Alternative Methods of Bioactive Compounds and Oils Extraction from Berry Fruit By-Products—A Review
Abstract
:1. Introduction
2. Composition of Berry Pomaces
2.1. General Information
2.2. Polyphenols
2.2.1. Role of Polyphenols
2.2.2. Bioavailability of Polyphenols
2.2.3. Polyphenol Content in Berry Pomaces and Their Antioxidant Activity
2.2.4. Applications of Polyphenolic Extracts
2.3. Lipid Fraction
2.3.1. Fatty Acid Composition
2.3.2. Tocopherols and Tocotrienols
2.3.3. Sterols
3. Processing and Extraction
3.1. Conventional Extraction Methods
3.1.1. Lipid Fraction
3.1.2. Antioxidant Fraction
3.2. Ultrasound Assisted Extraction
3.2.1. Polyphenolic Compounds
3.2.2. Lipid Fraction
3.2.3. Impact of Processing Conditions
3.3. Pulsed Electric Field-Assisted Extraction
Impact of Processing Conditions
3.4. Microwave-Assisted Extraction (MAE)
Impact of Processing Conditions
3.5. Supercritical Fluid Extraction
Impact of Processing Conditions
3.6. Other Alternative Methods of Extraction
3.6.1. Pressurized Liquid Extraction
3.6.2. Enzyme-Assisted Extraction
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
AA | Antioxidant activity |
C3GE | Cyanidin-3-glucoside equivalent |
CAE | Caffeic acid equivalent |
CUPRAC | Cupric reducing antioxidant capacity |
DF | Dietary fiber |
dm | Dry mass |
EAE | Enzyme-assisted extraction |
EE | Epicatechin equivalent |
FA | Fatty acid |
FAO | Food and Agriculture Organization of the United Nations |
FE | Iron (Fe2+) equivalent |
FRAP | Ferric reducing antioxidant power |
fw | Fresh weight |
GAE | Gallic acid equivalent |
MAE | Microwave-assisted extraction |
ME | Malvidin equivalent |
MUFA | Monounsaturated fatty acid |
ORAC | Oxygen radical absorbance capacity |
PEF | Pulsed electric field |
PLE | Pressurized liquid extraction |
PUFA | Polyunsaturated fatty acid |
QE | Quercetin equivalent |
RE | Rutin equivalent |
RSM | Response-surface methodology |
SFA | Saturated fatty acid |
SFE | Supercritical fluid extraction |
SLE | Solid–liquid extraction |
T3 | Tocotrienol |
TAC | Total anthocyanin content |
TE | Trolox equivalent |
TEAC | Trolox equivalent antioxidant capacity |
TFC | Total flavonoid content |
TP | Tocopherol |
TPC | Total polyphenolic content |
UAE | Ultrasound-assisted extraction |
WHO | World Health Organization |
References
- FAO FAOSTAT Crop Statistics. Available online: http://www.fao.org/faostat/en/#data/QC (accessed on 1 March 2021).
- Fruits and Derived Products. Available online: http://www.fao.org/es/faodef/fdef08e.htm (accessed on 6 May 2021).
- Food Loss and Waste Facts. Available online: http://www.fao.org/resources/infographics/infographics-details/en/c/317265 (accessed on 6 May 2021).
- FAO. Moving Forward on Food Loss and Waste Reduction; Food and Agriculture Organization of The United Nations: Rome, Italy, 2019. [Google Scholar]
- Campos, D.A.; Gómez-García, R.; Vilas-Boas, A.A.; Madureira, A.R.; Pintado, M.M. Management of Fruit Industrial By-Products—A Case Study on Circular Economy Approach. Molecules 2020, 25, 320. [Google Scholar] [CrossRef] [Green Version]
- Schmid, V.; Steck, J.; Mayer-Miebach, E.; Behsnilian, D.; Briviba, K.; Bunzel, M.; Karbstein, H.P.; Emin, M.A. Impact of defined thermomechanical treatment on the structure and content of dietary fiber and the stability and bioaccessibility of polyphenols of chokeberry (Aronia melanocarpa) pomace. Food Res. Int. 2020, 134, 109232. [Google Scholar] [CrossRef] [PubMed]
- Reißner, A.-M.; Alhamimi, S.; Quiles, A.; Schmidt, C.; Struck, S.; Hernando, I.; Turner, C.; Rohm, H. Composition and physicochemical properties of dried berry pomace. J. Sci. Food Agric. 2019, 99, 1284–1293. [Google Scholar] [CrossRef] [PubMed]
- McDougall, N.; Beames, R. Composition of raspberry pomace and its nutritive value for monogastric animals. Anim. Feed Sci. Technol. 1994, 45, 139–148. [Google Scholar] [CrossRef]
- Górnaś, P.; Juhņeviča-Radenkova, K.; Radenkovs, V.; Mišina, I.; Pugajeva, I.; Soliven, A.; Segliņa, D. The impact of different baking conditions on the stability of the extractable polyphenols in muffins enriched by strawberry, sour cherry, raspberry or black currant pomace. LWT Food Sci. Technol. 2016, 65, 946–953. [Google Scholar] [CrossRef]
- Han, X.; Shen, T.; Lou, H. Dietary Polyphenols and Their Biological Significance. Int. J. Mol. Sci. 2007, 8, 950–988. [Google Scholar] [CrossRef] [Green Version]
- Williamson, G. The role of polyphenols in modern nutrition. Nutr. Bull. 2017, 42, 226–235. [Google Scholar] [CrossRef]
- Somerville, V.; Bringans, C.; Braakhuis, A. Polyphenols and Performance: A Systematic Review and Meta-Analysis. Sports Med. 2017, 47, 1589–1599. [Google Scholar] [CrossRef]
- Ma, G.; Chen, Y. Polyphenol supplementation benefits human health via gut microbiota: A systematic review via meta-analysis. J. Funct. Foods 2020, 66, 103829. [Google Scholar] [CrossRef]
- Liu, F.; Li, D.; Wang, X.; Cui, Y.; Li, X. Polyphenols intervention is an effective strategy to ameliorate inflammatory bowel disease: A systematic review and meta-analysis. Int. J. Food Sci. Nutr. 2020, 72, 14–25. [Google Scholar] [CrossRef] [PubMed]
- Ammar, A.; Trabelsi, K.; Boukhris, O.; Bouaziz, B.; Müller, P.; Glenn, J.M.; Bott, N.T.; Müller, N.; Chtourou, H.; Driss, T.; et al. Effects of Polyphenol-Rich Interventions on Cognition and Brain Health in Healthy Young and Middle-Aged Adults: Systematic Review and Meta-Analysis. J. Clin. Med. 2020, 9, 1598. [Google Scholar] [CrossRef] [PubMed]
- Shah, K.; Shah, P. Effect of Anthocyanin Supplementations on Lipid Profile and Inflammatory Markers: A Systematic Review and Meta-Analysis of Randomized Controlled Trials. Cholest 2018, 2018, 8450793. [Google Scholar] [CrossRef] [PubMed]
- Godos, J.; Vitale, M.; Micek, A.; Ray, S.; Martini, D.; Del Rio, D.; Riccardi, G.; Galvano, F.; Grosso, G. Dietary Polyphenol Intake, Blood Pressure, and Hypertension: A Systematic Review and Meta-Analysis of Observational Studies. Antioxidants 2019, 8, 152. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fantini, M.; Benvenuto, M.; Masuelli, L.; Frajese, G.V.; Tresoldi, I.; Modesti, A.; Bei, R. In Vitro and in Vivo Antitumoral Effects of Combinations of Polyphenols, or Polyphenols and Anticancer Drugs: Perspectives on Cancer Treatment. Int. J. Mol. Sci. 2015, 16, 9236–9282. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cao, H.; Saroglu, O.; Karadag, A.; Diaconeasa, Z.; Zoccatelli, G.; Conte-Junior, C.A.; Gonzalez-Aguilar, G.A.; Ou, J.; Bai, W.; Zamarioli, C.M.; et al. Available technologies on improving the stability of polyphenols in food processing. Food Front. 2021, 2, 109–139. [Google Scholar] [CrossRef]
- Zeng, L.; Ma, M.; Li, C.; Luo, L. Stability of tea polyphenols solution with different pH at different temperatures. Int. J. Food Prop. 2017, 20, 1–18. [Google Scholar] [CrossRef] [Green Version]
- Chethan, S.; Malleshi, N. Finger millet polyphenols: Optimization of extraction and the effect of pH on their stability. Food Chem. 2007, 105, 862–870. [Google Scholar] [CrossRef]
- Teleszko, M.; Nowicka, P.; Wojdyło, A. Effect of cultivar and storage temperature on identification and stability of polyphenols in strawberry cloudy juices. J. Food Compos. Anal. 2016, 54, 10–19. [Google Scholar] [CrossRef]
- Chen, J.; Sun, H.; Wang, Y.; Wang, S.; Tao, X.; Sun, A. Stability of Apple Polyphenols as a Function of Temperature and pH. Int. J. Food Prop. 2014, 17, 1742–1749. [Google Scholar] [CrossRef]
- Tolić, M.-T.; Jurčević, I.L.; Krbavčić, I.P.; Marković, K.; Vahčić, N. Phenolic Content, Antioxidant Capacity and Quality of Chokeberry (Aronia melanocarpa) Products. Food Technol. Biotechnol. 2015, 53, 171–179. [Google Scholar] [CrossRef]
- Rodríguez-Werner, M.; Winterhalter, P.; Esatbeyoglu, T. Phenolic Composition, Radical Scavenging Activity and an Approach for Authentication of Aronia melanocarpa Berries, Juice, and Pomace. J. Food Sci. 2019, 84, 1791–1798. [Google Scholar] [CrossRef] [PubMed]
- Sójka, M.; Król, B. Composition of industrial seedless black currant pomace. Eur. Food Res. Technol. 2009, 228, 597–605. [Google Scholar] [CrossRef]
- Jara-Palacios, M.J.; Santisteban, A.; Gordillo, B.; Hernanz, D.; Heredia, F.J.; Escudero-Gilete, M.L. Comparative study of red berry pomaces (blueberry, red raspberry, red currant and blackberry) as source of antioxidants and pigments. Eur. Food Res. Technol. 2019, 245, 1–9. [Google Scholar] [CrossRef]
