Microwave- and Ultrasound-Assisted Extraction of Cucurbita pepo Seeds: A Comparison Study of Antioxidant Activity, Phenolic Profile, and In-Vitro Cells Effects
Abstract
:1. Introduction
2. Materials and Methods
2.1. Chemicals
2.2. Samples
2.3. Preparation of C. pepo Extracts
2.4. Total Phenolic Content (TPC)
2.5. In Vitro Antioxidant and Antiradical Activities
2.5.1. ABTS●+ Radical Scavenging Activity Assay
2.5.2. DPPH● Radical Scavenging Activity Assay
2.5.3. Ferric Reducing Antioxidant Power Assay
2.5.4. Reactive Oxygen Species Scavenging Capacity Assays
Hypochlorous Acid Scavenging Assay (HOCl)
Superoxide Anion Radical Scavenging Assay (O2●−)
Peroxyl Radical Scavenging Assay (ORAC)
2.6. Identification and Quantification of the Polyphenols Profile
2.7. Cell Viability Assays
2.8. Statistical Analysis
3. Results and Discussion
3.1. Extraction Yield of C. pepo Seed Extracts
3.2. Antioxidant/Antiradical Activity
3.3. Reactive Oxygen Species Scavenging Capacity Assays
3.4. Phenolic Compounds of C. pepo Seed Extract
3.5. Cytotoxic Effects of C. pepo Seed Extracts towards Intestinal and Neuronal Cells
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Prakash, V.; van Boekel, M.A.J.S. Chapter 19-Nutraceuticals: Possible future ingredients and food safety aspects. In Ensuring Global Food Safety; Boisrobert, C.E., Stjepanovic, A., Oh, S., Lelieveld, H.L.M., Eds.; Academic Press: San Diego, CA, USA, 2010; pp. 333–338. [Google Scholar]
- Dudeja, P.; Gupta, R.K. Chapter 40-Nutraceuticals. In Food Safety in the 21st Century; Gupta, R.K., Singh, M.D., Eds.; Academic Press: San Diego, CA, USA, 2017; pp. 491–496. [Google Scholar]
- Nasri, H.; Baradaran, A.; Shirzad, H.; Rafieian-Kopaei, M. New Concepts in Nutraceuticals as Alternative for Pharmaceuticals. Int. J. Prev. Med. 2014, 5, 1487–1499. [Google Scholar]
- Madihi, Y.; Merrikhi, A.; Khodai, M.; Rafieian-Kopaei, M.; Shahinfard, N.; Ansari, R.; Shirzad, H.; Mesripour, A. Impact of Sumac on Postprandial High-Fat Oxidative Stress. Pak. J. Med. Sci. 2013, 29, 340–345. [Google Scholar] [CrossRef]
- Setorki, M.; Rafieian-Kopaei, M.; Merikhi, A.; Heidarian, E.; Shahinfard, N.; Ansari, R.; Nasri, H.; Esmael, N.; Baradaran, A. Suppressive Impact of Anethum Graveolens Consumption on Biochemical Risk Factors of Atherosclerosis in Hypercholesterolemic Rabbits. Int. J. Prev. Med. 2013, 4, 889–895. [Google Scholar] [PubMed]
- Khosravi-Boroujeni, H.; Mohammadifard, N.; Sarrafzadegan, N.; Sajjadi, F.; Maghroun, M.; Khosravi, A.; Alikhasi, H.; Rafieian, M.; Azadbakht, L. Potato Consumption and Cardiovascular Disease Risk Factors among Iranian Population. Int. J. Food Sci. Nutr. 2012, 63, 913–920. [Google Scholar] [CrossRef] [PubMed]
- Khosravi-Boroujeni, H.; Sarrafzadegan, N.; Mohammadifard, N.; Sajjadi, F.; Maghroun, M.; Asgari, S.; Rafieian-Kopaei, M.; Azadbakht, L. White Rice Consumption and CVD Risk Factors among Iranian Population. J. Health Popul. Nutr. 2013, 31, 252–261. [Google Scholar] [CrossRef] [Green Version]
- Khodai, M.; Madihi, Y.; Merrikhi, A.; Rafieian-kopaei, M.; Nasri, H. Serum Lipoprotein (a) in Diabetic Patients with Various Renal Function not yet on Dialysis. Pak. J. Med. Sci. 2013, 29, 354–357. [Google Scholar]
