the finite element
method results from the possibility to subject an engineering problem to a complex analysis
in successive construction phases. Such a complex approach allows a single calculation
process to include analyses of deformations and load-bearing capacities, while also taking
into account the geometrical variability of a particular issue, the changes to boundary
conditions during the construction, as well as the complicated interactions between stiff
structural elements and the subsoil. The description of the material in each of the soil
layers can be adjusted to the type of the analyzed problem by using more or less complex
constitutive models. However, the quality and accuracy of each computational analysis is
limited by the scope of the input data. This fact applies primarily to the parameters of the
identified soil layers but also to the system of the layers. The mechanical parameters of the
soil are identified mostly on the basis of empirical correlations with the parameters of the
soil condition. The basic set of strength parameters provided to geotechnical engineers for
the purpose of computational analyses includes the effective angle of internal friction ϕ
and the effective cohesion c. Ground stiffness is described with the use of the Hooke linear
elasticity. Despite employing the elasticity theory in the calculations, an assumption is
typically made that the values of the identified parameters allow for the non-linear effects
which occur in the soil prior to the mobilization of the full strength or before an assumed
reference stress is reached. The constitutive model constructed in such a manner is referred
to in the literature as the Coulomb–Mohr model and is the basic model implemented in
computer programs to solve problems of initial and limit conditions in geotechnology in
order to identify the ultimate limit state of shear strength [26,27].

The condition of plasticity resulting from the Coulomb–Mohr criterion can be noted
most simply with the use of the main stress component as:

FMC = 1/2 (σmax − σmin) + 1/2 (σmax − σmin) sin φ − c cos φ = 0, (1)

where, σmax − σmin—the smallest and the greatest main stress, respectively, based on an
assumption that the compressive stresses have negative values [28].

The calculations were performed with the use of the FlexPDE v 6.0 software, based
on a two-dimensional elastic model from the Coulomb–Mohr criterion for two materials:
coarse sand and clay. The parameters of these two media are shown in Table 1, and the
shape of the modeled area is shown in Figure 3. The inclination of the above-water land
strip was assumed to be at the maximum acceptable level, i.e., 1:5.

The presented parameters were obtained from external laboratory tests. For the
calculations in the Coulomb–Mohr model, effective parameters were assumed.
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Table 1. Parameters of the media.

Soil γs n ρ IL ID γ γ′ φ′ c′ E ν γs n

- kN/m3 - kg/m3 - - kN/m3 kN/m3 ° kPa MPa - - kN/m3

Clay 27.2 0.5 1390 0.4 - 13.6 8.7 9.5 32.5 8.0 0.37 27.2 0.5
Sand 26.5 0.3 1890 - 0.5 18.5 11.7 35.0 0 80.0 0.25 26.5 0.3

γs—specific weight of the soil skeleton, n—porosity, ρ—soil bulk density, IL—liquidity index, ID—density index,
γ—specific weight of the soil, γ′—effective weight; φ′—internal angle of friction, c′—cohesion, E—Young’s
modulus, ν—Poisson ratio.
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3.1. Inclination Optimization for Slopes Functioning as Beaches

The inclination of a slope functioning as a beach should be shaped with allowance for
the stability conditions, as well as for the safety and comfort concerns. Its basic function is to
provide access and gentle descent to the bathing area (lido) and to facilitate leisure activities.

In order to verify whether beach stability is possible for underwater slopes having an
inclination greater than the recommended 1:60–1:30, the stability was calculated for several
inclination ratios: 1:30, 1:25, 1:20, and 1:15.

Figures 4 and 5 show horizontal stresses for clay and for coarse sand, respectively. The
analyzed increase in the inclination ratio did not influence the results of the simulations.
From the perspective of slope stability, calculations of the Coulomb–Mohr potential are
more important. The determination of the medium’s plasticization zones was performed
based on the Coulomb–Mohr potential. The negative value of the potential defines the
areas where the area is stable. Where the potential is positive, the shear strength has been
exceeded. Calculations are shown for both types of soil in Figures 6 and 7. The potential
sign was not observed to reverse in any area, which suggests good stability conditions for
both underwater and above-water slopes, for both media.
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In addition, Figure 8 shows shear stresses obtained from the calculated directions of
main stresses for the greatest assumed inclinations of the underwater slope. The results
suggest that the stability of the underwater slope is more important for the stability of the
entire area, as the region beneath it is subjected to the highest shear stresses (the regions
with a positive stress sign in Figure 8).

The slope stability analyses indicate that increased underwater slope inclination does
not affect the stability of the slope system forming the beach and may by increased to as
much as 1:15. Therefore, the recommended inclination of 1:30 does not seem to result from
the soil strength conditions but from the expected comfort of the users. An additional note
should be made that an inclination of 1:15 is an optimal solution in the case wherein the
excavation depth renders an underwater slope with an inclination of 1:30 or less impossible.
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3.2. Inclination Optimization for Slopes Not Functioning as Beaches

The inclination of a slope not functioning as a beach should be shaped with allowance
for the stability conditions. Its basic function is to offer an anti-landslide protection, with
water being an additional factor affecting its stability.