- Jazić, M.; Kukrić, Z.; Vulić, J.; Četojević-Simin, D. Polyphenolic composition, antioxidant and antiproliferative effects of wild and cultivated blackberries(Rubus fruticosus L.)pomace. Int. J. Food Sci. Technol. 2019, 54, 194–201. [Google Scholar] [CrossRef] [Green Version]
- Mildner-Szkudlarz, S.; Bajerska, J.; Górnaś, P.; Seglina, D.; Pilarska, A.; Jesionowski, T. Physical and Bioactive Properties of Muffins Enriched with Raspberry and Cranberry Pomace Powder: A Promising Application of Fruit By-Products Rich in Biocompounds. Plant Foods Hum. Nutr. 2016, 71, 165–173. [Google Scholar] [CrossRef] [Green Version]
- Žlabur, J. Šic; Dobričević, N.; Pliestić, S.; Galić, A.; Bilić, D.P.; Voća, S. Antioxidant Potential of Fruit Juice with Added Chokeberry Powder (Aronia melanocarpa). Molecules 2017, 22, 2158. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Četojević-Simin, D.D.; Velićanski, A.S.; Cvetković, D.D.; Markov, S.L.; Ćetković, G.S.; Šaponjac, V.T.T.; Vulić, J.J.; Čanadanović-Brunet, J.M.; Djilas, S.M. Bioactivity of Meeker and Willamette raspberry (Rubus idaeus L.) pomace extracts. Food Chem. 2015, 166, 407–413. [Google Scholar] [CrossRef]
- Halász, K.; Csóka, L. Black chokeberry (Aronia melanocarpa) pomace extract immobilized in chitosan for colorimetric pH indicator film application. Food Packag. Shelf Life 2018, 16, 185–193. [Google Scholar] [CrossRef]
- Raczyk, M.; Bryś, J.; Brzezińska, R.; Ostrowska-Ligęza, E.; Wirkowska-Wojdyła, M.; Górska, A. Quality assessment of cold-pressed strawberry, raspberry and blackberry seed oils intended for cosmetic purposes. Acta Sci. Pol. Technol. Aliment. 2021, 20, 127–133. [Google Scholar] [CrossRef]
- Yang, H.Y.; Dong, S.S.; Zhang, C.H.; Wu, W.L.; Lyu, L.F.; Li, W.L. Investigation of Tocopherol Biosynthesis in Blackberry Seeds (Rubus spp.). Russ. J. Plant Physiol. 2020, 67, 76–84. [Google Scholar] [CrossRef]
- Ying, Q.; Wojciechowska, P.; Siger, A.; Kaczmarek, A.; Rudzińska, M. Phytochemical Content, Oxidative Stability, and Nutritional Properties of Unconventional Cold-pressed Edible Oils. J. Food Nutr. Res. 2018, 6, 476–485. [Google Scholar] [CrossRef] [Green Version]
- Šavikin, K.P.; Ðorđević, B.S.; Ristić, M.S.; Krivokuća-Ðokić, D.; Pljevljakušić, D.S.; Vulić, T. Variation in the Fatty-Acid Content in Seeds of Various Black, Red, and White Currant Varieties. Chem. Biodivers. 2013, 10, 157–165. [Google Scholar] [CrossRef]
- Van Hoed, V.; De Clercq, N.; Echim, C.; Andjelkovic, M.; Leber, E.; Dewettinck, K.; Verhe, R. Berry Seeds: A Source of Specialty Oils with High Content of Bioactives and Nutritional Value. J. Food Lipids 2009, 16, 33–49. [Google Scholar] [CrossRef]
- Zlatanov, M.D. Lipid composition of Bulgarian chokeberry, black currant and rose hip seed oils. J. Sci. Food Agric. 1999, 79, 1620–1624. [Google Scholar] [CrossRef]
- Gao, F.; Birch, J. Oxidative stability, thermal decomposition, and oxidation onset prediction of carrot, flax, hemp, and canola seed oils in relation to oil composition and positional distribution of fatty acids. Eur. J. Lipid Sci. Technol. 2015, 118, 1042–1052. [Google Scholar] [CrossRef]
- Li, H.; Fan, Y.-W.; Li, J.; Tang, L.; Hu, J.-N.; Deng, Z.-Y. Evaluating and Predicting the Oxidative Stability of Vegetable Oils with Different Fatty Acid Compositions. J. Food Sci. 2013, 78, H633–H641. [Google Scholar] [CrossRef]
- Kochhar, S.P.; Henry, C.J.K. Oxidative stability and shelf-life evaluation of selected culinary oils. Int. J. Food Sci. Nutr. 2009, 60, 289–296. [Google Scholar] [CrossRef]
- Nosratpour, M.; Farhoosh, R.; Sharif, A. Quantitative Indices of the Oxidizability of Fatty Acid Compositions. Eur. J. Lipid Sci. Technol. 2017, 119, 1700203. [Google Scholar] [CrossRef]
- FAO/WHO Food and Agriculture Organization of the United Nations. Fats and Fatty Acids in Human Nutrition; Food and Agriculture Organization of The United Nations: Rome, Italy, 2010. [Google Scholar]
- Dyall, S.C. Long-chain omega-3 fatty acids and the brain: A review of the independent and shared effects of EPA, DPA and DHA. Front. Aging Neurosci. 2015, 7, 52. [Google Scholar] [CrossRef] [Green Version]
- Mozaffarian, D.; Wu, J.H.Y. Omega-3 Fatty Acids and Cardiovascular Disease: Effects on risk factors, molecular pathways, and clinical events. J. Am. Coll. Cardiol. 2011, 58, 2047–2067. [Google Scholar] [CrossRef] [Green Version]
- Costantini, L.; Molinari, R.; Farinon, B.; Merendino, N. Impact of Omega-3 Fatty Acids on the Gut Microbiota. Int. J. Mol. Sci. 2017, 18, 2645. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hu, Y.; Hu, F.B.; Manson, J.E. Marine Omega-3 Supplementation and Cardiovascular Disease: An Updated Meta-Analysis of 13 Randomized Controlled Trials Involving 127 477 Participants. J. Am. Heart Assoc. 2019, 8, e013543. [Google Scholar] [CrossRef]
- Roche, H.M. Unsaturated Fatty Acids. Proc. Nutr. Soc. 1999, 58, 397–401. [Google Scholar]
- Mazidi, M.; Mikhailidis, D.P.; Sattar, N.; Toth, P.P.; Judd, S.; Blaha, M.J.; Hernandez, A.V.; Penson, P.E.; Banach, M. Association of types of dietary fats and all-cause and cause-specific mortality: A prospective cohort study and meta-analysis of prospective studies with 1,164,029 participants. Clin. Nutr. 2020, 39, 3677–3686. [Google Scholar] [CrossRef]
- Jang, H.; Park, K. Omega-3 and omega-6 polyunsaturated fatty acids and metabolic syndrome: A systematic review and meta-analysis. Clin. Nutr. 2020, 39, 765–773. [Google Scholar] [CrossRef] [PubMed]
- Wanders, A.J.; Blom, W.; Zock, P.; Geleijnse, J.M.; A Brouwer, I.; Alssema, M. Plant-derived polyunsaturated fatty acids and markers of glucose metabolism and insulin resistance: A meta-analysis of randomized controlled feeding trials. BMJ Open Diabetes Res. Care 2019, 7, e000585. [Google Scholar] [CrossRef] [Green Version]
- Das, U.N. Essential fatty acids: Biochemistry, physiology and pathology. Biotechnol. J. 2006, 1, 420–439. [Google Scholar] [CrossRef] [PubMed]
- Tocher, D.R.; Glencross, B.D. Lipids and Fatty Acids. In Dietary Nutrients, Additives and Fish Health; Wiley: Hoboken, NJ, USA, 2015; pp. 47–94. ISBN 9781119005568. [Google Scholar]
- Schwab, U.; Lauritzen, L.; Tholstrup, T.; Halldorsson, T.; Riserus, U.; Uusitupa, M.; Becker, W. Effect of the amount and type of dietary fat on cardiometabolic risk factors and risk of developing type 2 diabetes, cardiovascular diseases, and cancer: A systematic review. Food Nutr. Res. 2014, 58, 1–26. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bozzetto, L.; Prinster, A.; Annuzzi, G.; Costagliola, L.; Mangione, A.; Vitelli, A.; Mazzarella, R.; Longobardo, M.; Mancini, M.; Vigorito, C.; et al. Liver Fat Is Reduced by an Isoenergetic MUFA Diet in a Controlled Randomized Study in Type 2 Diabetic Patients. Diabetes Care 2012, 35, 1429–1435. [Google Scholar] [CrossRef] [Green Version]
- Qian, F.; Korat, A.A.; Malik, V.; Hu, F.B. Metabolic Effects of Monounsaturated Fatty Acid–Enriched Diets Compared With Carbohydrate or Polyunsaturated Fatty Acid–Enriched Diets in Patients With Type 2 Diabetes: A Systematic Review and Meta-analysis of Randomized Controlled Trials. Diabetes Care 2016, 39, 1448–1457. [Google Scholar] [CrossRef] [Green Version]
- Dulf, F.V.; Andrei, S.; Bunea, A.; Socaciu, C. Fatty acid and phytosterol contents of some Romanian wild and cultivated berry pomaces. Chem. Pap. 2012, 66, 925–934. [Google Scholar] [CrossRef]
- Piasecka, I.; Górska, A.; Ostrowska-Ligęza, E.; Kalisz, S. The Study of Thermal Properties of Blackberry, Chokeberry and Raspberry Seeds and Oils. Appl. Sci. 2021, 11, 7704. [Google Scholar] [CrossRef]
- Bada, J.; León-Camacho, M.; Copovi, P.; Alonso, L. Characterization of Berry and Currant Seed Oils from Asturias, Spain. Int. J. Food Prop. 2013, 17, 77–85. [Google Scholar] [CrossRef] [Green Version]
- Oomah, B.; Ladet, S.; Godfrey, D.V.; Liang, J.; Girard, B. Characteristics of raspberry (Rubus idaeus L.) seed oil. Food Chem. 2000, 69, 187–193. [Google Scholar] [CrossRef]
- Knothe, G. Fuel properties of methyl esters of borage and black currant oils containing methyl γ-linolenate. Eur. J. Lipid Sci. Technol. 2013, 115, 901–908. [Google Scholar] [CrossRef]