- Shirzad, H.; Burton, R.C.; Smart, Y.C.; Rafieian-Kopaei, M.; Shirzad, M. Natural Cytotoxicity of nc-2+ Cells against the Growth and Metastasis of Wehi-164 Fibrosarcoma. Scand. J. Immunol. 2011, 73, 85–90. [Google Scholar] [CrossRef]
- Shirzad, M.; Kordyazdi, R.; Shahinfard, N.; Nikokar, M. Does Royal Jelly Affect Tumor Cells? J. Herbmed. Pharmacol. 2013, 2, 45–48. [Google Scholar]
- Akhlaghi, M.; Shabanian, G.; Rafieian-Kopaei, M.; Parvin, N.; Saadat, M.; Akhlaghi, M. Citrus Aurantium Blossom and Preoperative Anxiety. Rev. Bras. Anestesiol. 2011, 61, 702–712. [Google Scholar] [CrossRef] [Green Version]
- Rabiei, Z.; Rafieian-Kopaei, M.; Heidarian, E.; Saghaei, E.; Mokhtari, S. Effects of Zizyphus Jujube Extract on Memory and Learning Impairment Induced by Bilateral Electric Lesions of the Nucleus Basalis of Meynert in Rat. Neurochem. Res. 2014, 39, 353–360. [Google Scholar] [CrossRef]
- Rabiei, Z.; Rafieian-Kopaei, M.; Mokhtari, S.; Alibabaei, Z.; Shahrani, M. The Effect of Pretreatment with Different Doses of Lavandula Officinalis Ethanolic Extract on Memory, Learning and Nociception. Biomed. Aging Pathol. 2014, 4, 71–76. [Google Scholar] [CrossRef]
- Parsaei, P.; Karimi, M.; Asadi, S.Y.; Rafieian-Kopaei, M. Bioactive Components and Preventive Effect of Green Tea (Camellia Sinensis) Extract on Post-Laparotomy Intra-Abdominal Adhesion in Rats. Int. J. Surg. 2013, 11, 811–815. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Asadi-Samani, M.; Farkhad, N.; Rafieian-Kopaei, M. A Review on Phytochemistry and Pharmacological Effects of Prangos Ferulacea (L.) Lindl. Life Sci. J. 2013, 10, 360–367. [Google Scholar]
- Baradaran, A.; Nasri, H.; Nematbakhsh, M.; Rafieian-Kopaei, M. Antioxidant Activity and Preventive Effect of Aqueous Leaf Extract of Aloe Vera on Gentamicin-Induced Nephrotoxicity in Male Wistar Rats. Clin. Ter. 2014, 165, 7–11. [Google Scholar]
- Gutierrez, R. Review of Cucurbita Pepo (Pumpkin) its Phytochemistry and Pharmacology. Med. Chem. 2016, 6, 12–21. [Google Scholar] [CrossRef]
- Zhang, C.; Zhu, Q.; Liu, S.; Gao, P.; Zhu, Z.; Wang, X.; Luan, F. The Complete Chloroplast Genome Sequence of the Cucurbita Pepo L. (Cucurbitaceae). Mitochondrial DNA Part B 2018, 3, 717–718. [Google Scholar] [CrossRef] [Green Version]
- Adnan, M.; Gul, S.; Batool, S.; Bibi, F.; Rehman, A.; Yaqoob, S.; Shabir, H.; Yousaf, T.; Mussarat, S.; Ali, N.; et al. A Review on the Ethnobotany, Phytochemistry, Pharmacology and Nutritional Composition of Cucurbita Pepo L. J. Phytopharm. 2017, 6, 133–139. [Google Scholar]
- Smith, B.D. The Initial Domestication of Cucurbita Pepo in the Americas 10,000 Years Ago. Science 1997, 276, 932–934. [Google Scholar] [CrossRef] [Green Version]
- Kulczyński, B.; Sidor, A.; Gramza-Michałowska, A. Antioxidant Potential of Phytochemicals in Pumpkin Varieties Belonging to Cucurbita Moschata and Cucurbita Pepo Species. CyTA-J. Food 2020, 18, 472–484. [Google Scholar] [CrossRef]
- Rabrenović, B.B.; Dimić, E.B.; Novaković, M.M.; Tešević, V.V.; Basić, Z.N. The most Important Bioactive Components of Cold Pressed Oil from Different Pumpkin (Cucurbita Pepo L.) Seeds. LWT—Food Sci. Technol. 2014, 55, 521–527. [Google Scholar] [CrossRef]
- Hajhashemi, V.; Rajabi, P.; Mardani, M. Beneficial Effects of Pumpkin Seed Oil as a Topical Hair Growth Promoting Agent in a Mice Model. Avicenna J. Phytomed 2019, 9, 499–504. [Google Scholar] [PubMed]