Section 3.1 demonstrated that in the case of recreational functions (beaches), the slope
inclination may be significantly higher than recommended (Figure 2). Therefore, additional
calculations were performed for underwater slope inclination ranges greater than those
recommended for non-recreational functions (1:5). The above-waterline slope inclination
was assumed at 1:2, and the underwater slope inclinations were assumed at 1:5, 1:4, 1:3,
and 1:2, with the underwater slope height of 10 m.

Figures 9 and 10 show horizontal stresses for clay and for coarse sand, respectively. The
increasing of the inclinations within the assumed range did not influence the simulation
results, with higher stresses observed for clay. From the perspective of slope stability,
calculations of the Coulomb–Mohr potential are more important. They are shown for both
types of soil in Figures 11 and 12. The potential sign was not observed to reverse in any
area, which suggests good stability conditions for both underwater and above-water slopes,
for both media.
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stresses in Pa).
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Figure 11. Coulomb–Mohr potential for the sand-type subsoil, for underwater slope inclinations
of (a) 1:5, (b) 1:4, (c) 1:3, (d) 1:2 (negative values indicate compressive stresses in Pa, and positive
values—tensile stresses in Pa).
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Figure 12. Coulomb–Mohr potential for the clay-type subsoil, for underwater slope inclinations
of (a) 1:5, (b) 1:4, (c) 1:3, (d) 1:2 (negative values indicate compressive stresses in Pa, and positive
values—tensile stresses in Pa).

In addition, Figure 13 shows shear stresses obtained from the calculated directions
of main stresses for the greatest assumed inclinations of the underwater slope. In the case
of the above inclinations, the line of a potential slip surface can be identified—it takes the
form of the highest (negative) shear stresses.

For comparison purposes, Figure 14 shows the results of calculations for a sand-
type unstable slope, whose inclination in its both above-water and underwater parts was
assumed at 1:1. The figure shows (a) the line along which the sign is reversed, indicating a
potential slip surface; (b) shear stresses observed in the region.
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4. Discussion and Conclusions

Mining, as with other industries, needs to face the challenges of lowering its nega-
tive impact on the environment. Post-mining excavations, which are the leftovers after
extracting mineral resources, are one of the most important ones. They require actions
aimed at their reuse, and they cannot just be left and forgotten. This new usage includes a
wide variety of options, which depend on the mining and geological as well as economic
conditions [5,7,11,16,29–35].

In the case wherein the groundwater table level is above the floor of the post-mining
excavation, the potential for reuse becomes limited. The only justified solution in such a
situation is to perform the reclamation process in the aquatic direction or for fish production.
Using such areas for other purposes (e.g., as forest lands) is technically possible, of course,
but the necessary tasks (raising the floor of the excavation) would entail significant financial
expenditures. Solutions of this kind are uneconomic.

In their publications, Strzałkowski and Kaźmierczak [12,14,15] proposed slope incli-
nations for excavations reclaimed in the aquatic direction. Although the results of that
research are correct, the authors suggest that the reclamation scope of works and costs
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might be lower if different slope inclinations are used. The analyses of stability and load-
bearing capacity of the excavation slopes confirm the justification of such actions. The
optimal inclinations for the above-waterline and below-waterline slopes which serve a
beach function are now proposed at 1:5 and 1:15, respectively (Figure 15). This solution
will allow a twofold or even fourfold smaller scope of the reclamation works related to
moving earth masses in order to shape the slopes (depending on the chosen inclination
of 1:30–1:60). Despite their increased inclination, the slopes functioning as beaches will
still prove stable and safe while also comfortable to use. In the case of water reservoirs
which are formed in old excavations of clastic rocks and clays and which are not intended
to function as beaches, the optimal inclination for both underwater and above-water slopes
is 1:2.
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Importantly, the analyses presented here are hypothetical; therefore, the potential for
reducing the slope inclination should be analyzed individually for each case, allowing for
the actual geological and mining parameters. The economic aspect, which significantly
influences the cost of slope shaping works, should also be considered.

Therefore, taking into account the research conducted and its results, further research
directions can be proposed, which should be: the parametric studies with different soil
parameters and the analysis of reclamation costs related to the proposed optimization of
reclamation works and the determination of limit slopes related to safe use of the slopes of
water reservoirs after the exploitation of mineral resources.

Author Contributions: Conceptualization, U.K.; methodology, U.K. and M.B.-U.; software, M.B.-U.;
validation, U.K., for-mal analysis, U.K. and P.S.; investigation, U.K., P.S. and M.B.-U.; resources, U.K.
and M.B.-U.; data curation, U.K. and M.B.-U.; writing—U.K., M.B.-U. and P.S.; review and editing,
U.K., M.B.-U. and P.S.; visualization, M.B.-U. and P.S.; supervision, U.K.; project administration, P.S.;
funding acquisition, U.K. and P.S. All authors have read and agreed to the published version of
the manuscript.

Funding: This research was funded by the Polish Ministry of Education and Science Subsidy 2022.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Kaźmierczak, U.; Malewski, J. On reclamation cost in surface mining. Pr. Nauk. Inst. Górnictwa Politech. Wrocławskiej Studia I

Mater. 2002, 29, 105–112. (In Polish)
2. Kaźmierczak, U.; Malewski, J.; Strzałkowski, P. Financial effects of reclamation commitment in rock mining. Górnictwo Odkryw.

2015, 56, 9–13. (In Polish)
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