- Dobson, G.; Shrestha, M.; Hilz, H.; Karjalainen, R.; McDougall, G.; Stewart, D. Lipophilic components in black currant seed and pomace extracts. Eur. J. Lipid Sci. Technol. 2011, 114, 575–582. [Google Scholar] [CrossRef]
- Johansson, A.; Laine, T.; Linna, M.-M.; Kallio, H. Variability in oil content and fatty acid composition in wild northern currants. Eur. Food Res. Technol. 2000, 211, 277–283. [Google Scholar] [CrossRef]
- Piskernik, S.; Vidrih, R.; Demšar, L.; Koron, D.; Rogelj, M.; Žontar, T.P. Fatty acid profiles of seeds from different Ribes species. LWT Food Sci. Technol. 2018, 98, 424–427. [Google Scholar] [CrossRef]
- Shahidi, F.; De Camargo, A.C. Tocopherols and Tocotrienols in Common and Emerging Dietary Sources: Occurrence, Applications, and Health Benefits. Int. J. Mol. Sci. 2016, 17, 1745. [Google Scholar] [CrossRef]
- Kamal-Eldin, A. Effect of fatty acids and tocopherols on the oxidative stability of vegetable oils. Eur. J. Lipid Sci. Technol. 2006, 108, 1051–1061. [Google Scholar] [CrossRef]
- Wagner, K.-H.; Elmadfa, I. Effects of tocopherols and their mixtures on the oxidative stability of olive oil and linseed oil under heating. Eur. J. Lipid Sci. Technol. 2000, 102, 624–629. [Google Scholar] [CrossRef]
- Player, M.; Kim, H.; Lee, H.; Min, D. Stability of α-, γ-, or δ-Tocopherol during Soybean Oil Oxidation. J. Food Sci. 2006, 71, C456–C460. [Google Scholar] [CrossRef]
- Ayyildiz, H.F.; Topkafa, M.; Kara, H.; Sherazi, S.T.H. Evaluation of Fatty Acid Composition, Tocols Profile, and Oxidative Stability of Some Fully Refined Edible Oils. Int. J. Food Prop. 2015, 18, 2064–2076. [Google Scholar] [CrossRef]
- Górnaś, P.; Soliven, A.; Segliņa, D. Seed oils recovered from industrial fruit by-products are a rich source of tocopherols and tocotrienols: Rapid separation of α/β/γ/δ homologues by RP-HPLC/FLD. Eur. J. Lipid Sci. Technol. 2014, 117, 773–777. [Google Scholar] [CrossRef]
- Schneider, C. Chemistry and biology of vitamin E. Mol. Nutr. Food Res. 2004, 49, 7–30. [Google Scholar] [CrossRef]
- Piironen, V.; Lindsay, D.G.; Miettinen, T.A.; Toivo, J.; Lampi, A.-M. Plant Sterols: Biosynthesis, Biological Function and Their Importance to Human Nutrition. J. Sci. Food Agric. 2000, 80, 939–966. [Google Scholar] [CrossRef]
- Guillaume, C.; Ravetti, L.; Ray, D.L.; Johnson, J. Technological Factors Affecting Sterols in Australian Olive Oils. J. Am. Oil Chem. Soc. 2011, 89, 29–39. [Google Scholar] [CrossRef]
- Verleyen, T.; Sosinska, U.; Ioannidou, S.; Verhe, R.; Dewettinck, K.; Huyghebaert, A.; De Greyt, W. Influence of the vegetable oil refining process on free and esterified sterols. J. Am. Oil Chem. Soc. 2002, 79, 947–953. [Google Scholar] [CrossRef]
- Hu, Y.; Xu, J.; Huang, W.; Zhao, Y.; Li, M.; Wang, M.; Zheng, L.; Lu, B. Structure–activity relationships between sterols and their thermal stability in oil matrix. Food Chem. 2018, 258, 387–392. [Google Scholar] [CrossRef] [PubMed]
- Deepam, L.S.A.; Sundaresan, A.; Arumughan, C. Stability of Rice Bran Oil in Terms of Oryzanol, Tocopherols, Tocotrienols and Sterols. J. Am. Oil Chem. Soc. 2010, 88, 1001–1009. [Google Scholar] [CrossRef]
- Wang, T.; Hicks, K.B.; Moreau, R. Antioxidant activity of phytosterols, oryzanol, and other phytosterol conjugates. J. Am. Oil Chem. Soc. 2002, 79, 1201–1206. [Google Scholar] [CrossRef]
- Chang, M.; Xu, Y.; Li, X.; Shi, F.; Liu, R.; Jin, Q.; Wang, X. Effects of stigmasterol on the thermal stability of soybean oil during heating. Eur. Food Res. Technol. 2020, 246, 1755–1763. [Google Scholar] [CrossRef]
- Qianchun, D.; Jie, S.; Mingming, Z.; Jiqu, X.; Chuyun, W.; Qingde, H.; Qi, Z.; Pingmei, G.; Fenghong, H.; Lan, W.; et al. Thermal Stability of Rapeseed Oil Fortified with Unsaturated Fatty Acid Sterol Esters. J. Am. Oil Chem. Soc. 2014, 91, 1793–1803. [Google Scholar] [CrossRef]
- Lin, Y.; Knol, D.; Menéndez-Carreño, M.; Baris, R.; Janssen, H.-G.; Trautwein, E.A. Oxidation of sitosterol and campesterol in foods upon cooking with liquid margarines without and with added plant sterol esters. Food Chem. 2018, 241, 387–396. [Google Scholar] [CrossRef] [PubMed]
- AbuMweis, S.S.; Barake, R.; Jones, P.J. Plant sterols/stanols as cholesterol lowering agents: A meta-analysis of randomized controlled trials. Food Nutr. Res. 2008, 52, 1–17. [Google Scholar] [CrossRef]
- de Jong, A.; Plat, J.; Mensink, R.P. Metabolic effects of plant sterols and stanols (Review). J. Nutr. Biochem. 2003, 14, 362–369. [Google Scholar] [CrossRef]
- Cacace, J.; Mazza, G. Mass transfer process during extraction of phenolic compounds from milled berries. J. Food Eng. 2003, 59, 379–389. [Google Scholar] [CrossRef]
- Brglez Mojzer, E.; Knez Hrnčič, M.; Škerget, M.; Knez, Ž.; Bren, U. Polyphenols: Extraction Methods, Antioxidative Action, Bioavailability and Anticarcinogenic Effects. Molecules 2016, 21, 901. [Google Scholar] [CrossRef]
- Martakos, I.; Kostakis, M.; Dasenaki, M.; Pentogennis, M.; Thomaidis, N. Simultaneous Determination of Pigments, Tocopherols, and Squalene in Greek Olive Oils: A Study of the Influence of Cultivation and Oil-Production Parameters. Foods 2019, 9, 31. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tir, R.; Dutta, P.C.; Badjah-Hadj-Ahmed, A.Y. Effect of the extraction solvent polarity on the sesame seeds oil composition. Eur. J. Lipid Sci. Technol. 2012, 114, 1427–1438. [Google Scholar] [CrossRef]
- Sicaire, A.-G.; Vian, M.; Fine, F.; Joffre, F.; Carré, P.; Tostain, S.; Chemat, F. Alternative Bio-Based Solvents for Extraction of Fat and Oils: Solubility Prediction, Global Yield, Extraction Kinetics, Chemical Composition and Cost of Manufacturing. Int. J. Mol. Sci. 2015, 16, 8430–8453. [Google Scholar] [CrossRef]
- Wajs-Bonikowska, A.; Stobiecka, A.; Bonikowski, R.; Krajewska, A.; Sikora, M.; Kula, J. A comparative study on composition and antioxidant activities of supercritical carbon dioxide, hexane and ethanol extracts from blackberry (Rubus fruticosus) growing in Poland. J. Sci. Food Agric. 2017, 97, 3576–3583. [Google Scholar] [CrossRef]
- Dimic, E.; Vujasinovic, V.; Radocaj, O.; Pastor, O. Characteristics of blackberry and raspberry seeds and oils. Acta Period. Technol. 2012, 43, 1–9. [Google Scholar] [CrossRef]
- Šućurović, A.; Vukelić, N.; Ignjatović, L.; Brčeski, I.; Jovanović, D. Physical-chemical characteristics and oxidative stability of oil obtained from lyophilized raspberry seed. Eur. J. Lipid Sci. Technol. 2009, 111, 1133–1141. [Google Scholar] [CrossRef]
- Radočaj, O.; Vujasinović, V.; Dimić, E.; Basić, Z. Blackberry (Rubus fruticosus L.) and raspberry (Rubus idaeus L.) seed oils extracted from dried press pomace after longterm frozen storage of berries can be used as functional food ingredients. Eur. J. Lipid Sci. Technol. 2014, 116, 1015–1024. [Google Scholar] [CrossRef]
- Pieszka, M.; Gogol, P.; Pietras, M.; Pieszka, M. Valuable Components of Dried Pomaces of Chokeberry, Black Currant, Strawberry, Apple and Carrot as a Source of Natural Antioxidants and Nutraceuticals in the Animal Diet. Ann. Anim. Sci. 2015, 15, 475–491. [Google Scholar] [CrossRef] [Green Version]
- Puganen, A.; Kallio, H.P.; Schaich, K.M.; Suomela, J.-P.; Yang, B. Red/Green Currant and Sea Buckthorn Berry Press Residues as Potential Sources of Antioxidants for Food Use. J. Agric. Food Chem. 2018, 66, 3426–3434. [Google Scholar] [CrossRef] [PubMed]
- Ross, K.A.; Ehret, D.; Godfrey, D.; Fukumoto, L.; Diarra, M. Characterization of Pilot Scale Processed Canadian Organic Cranberry (Vaccinium macrocarpon) and Blueberry (Vaccinium angustifolium) Juice Pressing Residues and Phenolic-Enriched Extractives. Int. J. Fruit Sci. 2016, 17, 202–232. [Google Scholar] [CrossRef]
- Vulić, J.J.; Tumbas, V.T.; Savatović, S.M.; Djilas, S.; Ćetković, G.S.; Čanadanović-Brunet, J.M. Polyphenolic content and antioxidant activity of the four berry fruits pomace extracts. Acta Period. Technol. 2011, 42, 271–279. [Google Scholar] [CrossRef]
- Čanadanović-Brunet, J.; Vulić, J.; Ćebović, T.; Ćetković, G.; Čanadanović, V.; Djilas, S.; Šaponjac, V.T. Phenolic Profile, Antiradical and Antitumour Evaluation of Raspberries Pomace Extract from Serbia. Iran. J. Pharm. Res. 2017, 16, 142–152. [Google Scholar]
- Laroze, L.E.; Díaz-Reinoso, B.; Moure, A.; Zúñiga, M.E.; Domínguez, H. Extraction of antioxidants from several berries pressing wastes using conventional and supercritical solvents. Eur. Food Res. Technol. 2010, 231, 669–677. [Google Scholar] [CrossRef]