- Grzybek, M.; Kukula-Koch, W.; Strachecka, A.; Jaworska, A.; Phiri, A.M.; Paleolog, J.; Tomczuk, K. Evaluation of Anthelmintic Activity and Composition of Pumpkin (Cucurbita Pepo L.) Seed Extracts—in vitro and in vivo Studies. Int. J. Mol. Sci. 2016, 17, 1456. [Google Scholar] [CrossRef]
- Medjakovic, S.; Hobiger, S.; Ardjomand-Woelkart, K.; Bucar, F.; Jungbauer, A. Pumpkin Seed Extract: Cell Growth Inhibition of Hyperplastic and Cancer Cells, Independent of Steroid Hormone Receptors. Fitoterapia 2016, 110, 150–156. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vahlensieck, W.; Theurer, C.; Pfitzer, E.; Patz, B.; Banik, N.; Engelmann, U. Effects of Pumpkin Seed in Men with Lower Urinary Tract Symptoms due to Benign Prostatic Hyperplasia in the One-Year, Randomized, Placebo-Controlled GRANU Study. Urol. Int. 2014, 94, 286–295. [Google Scholar] [CrossRef] [PubMed]
- Peiretti, P.G.; Meineri, G.; Gai, F.; Longato, E.; Amarowicz, R. Antioxidative Activities and Phenolic Compounds of Pumpkin (Cucurbita Pepo) Seeds and Amaranth (Amaranthus Caudatus) Grain Extracts. Nat. Prod. Res. 2017, 31, 2178–2182. [Google Scholar] [CrossRef]
- Piccolella, S.; Crescente, G.; Candela, L.; Pacifico, S. Nutraceutical Polyphenols: New Analytical Challenges and Opportunities. J. Pharm. Biomed. Anal. 2019, 175, 112774. [Google Scholar] [CrossRef] [PubMed]
- Serino, A.; Salazar, G. Protective Role of Polyphenols against Vascular Inflammation, Aging and Cardiovascular Disease. Nutrients 2018, 11, 53. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Brglez Mojzer, E.; Knez Hrnčič, M.; Škerget, M.; Knez, Ž.; Bren, U. Polyphenols: Extraction Methods, Antioxidative Action, Bioavailability and Anticarcinogenic Effects. Molecules 2016, 21, 901. [Google Scholar] [CrossRef]
- Losada-Barreiro, S.; Bravo-Díaz, C. Free Radicals and Polyphenols: The Redox Chemistry of Neurodegenerative Diseases. Eur. J. Med. Chem. 2017, 133, 379–402. [Google Scholar] [CrossRef]
- Kim, M.Y.; Kim, E.J.; Kim, Y.-N.; Choi, C.; Lee, B.-H. Comparison of the Chemical Compositions and Nutritive Values of Various Pumpkin (Cucurbitaceae) Species and Parts. Nutr. Res. Pr. 2012, 6, 21–27. [Google Scholar] [CrossRef] [Green Version]
- Wallert, M.; Ziegler, M.; Wang, X.; Maluenda, A.; Xu, X.; Yap, M.L.; Witt, R.; Giles, C.; Kluge, S.; Hortmann, M.; et al. α-Tocopherol Preserves Cardiac Function by Reducing Oxidative Stress and Inflammation in Ischemia/Reperfusion Injury. Redox Biol. 2019, 26, 101292. [Google Scholar] [CrossRef]
- Jian, L.; Du, C.J.; Lee, A.H.; Binns, C.W. Do Dietary Lycopene and other Carotenoids Protect against Prostate Cancer? Int. J. Cancer 2005, 113, 1010–1014. [Google Scholar] [CrossRef]
- Sesso, H.D. Carotenoids and Cardiovascular Disease: What Research Gaps Remain? Curr. Opin. Lipidol. 2006, 17, 11–16. [Google Scholar] [CrossRef]
- Moran, N.E.; Mohn, E.S.; Hason, N.; Erdman, J.W., Jr.; Johnson, E.J. Intrinsic and Extrinsic Factors Impacting Absorption, Metabolism, and Health Effects of Dietary Carotenoids. Adv. Nutr. 2018, 9, 465–492. [Google Scholar] [CrossRef] [Green Version]
- Ryan, E.; Galvin, K.; O’Connor, T.P.; Maguire, A.; O’Brien, N.M. Phytosterol, Squalene, Tocopherol Content and Fatty Acid Profile of Selected Seeds, Grains, and Legumes. Mater. Veg. 2007, 62, 85–91. [Google Scholar] [CrossRef] [PubMed]
- Glew, R.; Glew, R.; Chuang, L.-T.; Huang, Y.-S.; Millson, M.; Constans, D.; VanderJagt, D. Amino Acid, Mineral and Fatty Acid Content of Pumpkin Seeds (Cucurbita Spp.) and Cyperus Esculentus Nuts in the Republic of Niger. Mater. Veg. 2006, 61, 49–54. [Google Scholar] [CrossRef]
- Piironen, V.; Lindsay, D.; Miettinen, T.; Toivo, J.; Lampi, A.-M. Plant Sterols: Biosynthesis, Biological Function and their Importance to Human Nutrition. J. Sci. Food Agric. 2000, 80, 939–966. [Google Scholar] [CrossRef]
- Raicht, R.F.; Cohen, B.I.; Fazzini, E.P.; Sarwal, A.N.; Takahashi, M. Protective Effect of Plant Sterols against Chemically Induced Colon Tumors in Rats. Cancer Res. 1980, 40, 403–405. [Google Scholar] [PubMed]
- Gossell-Williams, M.; Davis, A.; O’connor, N. Inhibition of Testosterone-Induced Hyperplasia of the Prostate of Sprague-Dawley Rats by Pumpkin Seed Oil. J. Med. Food 2006, 9, 284–286. [Google Scholar] [CrossRef]
- Zerafatjou, N.; Amirzargar, M.; Biglarkhani, M.; Shobeirian, F.; Zoghi, G. Pumpkin Seed Oil (Cucurbita Pepo) Versus Tamsulosin for Benign Prostatic Hyperplasia Symptom Relief: A Single-Blind Randomized Clinical Trial. BMC Urol. 2021, 21, 1–7. [Google Scholar] [CrossRef]
- Carbin, B.-E.; Larsson, B.; Lindahl, O. Treatment of Benign Prostatic Hyperplasia with Phytosterols. Br. J. Urol. 1990, 66, 639–641. [Google Scholar] [CrossRef]
- Leitao da-Cunha, E.V.; Fechine, I.M.; Guedes, D.N.; Barbosa-Filho, J.M.; Sobral da Silva, M. Protoberberine alkaloids. In The Alkaloids: Chemistry and Biology; Cordell, G.A., Ed.; Academic Press: Cambridge, MA, USA, 2005; Volume 62, pp. 1–75. [Google Scholar]
- Vennerstrom, J.L.; Lovelace, J.K.; Waits, V.B.; Hanson, W.L.; Klayman, D.L. Berberine Derivatives as Antileishmanial Drugs. Antimicrob. Agents Chemother. 1990, 34, 918–921. [Google Scholar] [CrossRef] [Green Version]
- Dkhil, M. Role of Berberine in Ameliorating Schistosoma Mansoni-Induced Hepatic Injury in Mice. Biol. Res. 2014, 47, 1–7. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Krivogorsky, B.; Pernat, J.A.; Douglas, K.A.; Czerniecki, N.J.; Grundt, P. Structure–Activity Studies of Some Berberine Analogs as Inhibitors of Toxoplasma Gondii. Bioorg. Med. Chem. Lett. 2012, 22, 2980–2982. [Google Scholar] [CrossRef] [PubMed]
- Panja, P. Green Extraction Methods of Food Polyphenols from Vegetable Materials. Curr. Opin. Food Sci. 2018, 23, 173–182. [Google Scholar] [CrossRef]
- Kataoka, H. New Trends in Sample Preparation for Analysis of Plant-Derived Medicines. Curr. Org. Chem. 2010, 14, 1698–1713. [Google Scholar] [CrossRef]
- Llompart, M.; Garcia-Jares, C.; Celeiro, M.; Dagnac, T. Microwave-Assisted Extraction. In Encyclopedia of Analytical Science, 3rd ed.; Worsfold, P., Poole, C., Townshend, A., Miró, M., Eds.; Academic Press: Oxford, UK, 2019; pp. 67–77. [Google Scholar]
- Kataoka, H. Pharmaceutical Analysis | sample preparation. In Encyclopedia of Analytical Science, 3rd ed.; Worsfold, P., Poole, C., Townshend, A., Miró, M., Eds.; Academic Press: Oxford, UK, 2019; pp. 231–255. [Google Scholar]
- Ahuja, S.; Diehl, D. Chapter 2 Sampling and Sample Preparation. In Comprehensive Analytical Chemistry; Elsevier: Amsterdam, The Netherlands, 2006; Volume 47, pp. 15–40. [Google Scholar] [CrossRef]