- Kosmala, M.; Zduńczyk, Z.; Kołodziejczyk, K.; Klimczak, E.; Juśkiewicz, J.; Zdunczyk, P. Chemical composition of polyphenols extracted from strawberry pomace and their effect on physiological properties of diets supplemented with different types of dietary fibre in rats. Eur. J. Nutr. 2013, 53, 521–532. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Machado, A.P.D.F.; Pereira, A.L.D.; Barbero, G.F.; Martínez, J. Recovery of anthocyanins from residues of Rubus fruticosus, Vaccinium myrtillus and Eugenia brasiliensis by ultrasound assisted extraction, pressurized liquid extraction and their combination. Food Chem. 2017, 231, 1–10. [Google Scholar] [CrossRef]
- Medina-Torres, N.; Ayora-Talavera, T.; Espinosa-Andrews, H.; Sánchez-Contreras, A.; Pacheco, N. Ultrasound Assisted Extraction for the Recovery of Phenolic Compounds from Vegetable Sources. Agronomy 2017, 7, 47. [Google Scholar] [CrossRef]
- D’Alessandro, L.G.; Kriaa, K.; Nikov, I.; Dimitrov, K. Ultrasound assisted extraction of polyphenols from black chokeberry. Sep. Purif. Technol. 2012, 93, 42–47. [Google Scholar] [CrossRef]
- Herrera, M.C.; de Castro, M.D.L. Ultrasound-assisted extraction for the analysis of phenolic compounds in strawberries. Anal. Bioanal. Chem. 2004, 379, 1106–1112. [Google Scholar] [CrossRef] [PubMed]
- Wang, W.; Jung, J.; Tomasino, E.; Zhao, Y. Optimization of solvent and ultrasound-assisted extraction for different anthocyanin rich fruit and their effects on anthocyanin compositions. LWT Food Sci. Technol. 2016, 72, 229–238. [Google Scholar] [CrossRef] [Green Version]
- Gayas, B.; Kaur, G.; Gul, K. Ultrasound-Assisted Extraction of Apricot Kernel Oil: Effects on Functional and Rheological Properties. J. Food Process Eng. 2017, 40, e1243. [Google Scholar] [CrossRef]
- Samaram, S.; Mirhosseini, H.; Tan, C.P.; Ghazali, H.; Bordbar, S.; Serjouie, A. Optimisation of ultrasound-assisted extraction of oil from papaya seed by response surface methodology: Oil recovery, radical scavenging antioxidant activity, and oxidation stability. Food Chem. 2015, 172, 7–17. [Google Scholar] [CrossRef]
- Samaram, S.; Mirhosseini, H.; Tan, C.P.; Ghazali, H.M. Ultrasound-Assisted Extraction (UAE) and Solvent Extraction of Papaya Seed Oil: Yield, Fatty Acid Composition and Triacylglycerol Profile. Molecules 2013, 18, 12474–12487. [Google Scholar] [CrossRef] [Green Version]
- Krivokapić, S.; Vlaović, M.; Vratnica, B.D.; Perović, A.; Perović, S. Biowaste as a Potential Source of Bioactive Compounds—A Case Study of Raspberry Fruit Pomace. Foods 2021, 10, 706. [Google Scholar] [CrossRef]
- Bamba, B.S.B.; Shi, J.; Tranchant, C.C.; Xue, S.J.; Forney, C.F.; Lim, L.-T. Influence of Extraction Conditions on Ultrasound-Assisted Recovery of Bioactive Phenolics from Blueberry Pomace and Their Antioxidant Activity. Molecules 2018, 23, 1685. [Google Scholar] [CrossRef] [Green Version]
- Zafra-Rojas, Q.Y.; Cruz-Cansino, N.S.; Lira, A.Q.; Gómez-Aldapa, C.A.; Alanís-García, E.; Cervantes-Elizarrarás, A.; Güemes-Vera, N.; Ramírez-Moreno, E. Application of Ultrasound in a Closed System: Optimum Condition for Antioxidants Extraction of Blackberry (Rubus fructicosus) Residues. Molecules 2016, 21, 950. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Xue, H.; Tan, J.; Li, Q.; Tang, J.; Cai, X. Ultrasound-Assisted Enzymatic Extraction of Anthocyanins from Raspberry Wine Residues: Process Optimization, Isolation, Purification, and Bioactivity Determination. Food Anal. Methods 2021, 14, 1369–1386. [Google Scholar] [CrossRef]
- Ramić, M.; Vidović, S.; Zeković, Z.; Vladić, J.; Cvejin, A.; Pavlić, B. Modeling and optimization of ultrasound-assisted extraction of polyphenolic compounds from Aronia melanocarpa by-products from filter-tea factory. Ultrason. Sonochem. 2015, 23, 360–368. [Google Scholar] [CrossRef]
- He, B.; Zhang, L.-L.; Yue, X.-Y.; Liang, J.; Jiang, J.; Gao, X.-L.; Yue, P.-X. Optimization of Ultrasound-Assisted Extraction of phenolic compounds and anthocyanins from blueberry (Vaccinium ashei) wine pomace. Food Chem. 2016, 204, 70–76. [Google Scholar] [CrossRef] [PubMed]
- Lončarić, A.; Celeiro, M.; Jozinović, A.; Jelinić, J.; Kovač, T.; Jokić, S.; Babić, J.; Moslavac, T.; Zavadlav, S.; Lores, M. Green Extraction Methods for Extraction of Polyphenolic Compounds from Blueberry Pomace. Foods 2020, 9, 1521. [Google Scholar] [CrossRef]
- Gođevac, D.; Tešević, V.; Vajs, V.; Milosavljević, S.; Stanković, M. Blackberry Seed Extracts and Isolated Polyphenolic Compounds Showing Protective Effect on Human Lymphocytes DNA. J. Food Sci. 2011, 76, C1039–C1043. [Google Scholar] [CrossRef]
- Teng, H.; Chen, L.; Huang, Q.; Wang, J.; Lin, Q.; Liu, M.; Lee, W.Y.; Song, H. Ultrasonic-Assisted Extraction of Raspberry Seed Oil and Evaluation of Its Physicochemical Properties, Fatty Acid Compositions and Antioxidant Activities. PLoS ONE 2016, 11, e0153457. [Google Scholar] [CrossRef] [PubMed]
- Sady, S.; Matuszak, L.; Błaszczyk, A. Optimisation of ultrasonic-assisted extraction of bioactive compounds from chokeberry pomace using response surface methodology. Acta Sci. Pol. Technol. Aliment. 2015, 18, 249–256. [Google Scholar] [CrossRef]
- Cvetanović, A.; Švarc-Gajić, J.; Zeković, Z.; Mašković, P.; Đurović, S.; Zengin, G.; Delerue-Matos, C.; Lozano-Sánchez, J.; Jakšić, A. Chemical and biological insights on aronia stems extracts obtained by different extraction techniques: From wastes to functional products. J. Supercrit. Fluids 2017, 128, 173–181. [Google Scholar] [CrossRef] [Green Version]
- Oszmiański, J.; Lachowicz, S. Effect of the Production of Dried Fruits and Juice from Chokeberry (Aronia melanocarpa L.) on the Content and Antioxidative Activity of Bioactive Compounds. Molecules 2016, 21, 1098. [Google Scholar] [CrossRef] [PubMed]
- Kumari, B.; Tiwari, B.K.; Hossain, M.B.; Brunton, N.P.; Rai, D.K. Recent Advances on Application of Ultrasound and Pulsed Electric Field Technologies in the Extraction of Bioactives from Agro-Industrial By-products. Food Bioprocess Technol. 2018, 11, 223–241. [Google Scholar] [CrossRef]
- Pataro, G.; Bobinaitė, R.; Bobinas, Česlovas; Satkauskas, S.; Raudonis, R.; Visockis, M.; Ferrari, G.; Viskelis, P. Improving the Extraction of Juice and Anthocyanins from Blueberry Fruits and Their By-products by Application of Pulsed Electric Fields. Food Bioprocess Technol. 2017, 10, 1595–1605. [Google Scholar] [CrossRef]
- Bobinaitė, R.; Pataro, G.; Lamanauskas, N.; Šatkauskas, S.; Viskelis, P.; Ferrari, G. Application of pulsed electric field in the production of juice and extraction of bioactive compounds from blueberry fruits and their by-products. J. Food Sci. Technol. 2015, 52, 5898–5905. [Google Scholar] [CrossRef] [PubMed]
- Zhou, Y.; Zhao, X.; Huang, H. Effects of Pulsed Electric Fields on Anthocyanin Extraction Yield of Blueberry Processing By-Products. J. Food Process. Preserv. 2015, 39, 1898–1904. [Google Scholar] [CrossRef]
- Gagneten, M.; Leiva, G.; Salvatori, D.; Schebor, C.; Olaiz, N. Optimization of Pulsed Electric Field Treatment for the Extraction of Bioactive Compounds from Blackcurrant. Food Bioprocess Technol. 2019, 12, 1102–1109. [Google Scholar] [CrossRef]
- Veggi, P.C.; Martinez, J.; Meireles, M.A.A. Fundamentals of Microwave Extraction. In Microwave-Assisted Extraction for Bioactive 15 Compounds: Theory and Practice; Food Engineering Series; Springer Science and Business Media LLC: Boston, MA, USA, 2012; pp. 15–52. [Google Scholar]
- Pap, N.; Beszédes, S.; Pongrácz, E.; Myllykoski, L.; Gábor, M.; Gyimes, E.; Hodúr, C.; Keiski, R.L. Microwave-Assisted Extraction of Anthocyanins from Black Currant Marc. Food Bioprocess Technol. 2013, 6, 2666–2674. [Google Scholar] [CrossRef]
- Davis, E.J.; Andreani, E.S.; Karboune, S. Production of Extracts Composed of Pectic Oligo/Polysaccharides and Polyphenolic Compounds from Cranberry Pomace by Microwave-Assisted Extraction Process. Food Bioprocess Technol. 2021, 14, 634–649. [Google Scholar] [CrossRef]
- Raghavan, S.; Richards, M. Comparison of solvent and microwave extracts of cranberry press cake on the inhibition of lipid oxidation in mechanically separated turkey. Food Chem. 2007, 102, 818–826. [Google Scholar] [CrossRef]