- Sasaki, K.; Honda, W.; Ohsawa, S.; Miyake, Y.; Kawashima, Y. A Study of Microwave Sterilizer for Injection Ampules (no.4): Application to Sterilization of Thermally Labile Drug Solutions. J. Pharm. Sci. Technol. Jpn. 1998, 58, 125–135. [Google Scholar]
- Beejmohun, V.; Fliniaux, O.; Grand, É.; Lamblin, F.; Bensaddek, L.; Christen, P.; Kovensky, J.; Fliniaux, M.-A.; Mesnard, F. Microwave-Assisted Extraction of the Main Phenolic Compounds in Flaxseed. Phytochem. Anal. 2007, 18, 275–282. [Google Scholar] [CrossRef]
- Proestos, C.; Komaitis, M. Application of Microwave-Assisted Extraction to the Fast Extraction of Plant Phenolic Compounds. LWT 2008, 41, 652–659. [Google Scholar] [CrossRef]
- Gallo, M.; Ferracane, R.; Graziani, G.; Ritieni, A.; Fogliano, V. Microwave Assisted Extraction of Phenolic Compounds from Four Different Spices. Molecules 2010, 15, 6365–6374. [Google Scholar] [CrossRef]
- Rostagno, M.A.; Prado, J.M. Natural Product Extraction: Principles and Applications; RSC Green Chemistry: Cambridge, UK, 2013. [Google Scholar]
- Reddy, A.V.B.; Moniruzzaman, M.; Madhavi, V.; Jaafar, J. Recent Improvements in the Extraction, Cleanup and Quantification of Bioactive Flavonoids; Elsevier: Amsterdam, The Netherlands, 2020; Volume 66, pp. 197–223. [Google Scholar] [CrossRef]
- Roohinejad, S.; Nikmaram, N.; Brahim, M.; Koubaa, M.; Khelfa, A.; Greiner, R. Chapter 16-potential of novel technologies for aqueous extraction of plant bioactives. In Water Extraction of Bioactive Compounds; Dominguez González, H., González Muñoz, M.J., Eds.; Elsevier: Amsterdam, The Netherlands, 2017; pp. 399–419. [Google Scholar]
- Moldoveanu, S.; David, V. Chapter 6-solvent extraction. In Modern Sample Preparation for Chromatography, 2nd ed.; Moldoveanu, S., David, V., Eds.; Elsevier: Amsterdam, The Netherlands, 2021; pp. 191–279. [Google Scholar]
- Ishtiaq, F.; Farooq, R.; Farooq, U.; Farooq, A.; Siddique, M.; Shah, S.H.; Shaheen, M. Application of Ultrasound in Pharmaceutics. World Appl. Sci. J. 2009, 6, 886–893. [Google Scholar]
- Ma, Y.-Q.; Ye, X.-Q.; Fang, Z.-X.; Chen, J.-C.; Xu, G.-H.; Liu, D.-H. Phenolic Compounds and Antioxidant Activity of Extracts from Ultrasonic Treatment of Satsuma Mandarin (Citrus Unshiu Marc.) Peels. J. Agric. Food Chem. 2008, 56, 5682–5690. [Google Scholar] [CrossRef] [PubMed]
- Sun, Y.; Liu, Z.; Wang, J. Ultrasound-Assisted Extraction of Five Isoflavones from Iris Tectorum Maxim. Sep. Purif. Technol. 2011, 78, 49–54. [Google Scholar] [CrossRef]
- Moreira, M.M.; Barroso, M.F.; Boeykens, A.; Withouck, H.; Morais, S.; Delerue-Matos, C. Valorization of Apple Tree Wood Residues by Polyphenols Extraction: Comparison between Conventional and Microwave-Assisted Extraction. Ind. Crop. Prod. 2017, 104, 210–220. [Google Scholar] [CrossRef] [Green Version]
- Pimentel-Moral, S.; Borrás-Linares, I.; Lozano-Sánchez, J.; Arráez-Román, D.; Martínez-Férez, A.; Segura-Carretero, A. Microwave-Assisted Extraction for Hibiscus Sabdariffa Bioactive Compounds. J. Pharm. Biomed. Anal. 2018, 156, 313–322. [Google Scholar] [CrossRef]
- Chemat, F.; Rombaut, N.; Sicaire, A.-G.; Meullemiestre, A.; Fabiano-Tixier, A.-S.; Abert-Vian, M. Ultrasound Assisted Extraction of Food and Natural Products. Mechanisms, Techniques, Combinations, Protocols and Applications. A Review. Ultrason. Sonochem. 2017, 34, 540–560. [Google Scholar] [CrossRef] [PubMed]
- Silva, A.; Pinto, D.; Fernandes, I.; Freitas, V.; Cádiz-Gurrea, M.; Costa, P.; Delerue-Matos, C.; Rodrigues, F. An Insight into Kiwiberry Leaf Valorization: Phenolic Composition, Bioactivity and Health Benefits. Molecules 2021, 26, 2314. [Google Scholar] [CrossRef] [PubMed]
- Lameirão, F.; Pinto, D.; Vieira, E.F.; Peixoto, A.F.; Freire, C.; Sut, S.; Dall’Acqua, S.; Costa, P.; Delerue-Matos, C.; Rodrigues, F. Green-Sustainable Recovery of Phenolic and Antioxidant Compounds from Industrial Chestnut Shells Using Ultrasound-Assisted Extraction: Optimization and Evaluation of Biological Activities in Vitro. Antioxidants 2020, 9, 267. [Google Scholar] [CrossRef] [Green Version]
- Singleton, V.L.; Rossi, J.A. Colorimetry of Total Phenolics with Phosphomolybdic-Phosphotungstic Acid Reagents. Am. J. Enol. Vitic. 1965, 16, 144. [Google Scholar]
- Re, R.; Pellegrini, N.; Proteggente, A.; Pannala, A.; Yang, M.; Rice-Evans, C. Antioxidant Activity Applying an Improved ABTS Radical Cation Decolorization Assay. Free Radic. Biol. Med. 1999, 26, 1231–1237. [Google Scholar] [CrossRef]
- Pinto, D.; Cádiz-Gurrea, M.D.L.L.; Vallverdú-Queralt, A.; Delerue-Matos, C.; Rodrigues, F. Castanea Sativa Shells: A Review on Phytochemical Composition, Bioactivity and Waste Management Approaches for Industrial Valorization. Food Res. Int. 2021, 144, 110364. [Google Scholar] [CrossRef]
- Benzie, I.F.F.; Strain, J.J. Ferric Reducing/Antioxidant Power Assay: Direct Measure of Total Antioxidant Activity of Biological Fluids and Modified Version for Simultaneous Measurement of Total Antioxidant Power and Ascorbic Acid Concentration. Methods Enzymol. 1999, 299, 15–27. [Google Scholar] [PubMed]
- Gomes, A.; Fernandes, E.; Silva, A.M.; Santos, C.M.; Pinto, D.C.; Cavaleiro, J.A.; Lima, J.L. 2-Styrylchromones: Novel Strong Scavengers of Reactive Oxygen and Nitrogen Species. BioOrganic Med. Chem. 2007, 15, 6027–6036. [Google Scholar] [CrossRef] [PubMed]
- Pinto, D.; Vieira, E.F.; Peixoto, A.F.; Freire, C.; Freitas, V.; Costa, P.; Delerue-Matos, C.; Rodrigues, F. Optimizing the Extraction of Phenolic Antioxidants from Chestnut Shells by Subcritical Water Extraction Using Response Surface Methodology. Food Chem. 2020, 334, 127521. [Google Scholar] [CrossRef] [PubMed]
- Galan, A.-M.; Calinescu, I.; Trifan, A.; Winkworth-Smith, C.; Calvo-Carrascal, M.; Dodds, C.; Binner, E. New Insights into the Role of Selective and Volumetric Heating during Microwave Extraction: Investigation of the Extraction of Polyphenolic Compounds from Sea Buckthorn Leaves Using Microwave-Assisted Extraction and Conventional Solvent Extraction. Chem. Eng. Process Intensif. 2017, 116, 29–39. [Google Scholar] [CrossRef]
- Ethiraj, S.; Balasundaram, J. Phytochemical and Biological Activity of Cucurbita Seed Extract. J. Adv. Biotechnol. 2016, 6, 813–821. [Google Scholar] [CrossRef]
- Mondal, S.; Hossain, I.; Islam, M. Determination of Antioxidant Potential of Cucurbita Pepo Linn. (An Edible Herbs of Bangladesh). J. Pharmacogn. Phytochem. 2017, 6, 1016–1019. [Google Scholar]
- Saavedra, M.J.; Aires, A.; Dias, C.; Almeida, J.A.; De Vasconcelos, M.C.B.M.; Santos, P.; Rosa, E.A. Evaluation of the Potential of Squash Pumpkin by-Products (Seeds and Shell) as Sources of Antioxidant and Bioactive Compounds. J. Food Sci. Technol. 2013, 52, 1008–1015. [Google Scholar] [CrossRef] [Green Version]