- Klavins, L.; Kviesis, J.; Klavins, M. Comparison of Methods of Extraction of Phenolic Compounds from American Cranberry (Vaccinium macrocarpon L.) Press Residues. Agron. Res. 2017, 15, 1316–1329. [Google Scholar]
- Wrona, O.; Rafińska, K.; Możeński, C.; Buszewski, B. Supercritical Fluid Extraction of Bioactive Compounds from Plant Materials. J. AOAC Int. 2017, 100, 1624–1635. [Google Scholar] [CrossRef] [PubMed]
- Campalani, C.; Amadio, E.; Zanini, S.; Dall’Acqua, S.; Panozzo, M.; Ferrari, S.; De Nadai, G.; Francescato, S.; Selva, M.; Perosa, A. Supercritical CO2 as a green solvent for the circular economy: Extraction of fatty acids from fruit pomace. J. CO2 Util. 2020, 41, 101259. [Google Scholar] [CrossRef]
- Marić, B.; Abramović, B.; Ilić, N.; Krulj, J.; Kojić, J.; Perović, J.; Bodroža-Solarov, M.; Teslić, N. Valorization of red raspberry (Rubus idaeus L.) seeds as a source of health beneficial compounds: Extraction by different methods. J. Food Process. Preserv. 2020, 44, e14744. [Google Scholar] [CrossRef]
- Milala, J.; Grzelak-Błaszczyk, K.; Sójka, M.; Kosmala, M.; Dobrzyńska-Inger, A.; Rój, E. Changes of bioactive components in berry seed oils during supercritical CO2 extraction. J. Food Process. Preserv. 2017, 42, e13368. [Google Scholar] [CrossRef]
- Correa, M.D.S.; Fetzer, D.L.; Hamerski, F.; Corazza, M.L.; Scheer, A.D.P.; Ribani, R.H. Pressurized extraction of high-quality blackberry (Rubus spp. Xavante cultivar) seed oils. J. Supercrit. Fluids 2021, 169, 105101. [Google Scholar] [CrossRef]
- Pavlić, B.; Pezo, L.; Marić, B.; Tukuljac, L.P.; Zeković, Z.; Solarov, M.B.; Teslić, N. Supercritical fluid extraction of raspberry seed oil: Experiments and modelling. J. Supercrit. Fluids 2020, 157, 104687. [Google Scholar] [CrossRef]
- Basegmez, H.I.O.; Povilaitis, D.; Kitrytė, V.; Kraujalienė, V.; Šulniūtė, V.; Alasalvar, C.; Venskutonis, P.R. Biorefining of blackcurrant pomace into high value functional ingredients using supercritical CO2, pressurized liquid and enzyme assisted extractions. J. Supercrit. Fluids 2017, 124, 10–19. [Google Scholar] [CrossRef]
- Sapkale, G.N.; Patil, S.M.; Surwase, U.S.; Bhatbhage, P.K. Supercritical Fluid Extraction. Int. J. Chem. Sci. 2010, 8, 729–743. [Google Scholar]
- Mustafa, A.; Turner, C. Pressurized liquid extraction as a green approach in food and herbal plants extraction: A review. Anal. Chim. Acta 2011, 703, 8–18. [Google Scholar] [CrossRef] [PubMed]
- Brazdauskas, T.; Montero, L.; Venskutonis, P.; Ibañez, E.; Herrero, M. Downstream valorization and comprehensive two-dimensional liquid chromatography-based chemical characterization of bioactives from black chokeberries (Aronia melanocarpa) pomace. J. Chromatogr. A 2016, 1468, 126–135. [Google Scholar] [CrossRef] [PubMed]
- Grunovaitė, L.; Pukalskienė, M.; Pukalskas, A.; Venskutonis, P.R. Fractionation of black chokeberry pomace into functional ingredients using high pressure extraction methods and evaluation of their antioxidant capacity and chemical composition. J. Funct. Foods 2016, 24, 85–96. [Google Scholar] [CrossRef]
- Kryževičūtė, N.; Jaime, I.; Diez, A.M.; Rovira, J.; Venskutonis, P.R. Effect of raspberry pomace extracts isolated by high pressure extraction on the quality and shelf-life of beef burgers. Int. J. Food Sci. Technol. 2017, 52, 1852–1861. [Google Scholar] [CrossRef]
- Puri, M.; Sharma, D.; Barrow, C.J. Enzyme-assisted extraction of bioactives from plants. Trends Biotechnol. 2012, 30, 37–44. [Google Scholar] [CrossRef]
- Syrpas, M.; Valanciene, E.; Augustiniene, E.; Malys, N. Valorization of Bilberry (Vaccinium myrtillus L.) Pomace by Enzyme-Assisted Extraction: Process Optimization and Comparison with Conventional Solid-Liquid Extraction. Antioxidants 2021, 10, 773. [Google Scholar] [CrossRef]
- Kitrytė, V.; Kraujalienė, V.; Šulniūtė, V.; Pukalskas, A.; Venskutonis, P.R. Chokeberry pomace valorization into food ingredients by enzyme-assisted extraction: Process optimization and product characterization. Food Bioprod. Process. 2017, 105, 36–50. [Google Scholar] [CrossRef]
- Saad, N.; Louvet, F.; Tarrade, S.; Meudec, E.; Grenier, K.; Landolt, C.; Ouk, T.; Bressollier, P. Enzyme-Assisted Extraction of Bioactive Compounds from Raspberry (Rubus idaeus L.) Pomace. J. Food Sci. 2019, 84, 1371–1381. [Google Scholar] [CrossRef]
Source of Oil | C16:0 | C16:1 | C18:0 | C18:1 | C18:2 | C18:3 | C18:4 | C20:0 | C20:1 | C20:2 | C22:0 | Reference |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Chokeberry | 5.1–7.22 | 0.15–0.53 | 1.1–1.39 | n9 cis: 23.47, n9 trans: 0.93 or total: 17.48–21.4 | 64.67–71.1 | n3: 0.34–0.92 or total: 0.5 | - | 0.6–0.81 | 0.25 | 5.26 | 0.38–0.8 | [38,57,58] |
Raspberry | 2.43–2.92 | 0.08–0.12 | 0.87–1.45 | n9: 11.74–11.76 n7: 0.80 or total: 10.87–11.99 | 51.44–54.52 | n3: 6.68–31.68 n6: 0.07 or total: 29.11 | - | 0.37–0.62 | 0.13–0.14 | 0.03–0.33 | 0.10–0.34 | [37,38,58,59,60] |
Raspberry (wild) | 2.61 | 0.06 | 1.19 | n9 cis: 26.22 n9 trans: 0.23 | 51.07 | n3: 17.93 | - | 0.43 | 0.05 | - | 0.14 | [57] |
Blackberry | 3.47–4.52 | 0.03–0.13 | 2.10–2.87 | n9: 7.50–12.17 n7: 0.56 or total: 14.72 | 61.22–67.96 | n3: 15.60–17.60 n6: 0.07 | - | 0.47–1.06 | 0.31–0.38 | 0.15 | 0.12–0.16 | [37,58,59] |
Blackcurrant | 4.49–6.5 | 0.03–0.1 | 1.4–1.93 | n9: 10.2–13.79 n7: 0.35–0.7 or total: 16.1 | 41.41–57.8 | n3: 12.91–14.9 n6: 13.9–15.6 or total: 13.2 | 2.7–3.89 | 0.04–0.2 | 0.16–1.0 | 0.06–0.3 | 0.1–4.7 | [38,59,61,62] |
Redcurrant | 4.8–6.88 | 0.09 | 1.29–3.0 | n9: 9.61–17.8 n7: 0.6–0.72 | 40.7–44.0 | n3: 23.34–24.5 n6: 5.6–9.16 | 3.0–4.48 | 0.13 | 0.71 | 0.27 | 0.09 | [59,63] |
Blueberry | 4.98–7.64 | 0.08 | 1.93–3.31 | n9 cis: 50.74, n9 trans: 0.38 n9 total: 18.00 n7: 0.56 | 30.0–35.84 | n3: 7.06–36.08 n6: 0.14 | - | 0.19–0.49 | 0.14 | 0.05 | 0.11 | [57,59] |
Gooseberry | 8.12 | - | 1.83 | n9: 14.32 | 33.86 | n3: 20.54 n6: 8.48 | 5.45 | - | - | - | - | [64] |
Strawberry | 4.32 | - | 1.68 | 14.55 | 42.22 | n3: 36.48 | - | 0.71 | - | - | - | [37] |
Source of Oil | α-TP | β-TP | γ-TP | δ-TP | α-T3 | β-T3 | γ-T3 | δ-T3 | Reference |
---|---|---|---|---|---|---|---|---|---|
Chokeberry | 70.6 | 28.2 | 0.2 | 0.2 | - | - | 0.8 | - | [38] |
Raspberry | 27.74–46.1 | 0.65 | 58.19–164.0 | 5.83–22.59 | - | 2.71 | 7.2 | - | [37,59,60] |
Blackberry | 0.89–2.54 | 0.18 | 42.41–131.1 | 3.17–6.97 | - | 0.44 | 2.0 | - | [37,59] |
Blackcurrant | 28.85–36.9 | 0.2–0.55 | 23.01–55.4 | 4.09–6.9 | 0.09–0.1 | 0.3–0.65 | 0.2–0.26 | - | [38,59] |
Redcurrant | 3.04–5.75 | 0.56–0.79 | 33.64–156.39 | 19.38–41.13 | 0.10 | 0.31 | 0.13 | 0.03 | [59,70] |
Gooseberry | 5.26 | 0.20 | 60.35 | 3.32 | - | - | - | - | [70] |
Blueberry | 0.44 | - | 3.44 | - | - | - | 33.04 | 0.6 | [37] |
Strawberry | - | - | 26.03 | 2.0 | - | - | - | - | [37] |
Source of Oil | Cholesterol | Campesterol | Stigmasterol | β-Sitosterol | D5-Avenasterol | D7-Stigmasterol | D7.25-Stigmasterol | Reference |
---|---|---|---|---|---|---|---|---|
Chokeberry | 2.95 | 5.5 | 3.85 | 81.8 | 1.85 | 1.8 | 1.8 | [38] |
Blackberry | 0.33 | 5.3–7.03 | 1.8–4.87 | 77.77–84.7 | 3.02–7.0 | 1.41 | - | [37,59] |
Raspberry | 0.43 | 4.5–4.51 | 0.84–1.2 | 79.6–83.95 | 5.35–7.2 | 1.24 | - | [37,59] |
Blackcurrant | 2.5 | 1.25 | 4.9 | 86.6 | 1.3 | 0.85 | 1.4 | [38] |
Blackcurrant | 0.31 | 8.14 | 0.42 | 81.09 | 3.10 | 1.92 | - | [59] |
Redcurrant | 0.36 | 10.01 | 0.24 | 87.58 | 0.36 | - | - | [59] |
Blueberry | 0.24 | 3.4–4.63 | 0.3–0.37 | 66.5–82.85 | 2.14–13.8 | 3.97 | - | [37,59] |
Strawberry | - | 5.4 | 2.3 | 71.1 | 8.7 | - | - | [37] |
Source of Waste | Pretreatment Method | Extraction Conditions (S—Solvent, S–L—Solid–Liquid Ratio, M—Mass of Solid, t—Time, T—Temperature) | Oil Yield | Fatty Acids Profile (%) (PUFA/MUFA/SFA, Dominant FA) | Reference |
---|---|---|---|---|---|
Blackberry (Rubus fruticosus cv. Tenac) Raspberry (Rubus idaeus cv. Meeker) Blueberry (Vaccinium myrtillus cv. Ivanhoe) Blackcurrant (Ribes nigrum cv. Junifer) Redcurrant (Ribes rubrum cv. Smoothstem) pomaces | Seeds separated from pomace dried at room temperature using sieves, then ground | S: hexane Soxhlet apparatus | Blackberry pomace: 15.68% Raspberry pomace: 10.55%, Blueberry pomace: 13.27% Blackcurrant pomace: 26.15% Redcurrant pomace: 9.11% | Blackberry pomace PUFA: 83.78 MUFA: 8.40 SFA: 6.49 Dominant: C18:2 n6 Raspberry pomace PUFA: 81.05 MUFA: 12.81 SFA: 4.13 Dominant: C18:2 n6 Blueberry pomace PUFA: 72.11 MUFA: 18.78 SFA: 6.75 Dominant: C18:3 n3 Blackcurrant pomace PUFA: 73.16 MUFA: 14.33 SFA: 6.46 Dominant: C18:2 n6 Redcurrant pomace PUFA: 81.25 MUFA: 11.13 SFA: 8.39 Dominant 18:2 n6 | [59] |
Blackberry (Rubus fruticosus cv. Ćačanska beztrna) Raspberry (Rubus idaeus cv. Willamette) seeds | Seeds obtained from the pomace dried at room temperature or in oven | Standard laboratory method S: hexane t: 8 h | Blackberry seeds: 13.97–14.34% Raspberry seeds: 13.44–14.33% (Higher values for pomaces dried in oven) | - | [89] |
Raspberry (Rubus idaeus) different cv. seeds | Seeds air-dried in fluid bed dryer for 2 h/25 °C, then ground | S: hexane 1 L M: 100 g t: 2 h T: 4 °C Extraction performed 3 times | 10.7% | Crude oil: PUFA: 83.63 MUFA: 11.99 SFA: 3.66 Dominant: C18:2 n6 | [60] |
Wild: Blueberry (Vaccinium myrtillus) Cowberry (Vaccinium vitis-idaea) Raspberry (Rubus idaeus) Cultivated: Blueberry (Vaccinium myrtillus) Chokeberry (Aronia melanocarpa) pomaces | Wet pomaces obtained after juice pressing | Methanol/chloroform homogenization procedure S: methanol (50 mL) and chloroform (100 mL) M: 5 g | Wild Blueberry pomace: 3.93% Cowberry pomace: 3.75% Raspberry pomace: 7.00% Cultivated Blueberry pomace: 2.80% Chokeberry pomace: 5.50% | Wild Blueberrypomace PUFA: 41.78 MUFA: 48.35 SFA: 9.80 Dominant: C18:1 n9 Cowberry pomace PUFA: 44.47 MUFA: 50.87 SFA: 4.65 Dominant: C18:1 n9 Raspberry pomace PUFA: 69.00 MUFA: 26.56 SFA: 4.44 Dominant: C18:2 n6 Cultivated Blueberry pomace PUFA: 37.00 MUFA: 51.20 SFA: 11.70 Dominant C18:1 n9 Chokeberry pomace PUFA: 65.01 MUFA: 24.93, SFA: 10.06 Dominant: C18:2 n6 | [57] |
Blackcurrant (Ribes nigrum cv. Ben Lomond and cv. Ben Tirran) pomaces | Pomaces were air-dried in oven or freeze-dried and (A) ground or (B) seeds separated from unground pomace using 500 µm sieve | Soxhlet extraction S: isohexane M: 10 g t: 30 min Residue left after 5 cycles was reground and extracted in another 5 cycles | From seeds: 14.5% from ground pomace: 7.8% (w/dry) | Seeds PUFA: 79.4 MUFA: 12.0 SFA: 8.7 Dominant: C18:2 n6 Pomace PUFA: 72.0 MUFA: 11.7 SFA: 16.3 Dominant: 18:2 n6 | [62] |
Raspberry (Rubus idaeus) dust as a by-product from fruit lyophilization | Seeds separated from the dust by sieving and then ground | Soxhlet apparatus S: petroleum ether M: 100 g t: 6 h | 14.5% | PUFA: 78.9 MUFA: 16.9 SFA: 4.2 Dominant: C18:2 n6 | [90] |
Blackberry (Rubus fruticosus cv. Cacanska beztrna) and Raspberry (Rubus idaeus cv. Wllamette) pomaces obtained from pressing long-term frozen fruits | Pomaces dried at room temperature or in oven | Standard laboratory method S: hexane t: 8 h | - | Blackberry pomace (room temperature-dried): PUFA: 74.94 MUFA: 17.87 SFA: 7.13 Blackberry pomace (oven-dried): PUFA: 75.66 MUFA: 19.03 SFA: 7.48 Dominant: C18:2 n6 Raspberry pomace (room temperature-dried) PUFA: 82.52 MUFA: 13.21 SFA: 4.23 Raspberry pomace (oven-dried): PUFA: 87.30 MUFA: 12.57 SFA: 4.26 Dominant: C18:2 n6 | [91] |
Blackberry (Rubus fruticosus) pomace | Pomace dried in the sun and milled | Soxhlet apparatus S: hexane 250 mL/ethanol 250 mL t: 8 h | Hexane 11.8% Ethanol 14.2% | Hexane extracted PUFA: 71.4 MUFA: 17.5 SFA: 11.1 Dominant: 18:2 n6 Ethanol extracted PUFA: 69.4 MUFA: 17.4 SFA: 13.2 Dominant: 18:2 n6 | [88] |
Chokeberry (Aronia melanocarpa), strawberry (Fragaria vesca), blackcurrant (Ribes nigrum) pomaces | - | Sample homogenized S: chloroform and methanol (v/v, 2:1) M: 5.0 g | - | Chokeberry pomace PUFA: 73.58 MUFA: 16.91 SFA: 9.51 Dominant: C18:2 n6 Strawberry pomace PUFA: 55.77 MUFA: 18.16 SFA: 26.07 Dominant: C18:2 n6 Blackcurrant pomace PUFA: 69.11 MUFA: 11.56 SFA: 19.33 Dominant: C18:2 n6 | [92] |
Source of Waste | Pretreatment Method | Extraction Conditions (S—Solvent, S–L—Solid–Liquid Ratio, M—Mass of solid, t—Time, T—Temperature) | Antioxidant Composition * | Antioxidant Capacity * | Reference |
Blackcurrant (Ribes nigrum cv. Mortti), Green currant (Ribes nigrum cv. Verti), Redcurrant (Ribes rubrum cv. Red Dutch), White currant (Ribes rubrum cv. White Dutch) pomaces | None (thawed pomace) | S: 92% ethanol S–L: 1:2 (w/v) | Blackcurrant pomace TPC: 55.3 μmol GAE/g (fw) White currant pomace TPC: 24.7 μmol GAE/g Redcurrant pomace TPC: 20.5 μmol GAE/g Green currant pomace TPC: 17.1 μμmol GAE/g | Blackcurrant pomace TRAP: 25,7 μmol TE/g (fw) ORAC: 88.8 μmol TE/g Redcurrant pomace TRAP: 11.6 μmol TE/g ORAC: 23.0 μmol TE/g Green currant pomace TRAP: 8.7 μmol TE/g ORAC: 32.9 μmol TE/g White currant pomace TRAP: 8.4 μmol TE/g ORAC: 16.8 μmol TE/g | [93] |
Cranberry (Vaccinium macrocarpon), Blueberry (Vaccinium angustifolium) pomace | Pomace freeze-dried, then ground | S: 80% ethanol S–L: 1:5 (w/v) t: 1 h Mixed, obtained extracts were freeze-dried | Cranberry pomace TPC (Folin–Ciocalteu): 54.35 mg GAE/g (dm) TPC (Glories): 36.25 mg GAE/g Tartaric esters: 10.29 mg CAE/g Flavanols: 11.74 mg QE/g TAC: 11.14 mg C3 GE/g Tannins: 48.09 mg GAE/g Blueberry pomace TPC (Folin–Ciocalteu): 72.01 mg GAE/g TPC (Glories): 55.67 mg GAE/g Tartaric esters: 15.03 mg CAE/g Flavanols: 18.34 mg QE/g TAC: 38.53 mg C3GE/g Tannins: 58.87 mg GAE/g | Cranberry pomace ABTS: 306.77 μmol TE/g (dm) FRAP: 243.61 μmol TE/g Blueberry pomace ABTS: 468.79 μmol TE/g FRAP: 372.22 μmol TE/g | [94] |
Bilberry (Vaccinium myrtillus), Blackberry (Rubus fruticosus), Raspberry (Rubus idaeus), Strawberry (Fragaria vesca) pomaces | None | S: 80% methanol with 0.05% acetic acid M: 20 g 3 times extracted: 60 min (160 mL of S), 30 min (80 mL of S) and 30 min (80 mL of S) | Bilberry pomace TPC: 11.16 mg GAE/g (fw) TFC: 10.47 mg RE/g TAC: 12.79 mg C3GE/g Blackberry pomace TPC: 8.05 mg GAE/g TFC: 2.45 mg RE/g TAC: 1.49 mg C3GE/g Raspberry pomace TPC: 6.38 mg GAE/g TFC: 5.92 mg RE/g TAC: 0.65 mg C3GE/g Strawberry pomace TPC: 4.88 mg GAE/g TFC: 2.96 mg RE/g TAC: 0.19 mg C3GE/g | Bilberry pomace DPPH IC50: 0.040 mg/mL (pomace extract) Blackberry pomace DPPH IC50: 0.017 mg/mL Raspberry pomace DPPH IC50: 0.040 mg/mL Strawberry pomace DPPH IC50: 0.038 mg/ml | [95] |
Blackberry (Rubus fruticosus) wild and cultivated (cv. Cacanska Bestrna and cv. Chester Thornless) pomaces | - | Soxhlet apparatus S: 80% ethanol t: 6 h extracts dried in a vacuum desiccator | Blackberry cv. Chester Thornless pomace TPC: 35.40 mg GAE/g fresh pomace (dm) TFC: 5.66 mg QE/g Flavanols: 6.63 mg QE/g Monomeric anthocyanins: 17.31 mg C3GE/g Blackberry cv. Cacanska Bestrna pomace TPC: 26.30 mg GAE/g TFC: 3.32 mg QE/g Flavanols: 2.55 mg QE/g Monomeric anthocyanins: 8.43 mg C3GE/g Blackberry wild pomace TPC: 48.28–50.16 mg GAE/g TFC: 7.45–7.73 mg QE/g Flavanols: 6.13–6.39 mg QE/g Monomeric anthocyanins: 13.05–13.40 mg C3GE/g | Blackberry cv. Chester Thornless pomace DPPH IC50: 0.178 mg/mL (pomace extract) ABTS IC50: 0.035 mg/mL Blackberry cv. Cacanska Bestrna pomace DPPH IC50: 0.206 mg/mL ABTS IC50: 0.047 mg/mL Blackberry wild pomace DPPH IC50: 0.106–0.127 mg/mL ABTS IC50: 0.024–0.027 mg/mL | [28] |
Raspberry (Rubus idaeus cv. Meeker and cv. Willamette) pomace | None | S: 80% methanol with 0.05% acetic acid M: 20 g T: room temperature Two extractions in: 160 mL, 60 min and 80 mL, 30 min | cv. Meeker pomace TPC (HPLC): 338.80 mg/100 g (pomace) cv. Willamette pomace TPC: 410.66 mg/100 g | cv. Meeker pomace DPPH IC50: 0.67 mg/mL (pomace extract) cv. Willamette pomace DPPH IC50: 0.54 mg/mL | [96] |
Cranberry (Vaccinium macrocarpon), blueberry (Vaccinium myrtillus) and raspberry (Rubus idaeus) pomace | Dehydrated, ground, separated into 2 groups depending on particle size (smaller particle size, 0.15 mm, and larger, 1 mm) | S: methanol S–L: 1:20 t: 1–24 h T: 40 °C using orbital shaker | Obtained after the most effective extraction parameters Cranberry pomace (1 h, larger particles) TPC: 138 mg GAE/g (fresh extract) Blueberry pomace (6 h, smaller particles) TPC: 172 mg GAE/g Raspberry pomace (18 h, smaller particles) TPC: 270 mg GAE/g | Obtained after the most effective extraction parameters Cranberry pomace (1 h, larger particles) DPPH EC50: 3.73 mg/mL (pomace extract) Blueberry pomace (6 h, smaller particles) DPPH EC50: - Raspberry pomace (18 h, smaller particles) DPPH EC50: 0.30 mg/mL | [97] |