- Rezig, L.; Chouaibi, M.; Ojeda-Amador, R.M.; Gomez-Alonso, S.; Salvador, M.D.; Fregapane, G.; Hamdi, S. Cucurbita Maxima Pumpkin Seed Oil: From the Chemical Properties to the Different Extracting Techniques. Not. Bot. Horti Agrobot. Cluj-Napoca 2018, 46, 663–669. [Google Scholar] [CrossRef] [Green Version]
- Kulczyński, B.; Gramza-Michałowska, A.; Królczyk, J.B. Optimization of Extraction Conditions for the Antioxidant Potential of Different Pumpkin Varieties (Cucurbita Maxima). Sustainability 2020, 12, 1305. [Google Scholar] [CrossRef] [Green Version]
- Nawirska-Olszańska, A.; Kita, A.; Biesiada, A.; Sokół-Łętowska, A.; Kucharska, A.Z. Characteristics of Antioxidant Activity and Composition of Pumpkin Seed Oils in 12 Cultivars. Food Chem. 2013, 139, 155–161. [Google Scholar] [CrossRef] [PubMed]
- Gutteridge, J.M. Lipid Peroxidation and Antioxidants as Biomarkers of Tissue Damage. Clin. Chem. 1995, 41, 1819–1828. [Google Scholar] [CrossRef] [PubMed]
- Halliwell, B. Antioxidant Characterization: Methodology and Mechanism. Biochem. Pharmacol. 1995, 49, 1341–1348. [Google Scholar] [CrossRef]
- Kehrer, J.P. Free Radicals as Mediators of Tissue Injury and Disease. Crit. Rev. Toxicol. 1993, 23, 21–48. [Google Scholar] [CrossRef]
- Sánchez-Moreno, C.; Larrauri, J.A.; Saura-Calixto, F. Free Radical Scavenging Capacity and Inhibition of Lipid Oxidation of Wines, Grape Juices and Related Polyphenolic Constituents. Food Res. Int. 1999, 32, 407–412. [Google Scholar] [CrossRef]
- Malencić, D.; Gasic, O.; Popović, M.; Boza, P. Screening for Antioxidant Properties of Salvia Reflexa Hornem. Phytother Res. 2000, 14, 546–548. [Google Scholar] [CrossRef]
- Gülçin, I.; Oktay, M.; Küfrevioğlu, O.I.; Aslan, A. Determination of Antioxidant Activity of Lichen Cetraria Islandica (L) Ach. J. Ethnopharmacol. 2001, 79, 325–329. [Google Scholar] [CrossRef]
- Devasagayam, T.P.A.; Tilak, J.C.; Boloor, K.K.; Sane, K.S.; Ghaskadbi, S.S.; Lele, R.D. Free Radicals and Antioxidants in Human Health: Current Status and Future Prospects. J. Assoc. Physicians India 2004, 52, 794–804. [Google Scholar]
- Shahidi, F.; Janitha, P.K.; Wanasundara, P.D. Phenolic Antioxidants. Crit. Rev. Food Sci. Nutr. 1992, 32, 67–103. [Google Scholar] [CrossRef]
- Liu, G.; Zhu, W.; Zhang, J.; Song, D.; Zhuang, L.; Ma, Q.; Yang, X.; Liu, X.; Zhang, J.; Zhang, H.; et al. Antioxidant Capacity of Phenolic Compounds Separated from Tea Seed Oil in Vitro and in Vivo. Food Chem. 2021, 371, 131122. [Google Scholar] [CrossRef]
- Chisté, R.C.; Mercadante, A.Z.; Gomes, A.; Fernandes, E.; Lima, J.; Bragagnolo, N. In Vitro Scavenging Capacity of Annatto Seed Extracts against Reactive Oxygen and Nitrogen Species. Food Chem. 2011, 127, 419–426. [Google Scholar] [CrossRef] [PubMed]
- Karabegović, I.T.; Stojičević, S.S.; Veličković, D.T.; Todorovic, Z.; Nikolić, N.; Lazić, M.L. The Effect of Different Extraction Techniques on the Composition and Antioxidant Activity of Cherry Laurel (Prunus Laurocerasus) Leaf and Fruit Extracts. Ind. Crop. Prod. 2014, 54, 142–148. [Google Scholar] [CrossRef]
- Bubalo, M.C.; Ćurko, N.; Tomašević, M.; Ganić, K.K.; Redovniković, I.R. Green Extraction of Grape Skin Phenolics by Using Deep Eutectic Solvents. Food Chem. 2016, 200, 159–166. [Google Scholar] [CrossRef] [PubMed]