Strawberry (Fragaria vesca) pomace | Pomace dried in convection dryer (temp. 65–70 °C, 8 h), sieved, particles over 5 mm were ground to obtain final material, with particle size between 2 and 5 mm | Water extraction S: water S–L: 4:1 M: 1500 g t: 1 h T: 65–70 °C 3 times extracted Ethanol extraction S: 60% ethanol (4 L) S–L: 4:1 M: 3.5 kg of aqueous extract t: 24 h T: 20 °C Repeated once using 3.5 L of ethanol | Water extract TPC (HPLC): 5.8 g/100 g (dm) Ethanolic extract TPC: 29.71 g/100 g | - | [98] |
Blueberry (Vaccinium myrtillus) Raspberry (Rubus idaeus) Redcurrant (Ribes rubrum) and Blackberry (Rubus fruticosus) pomaces | Lyophilized and ground pomaces | S: 75% methanol with 1% HCl (5 mL) M: 1 g t: 12 h T: 25 °C | Blueberry pomace TPC: 19.55 mg GAE/g (dm) TAC (HPLC): 11.88 mg/g Raspberry pomace TPC: 20.15 mg GAE/g TAC: 1.88 mg/g Redcurrant pomace TPC: 34.47 mg GAE/g TAC: 1.50 mg/g Blackberry pomace TPC: 17.00 mg GAE/g TAC: 1.92 mg/g | Blueberry pomace ABTS: 269.8 μmol TE/g (dm) Raspberry pomace ABTS: 297.5 μmol TE/g Redcurrant pomace ABTS: 608.3 μmol TE/g Blackberry pomace ABTS: 225.4 μmol TE/g | [27] |
Raspberry (Rubus idaeus cv. Meeker and cv. Willamette) | None | S: 80% methanol with 0.05% acetic acid M: 70 g T: room temperature 2 times extracted (A) t: 60 min, 560 mL of solvent (B) t: 30 min, 280 mL of solvent | cv. Meeker pomace TPC: 26.3 mg GAE/g (dm) TFC: 25.2 mg RE/g TAC: 4.28 mg C3GE/g cv. Willamette pomace TPC: 43.7 mg GAE/g TFC: 22.0 mg RE/g TAC: 2.32 mg C3GE/g | cv. Meeker pomace DPPH EC50: 0.072 mg/mL (pomace extract) cv. Willamette pomace DPPH EC50: 0.042 mg/mL | [31] |
Blackberry (Rubus fruticosus) residues after pulp processing and blueberry (Vaccinium myrtillus) residues after juice processing | None | S: ethanol 200 mL M: 5 g t: 5 h T: 80 °C Soxhlet apparatus | Blackberry pomace TPC: 7.84 mg GAE/g (dm) Monomeric anthocyanins: 2.82 mg C3GE/g Blueberry pomace TPC: 6.83 mg GAE/g Monomeric anthocyanins: 2.58 mg C3GE/g | Blackberry pomace DPPH: 66.92 μmol TE/g (dm) ABTS: 124.14 μmol TE/g FRAP: 120.90 μmol TE/g Blueberry pomace DPPH: 40.38 μmol TE/g ABTS: 100.66 μmol TE/g FRAP: 63.90 μmol TE/g | [99] |
Source of Waste | Pretreatment Method | Extraction Conditions (E—Equipment, P—Power, T—Temperature, t—Time, f—Frequency, S—Solvent, S–L—Solid–Liquid Ratio, A—Amplitude) | Antioxidant Composition * | Antioxidant Capacity * | Reference |
---|---|---|---|---|---|
Raspberry (Rubus idaeus) pomace | None | E: ultrasonic cleaner t: 120 min T: 50 °C f: 50 kHz S: acidulated methanol (80%) | TPC: 27.79 mg GAE/L (extract) TFC: 8.02 mg QE/g (pomace) TAC: 7.13 mg C3GE/L (extract) | FRAP: 1007.72 μmol/L FRAP DPPH: 567.00 μmol/100 g TE DPPH IC50: 20.00 μL/mL | [107] |
Blueberry (Vaccinium angustifolium) pomace | Freeze-dried pomace | E: ultrasonic cleaner bath S–L: 1/10; 1/15; 1/20; 1/40 S: water or ethanol (10/50 or 90% v/v in water) t: 30;40;60;90 min T: 20/40/60 °C pH: 3.3/5.0/6.3/8.3 f: 35 kHz Study was divided into parts where one of the factors was modulated while the others were constant | Effect of time (S: water, S–L: 1/20, T: 40 °C): TPC, TFC, TAC highest in 90 min Effect of S–L (S: 50% ethanol, T: 40 °C, t: 60 min) TPC, TAC, DPPH highest in 1/20; TFC in 1/15 Effect of ethanol concentration (S–L: 1/15, T: 40 °C, t: 40 min): TPC, TFC, TAC, DPPH highest in 50% ethanol Effect of pH (S: 50% ethanol, S–L: 1/15, T: 40 °C, t: 40 min) TPC, TFC, DPPH highest at pH 8.3, TAC in pH 3.3 Effect of temperature (S: 50% ethanol, S–L: 1/15, t: 40 min): TPC, TAC highest at 20 °C, TFC, DPPH in 60 °C | [108] | |
Blackberry (Rubus fruticosus) pomace | Lyophilized, milled and sieved (500 μm particle size) | E: ultrasound processor f: 20 kHz S: water S–L: 1/24 T: 4 °C (at the beginning), 25 °C (at the end of extraction) A: 80–90% t: 10–15 min | Optimum conditions A: 91% and t: 15 min TPC: 1201.23 mg GAE/100 g (dm) TAC: 379.12 mg/100 g | ABTS: 6318 μmol TE/100 g (dm) DPPH: 9617.22 μmol TE/100 g | [109] |
Raspberry (Rubus idaeus) pomace | Freeze-dried, milled (0.45 mm) | UAE combined with enzymatic extraction E: not specified S–L: 1/30 S: acidulated 60% ethanol (v/v) t: 20/30/40 min T: 40/45/50 °C +enzyme (pectinase dosage): 0.10/0.15/0.20% | Optimum conditions T: 44 °C, P: 290 W, t: 30 min, pectinase dosage: 0.16% Anthocyanin yield: 0.853 mg/g (fw) | DPPH: 417.15 TE/g (extract) ABTS: 520.07 TE/g | [110] |
Chokeberry (Aronia melanocarpa) by-products from filter-tea production (tea produced from pomace) | None | M: 10.0 g S: 50% ethanol E: sonication water bath S–L: 1/5 f: 40 kHz P: 72/144/216 W T: 30/50/70 °C t: 30/60/90 min | Optimum conditions for each property in brackets TPC: 15.058 mg GAE/mL (extract) (P: 206.64 W, T: 70 °C, t: 80.1 min) c TFC: 10.436 mg CE/mL (P: 210.24 W, T:70 °C, t: 75 min) Monomeric anthocyanins: 2.09 mg C3GE/mL (P: 216 W, T:70 °C, t: 45.6 min) Proanthocyanins: 19.82 mg CE/mL (P: 199.44 W, T:70 °C, t: 89.7 min) | - | [111] |
Blueberry (Vaccinium ashei) pomace | Pomace dried in air-circulating oven at 30 °C for 48 h, then milled | E: not specified S: acidulated ethanol (70% v/v) P: 400 W T: 50/60/70 °C t: 15/25/35 min S–L: 1/15, 1/20, 1/25 | Optimal conditions T: 61 °C, S–L: 1/22 TPC: 16.03 mg GAE/g (pomace) TAC: 4.19 mg C3GE/g | - | [112] |
Blueberry pomace | Freeze-dried, milled | E: ultrasonic bath F: 35 kHz S: acidulated ethanol (50%)/acidulated methanol (50%) t: 5/10/15 min T: 20/40/80 °C | Highest values for: TPC: 5.46 mg GAE/g (dm) (Ethanol, 15 min, 80 °C) TAC: 953.91 μg/g (Methanol, 15 min, 80 °C) Phenolic acids: 561.26 μg/g (Methanol, 15 min, 80 °C) Flavanols: 156.04 μg/g (Methanol, 15 min, 80 °C) Flavonols: 98.63 μg/g (Methanol, 15 min, 80 °C) | Highest values for: DPPH: 0.25 mmol TE/g (dm) (Methanol, 15 min, 80 °C) | [113] |
Blueberry (Vaccinium myrtillus) pomace and blackberry (Rubus fruticosus) residues after pulp processing | None | E: ultrasonic bath F: 37 kHz P: 580 W S–L: 1/22,5 S: ethanol 50%/ethanol 70%/acidified water t: 90 min T: 80 °C | Blackberry residues Ethanol 50% TPC: 5.28 mg GAE/g (dm) Monomeric anthocyanins: 2.37 mg C3GE/g Ethanol 70% TPC: 5.86 mg GAE/g Monomeric anthocyanins: 2.38 mg C3GE/g Acidified water TPC: 2.08 mg GAE/g Monomeric anthocyanins: 1.26 mg C3GE/g Blueberry residues Ethanol 50% TPC: 4.40 mg GAE/g Monomeric anthocyanins: 2.07 mg C3GE/g Ethanol 70% TPC: 5.75 mg GAE/g Monomeric anthocyanins: 2.33 mg C3GE/g Acidified water TPC: 2.47 mg GAE/g Monomeric anthocyanins: 1.36 mg C3GE/g | Blackberry residues Ethanol 50% DPPH: 49.50 μmol TE/g (dm) ABTS: 67.35 μmol TE/g FRAP: 81.59 mg TE/g Ethanol 70% DPPH: 51.50 mol TE/g ABTS: 70.01 μmol TE/g FRAP: 85.09 mg TE/g Acidified water DPPH: 17.63 μmol TE/g ABTS: 24.34 μmol TE/g FRAP: 37.03 mg TE/g Blueberry residues Ethanol 50% DPPH: 33.90 μmol TE/g ABTS: 55.11 μmol TE/g FRAP: 49.94 mg TE/g Ethanol 70% DPPH: 42.51 μmol TE/g ABTS: 55.25 μmol TE/g FRAP: 54.82 mg TE/g Acidified water DPPH: 19.94 μmol TE/g ABTS: 19.36 μmol TE/g FRAP: 50.16 mg TE/g | [99] |
Chokeberry (Aronia melanocarpa cv. Nero) pomace | Freeze-dried and ground pomace | E: ultrasonic processor t: 10/13/20/27/30 min S–L: 1/10 S: 60/65/78/90/96% ethanol T: 25 °C A: 50 µm | Highest values for: TPC: 188 mg GAE/g (dm) (60% ethanol, 20 min) TAC: 89.3 mg C3GE/g (65% ethanol, 13 min) | Highest values for DPPH: 49.2 mmol TE/100 g (dm) (60% ethanol, 20 min) | [116] |
Chokeberry (Aronia melanocarpa) pomace | - | E: horn-type transducer with cooling bath S: ethanol-water (1:1) S–L: 1/10 f: 20 kHz A: 14 µm t: 600 s | TPC: 1046 mg/L GAE Monomeric anthocyanins: 631 mg/L C3GE | - | [32] |
Chokeberry (Aronia melanocarpa) stems | Dried stems | E: ultrasonic water bath S: water t: 30 min S–L: 1/25 | TPC: 5.22 mg GAE/g (dm) TFC: 3.94 mg RE/g | ABTS IC50: 10.09 μg/mL (extract) | [117] |
Chokeberry (Aronia melanocarpa cv. Galicjanka) pomaces obtained from juice pressing from crushed and uncrushed fruits | Freeze-dried, ground pomaces | E: ultrasonic bath S: methanol with 2% formic acid S–L: 1/25 t: 25 min | Pomace from crushed fruits TPC (UPLC): 15.61 g/100 g (dm) Pomace from uncrushed fruits TPC: 24.45 g/100 g | Pomace from crushed fruits ABTS: 59.94 mmol TE/100 g (dm) FRAP: 32.61 mmol TE/100 g Pomace from uncrushed fruits ABTS: 81.63 mmol TE/100 g FRAP: 52.22 mmol TE/100 g | [118] |
Lipid fractions | |||||
Source of waste | Pretreatment method | Procedure | Oil yield | Fatty acid composition (%) | |
Raspberry (Rubus coreanus) seeds | Seeds dried in a convection oven at 60 °C for 24 h, then milled | E: sonication cleaning bath f: 40 kHz P: 250 W S–L: 1/40 S: ethanol t: 10/20/30/40/50 min T: 30/40/50/60/70 °C | Optimal conditions: 54 °C, 37 min 22.78% | SFA: 2.45 MUFA: 0.55 PUFA: 92.25 | [115] |
Material | PEF Conditions (E—Equipment, P—Power, FS—Field Strength, f—Frequency, W—Pulse Width, I—Energy Input, S—Solvent, L–L—Liquid–Liquid Ratio) | Procedure | Antioxidant Composition * | Antioxidant Activity * | Reference |
---|---|---|---|---|---|
Blueberry (Vaccinium myrtillus) | E: generator of monopolar square wave pulses FS: 3 kV/cm f: 10 Hz W: 20 µs I: 1/5/10 kJ/kg | PEF was applied to blueberry fruits cut in half, before pressing, obtained pomace examined | Optimum conditions I: 10 kJ/kg TAC (HPLC): 1574.1 mg/100 g (pomace) | Optimum conditions I: 10 kJ/kg DPPH: 34.2 µmol TE/g (pomace) FRAP: 68.0 µmol TE/g | [120] |
Blueberry (Vaccinium myrtillus) | E: cylindrical PEF treatment chamber (monopolar square pulses) FS: 1/3/5 kV/cm f: 10 Hz W: 20 µs P: 20 kW (average) I: 10 kJ/kg | PEF applied to crushed fresh berries before juice pressing. By-product was extracted in SLE and examined. | Optimum conditions FS: 5 kV/cm TPC: 1782.64 mg GAE/100 g (fw) TAC: 1698.55 mg/100 g | Optimum conditions FS: 5 kV/cm FRAP: ca. 72 µmol TE/g (fw) | [121] |
Blueberry pomace | E: laboratory PEF treatment chamber Pulse duration: 2 µs No. of pulses: 10/50/100 FS: 10/15/20 kV/cm | PEF applied to lyophilized and milled pomace, followed by SLE extraction with acidulated ethanol or acidulated methanol | Optimum conditions in brackets: TPC: 10.52 mg GAE/g (dm) (Ethanol, 20 kV/cm, 100 pulses) TAC: 1757.32 µg/g (Methanol, 20 kV/cm, 100 pulses) Phenolic acids: 625.47 µg/g (Ethanol, 20 kV/cm, 100 pulses) Flavanols: 297.86 µg/g (Methanol, 20 kV/cm, 100 pulses) Flavonols: 157.54 µg/g (Ethanol, 20 kV/cm, 100 pulses) | Optimum conditions in brackets: DPPH: 830 µmol TE/g (dm) (Ethanol, 20 kV/cm, 100 pulses) | [113] |
Blueberry pomace | E: PEF system Pulse duration: 2 µs S: acidic ethanol L/L: 1:5/1:6/1:7 FS: 15/20/25 kV/cm No of pulses: 8/10/12 Flow rate: 7 mL/min | Thawed to liquid, grinded in colloid mill pomace was treated with PEF in liquid material chamber | Optimum conditions No of pulses: 10, FS: 20 kV/cm, L/L: 1:6 TAC: 223.13 mg C3GE/L (extract) | - | [122] |
Source of Waste | Pretreatment | Extraction Procedure (E—Equipment, f—Frequency, T—Temperature, P—Power, M—Sample Weight, S–L—Solid–Liquid Ratio, t—Time, S—Solvent) | Antioxidant Content * | Reference |
---|---|---|---|---|
Blackcurrant (Ribes nigrum) pomace | Pomace was obtained from enzymatically treated fruits | E: single-mode cavity resonator f: 2.45 GHz T: 69.7 °C P: 140/420/700 W M: 28 g S–L: 1:10, 1:13.3, 1:20 t: 10/20/30 min solvent pH: 2/4.5/7 | In optimum conditions P: 700 W, t: 10 min, S–L: 1:20, pH 2 TAC (HPLC): 20.4 mg/g (fw) | [125] |
Cranberry (Vaccinium macrocarpon) pomace | Freeze-dried and ground pomace | E: microwave reactor S–L: 1:30 M: 1 g P: 36/72 W/g pomace t: 4 min Acidic extraction S: 0.1 M HCl Alkaline extraction S: 0.15 M NaOH Sequential acidic and alkaline extraction S: 0.1 M HCl + 0.15 M NaOH | Acidic extraction P: 36 W/g TPC: 3.01 mg GAE/g (fw) P: 72 W/g TPC: 0.92 mg GAE/g Alkaline extraction P: 36 W/g TPC: 22.78 mg GAE/g P: 72 W/g TPC: 11.79 mg GAE/g Sequential P: 36 W/g TPC: 11.90 mg GAE/g P: 72 W/g TPC: 11.63 mg GAE/g | [126] |
Cranberry (Vaccinium macrocarpon) pomace | Oven-dried (1 h/100 °C) press cake, then ground | E: microwave press S: water/ethanol/acetone M: 3.5 g T: 125 °C t: 10 min | Water TPC: 0.02 mmol QE/g (extract) 50% ethanol TPC: 0.12 mmol QE/g 100% ethanol TPC: 0.30 mmol QE/g 50% acetone TPC: 0.27 mmol QE/g 100% acetone TPC: 0.53 mmol QE/g | [127] |
Cranberry (Vaccinium macrocarpon) pomace | Freeze-dried and homogenized pomace | E: microwave extraction unit S: 96% ethanol and 0.5% trifluoroacetic acid 50 mL M: 0.5 g P: 600 W T: 80 °C t: 20 min | TAC (pH differential method): 0.054 g/100 g (berry powder) TPC (Folin–Ciocalteu): 1.09 g/100 g | [128] |
Source of Waste | Pretreatment Method | Extraction Conditions (E—Equipment, M—Sample Weight, S—Solvent, p—Pressure, V—Volume, T—Temperature, t—Time, FR—Flow Rate) | Oil Yield | Fatty Acids Profile (PUFA/MUFA/SFA, Dominant FA) | Reference |
---|---|---|---|---|---|
Raspberry, blueberry, blackcurrant, blackberry, strawberry frozen pomaces | Air-dried with water rinsing (15 min water rinsing, 24 h drying) pomace | S: CO2 M: 3 g FR: 5.0/2.5 cm3/min p: 300 bar T: 70 °C t: 5 h Collected by venting into hexane | Raspberrypomace 7.5% Blueberry pomace 9.7% Blackcurrant pomace 4.6% Blackberry pomace 6.6% Strawberry pomace 13.5% | Fatty acid yields in mg/g Raspberrypomace PUFA: 191.0 MUFA: 61.2 SFA: 50.7 Dominant: C18:2 Blueberry pomace PUFA: 134.9 MUFA: 74.2 SFA: 25.6 Dominant: C18:2 Blackcurrant pomace PUFA: 60.3 MUFA: 0.0 SFA: 104.3 Dominant: C18:2 Blackberry pomace PUFA: 197.0 MUFA: 66.3 SFA: 31.4 Dominant: C18:2 Wild strawberry pomace PUFA: 145.8 MUFA: 64.0 SFA: 46.8 Dominant: C18:2 | [130] |
Raspberry (Rubus idaeus) cv. Willamette seeds | Milled seeds | E: high pressure extraction plant S: CO2 M: 70 g P: 300 bar T: 40 °C FR: 0.194 kg/h t: 3 h | 8.82% | PUFA: 77.90 MUFA: 14.47 SFA: 6.20 Dominant: C18:2 n6 | [131] |
Raspberry (Rubus idaeus cv. Polka and cv. Polana) Chokeberry (Aronia melanocarpa cv. Nero), Strawberry (Fragaria vesca cv. Honeoye, cv. Senga Sengana and cv. Polka) pomaces | Pomace dried convectively in industrial vacuum dryers at 70 °C for 8 h. Seeds separated in industrial sieving machines, then crushed in mill crusher and sieved again under CO2 or nitrogen atmosphere | E: plant for extraction S: CO2 M: 14.2 kg strawberry, 14.5 kg chokeberry, 13.3 kg raspberry p: 250 bar, one step separation at 53 bar T: 40 °C FR: 200 kg/h, t: 180–225 min with fractionation (particular collection times) | Strawberry pomace 18% Chokeberry pomace 15% Raspberry pomace 12% | Values for first collection (after 15 min) Strawberry pomace PUFA: 78.9 MUFA: 15.1 SFA: 5.5 Dominant: C18:2 Chokeberry pomace PUFA: 76.6 MUFA: 16.4 SFA: 5.4 Dominant: C18:2 Raspberry pomace PUFA: 84.1 MUFA: 10.8 SFA: 4.8 Dominant: C18:2 | [132] |
Blackberry (Rubus ssp. cv. Xavante) seeds | Seeds dried in air circulation oven (40 °C/48 h), milled, classified according to particle size using vibratory sieve shaker | E: special apparatus M: 30 g S: CO2 and propane p: ranging 15.0–25.0 MPa when using CO2 and 10.0–20.0 MPa when using propane T: 40.0–70.0 °C for CO2 and 30.0–70.0 °C for propane t: for CO2: 150 min, propane: 60 min | Optimum conditions in brackets S: CO2 (70 °C, 25 MPa): 1.89% S: propane (70 °C, 20 MPa): 2.32% | - | [133] |
Blackberry (Rubus fruticosus) pomace | Pomace dried in the sun and crushed four times in a cylinder mill | E: plant scale fluid extractor S: CO2 M: 3500 g P: 300 bar T: 50 °C FR: 80 kg/h t: 150 min | 11.4% | FA expressed as g/100 g PUFA: 58.2 MUFA: 12.6 SFA: 7.2 | [88] |
Polyphenol-rich extracts | |||||
Source of waste | Pretreatment | Extraction procedure | Antioxidant composition | Antioxidant activity * | Reference |
Blackcurrant (Ribes nigrum) pomace | Lyophilized, ground pomace | E: SFE system M: 15 g p: 30–55 MPa T: 30–60 °C t: 60–150 min FR: 3.6 g/min | Optimum conditions: 45 MPa, 60 °C, 120 min TPC: 24.34 mg GAE/g extract | DPPH: 1.59 mg TE/g (extract) ORAC: 11.35 mg TE/g FRAP: 25.00 mg TE/g | [135] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Piasecka, I.; Wiktor, A.; Górska, A. Alternative Methods of Bioactive Compounds and Oils Extraction from Berry Fruit By-Products—A Review. Appl. Sci. 2022, 12, 1734. https://doi.org/10.3390/app12031734
Piasecka I, Wiktor A, Górska A. Alternative Methods of Bioactive Compounds and Oils Extraction from Berry Fruit By-Products—A Review. Applied Sciences. 2022; 12(3):1734. https://doi.org/10.3390/app12031734
Chicago/Turabian StylePiasecka, Iga, Artur Wiktor, and Agata Górska. 2022. "Alternative Methods of Bioactive Compounds and Oils Extraction from Berry Fruit By-Products—A Review" Applied Sciences 12, no. 3: 1734. https://doi.org/10.3390/app12031734
APA StylePiasecka, I., Wiktor, A., & Górska, A. (2022). Alternative Methods of Bioactive Compounds and Oils Extraction from Berry Fruit By-Products—A Review. Applied Sciences, 12(3), 1734. https://doi.org/10.3390/app12031734