- Sharmila, G.; Nikitha, V.; Ilaiyarasi, S.; Dhivya, K.; Rajasekar, V.; Kumar, N.; Muthukumaran, K. Ultrasound Assisted Extraction of Total Phenolics from Cassia Auriculata Leaves and Evaluation of its Antioxidant Activities. Ind. Crop. Prod. 2016, 84, 13–21. [Google Scholar] [CrossRef]
- Enneb, S.; Drine, S.; Bagues, M.; Triki, T.; Boussora, F.; Guasmi, F.; Nagaz, K.; Ferchichi, A. Phytochemical Profiles and Nutritional Composition of Squash (Cucurbita Moschata D.) from Tunisia. S. Afr. J. Bot. 2020, 130, 165–171. [Google Scholar] [CrossRef]
- Iswaldi, I.; Gómez-Caravaca, A.M.; Lozano-Sánchez, J.; Arraez-Roman, D.; Carretero, A.S.; Gutierrez, A.F. Profiling of Phenolic and other Polar Compounds in Zucchini (Cucurbita Pepo L.) by Reverse-Phase High-Performance Liquid Chromatography Coupled to Quadrupole Time-of-Flight Mass Spectrometry. Food Res. Int. 2013, 50, 77–84. [Google Scholar] [CrossRef]
- Artursson, P.; Karlsson, J. Correlation between Oral Drug Absorption in Humans and Apparent Drug Permeability Coefficients in Human Intestinal Epithelial (Caco-2) Cells. Biochem. Biophys. Res. Commun. 1991, 175, 880–885. [Google Scholar] [CrossRef]
- Szwajgier, D.; Paduch, R.; Kukuła-Koch, W.; Polak-Berecka, M.; Waśko, A. Study on Biological Activity of Bread Enriched with Natural Polyphenols in Terms of Growth Inhibition of Tumor Intestine Cells. J. Med. Food 2020, 23, 181–190. [Google Scholar] [CrossRef]
- Elansary, H.O.; Mahmoud, E.A. In Vitro Antioxidant and Antiproliferative Activities of Six International Basil Cultivars. Nat. Prod. Res. 2015, 22, 2149–2154. [Google Scholar] [CrossRef]
- Cashman, N.R.; Durham, H.D.; Blusztajn, J.K.; Oda, K.; Tabira, T.; Shaw, I.T.; Dahrouge, S.; Antel, J.P. Neuroblastoma × Spinal Cord (NSC) Hybrid Cell Lines Resemble Developing Motor Neurons. Dev. Dyn. 1992, 194, 209–221. [Google Scholar] [CrossRef]
- Li, F.; Wei, Y.; Zhao, J.; Yu, G.; Huang, L.; Li, Q. Transport Mechanism and Subcellular Localization of a Polysaccharide from Cucurbia Moschata across Caco-2 Cells Model. Int. J. Biol. Macromol. 2021, 182, 1003–1014. [Google Scholar] [CrossRef] [PubMed]
Extraction Techniques | Ratio (g/mL) | Extraction Yield (%) | TPC (mg GAE/g DW) | FRAP (µmol FSE/g DW) | ABTS (mg AAE/g DW) | DPPH (mg TE/g DW) |
---|---|---|---|---|---|---|
MAE | 1/20 (condition 1) | 23.62 ± 0.02 | 12.63 ± 1.01 b | 71.09 ± 1.07 a | 13.29 ± 0.69 | 4.93 ± 0.93 |
2.5/20 (condition 2) | 16.30 ± 0.07 | 16.89 ± 1.06 a | 59.75 ± 1.09 b | 12.42 ± 0.85 | 5.08 ± 0.84 | |
UAE | 1/20 (condition 1) | 25.19 ± 0.04 | 12.17 ± 0.72 b | 52.32 ± 1.95 c | 12.87 ± 1.76 | 4.35 ± 0.73 |
2.5/20 (condition 2) | 28.41 ± 0.10 | 12.40 ± 0.91 b | 45.80 ± 1.37 d | 11.38 ± 3.54 | 4.54 ± 1.40 |
Reactive Oxygen Species | ||||
---|---|---|---|---|
Extraction Technique | Conditions | O2●− IC50 (µg/mL) | HOCl IC50 (µg/mL) | ORAC µg TE/mg DW |
MAE | Condition 1 | - | 2.29 ± 0.11 c | 0.28 ± 0.025 |
Condition 2 | 134.59 ± 29.31 b,c | 6.32 ± 0.10 b | 0.04 ± 0.01 | |
UAE | Condition 1 | 221.88 ± 0.00 a | 1.88 ± 0.23 c | 1.13 ± 0.28 |
Condition 2 | 178.68 ± 42.60 a,b | 13.50 ± 0.75 a | 0.67 ± 0.06 | |
Positive controls | ||||
Catechin | 84.40 ± 10.33 c,d | 0.31 ± 0.05 d | 6.60 ± 9.29 | |
Gallic acid | 24.55 ± 3.49 d | 3.27 ± 0.29 c | 7.31 ± 2.63 |
Compounds | UAE (mg/g DW) | MAE (mg/g DW) | ||
---|---|---|---|---|
Condition 1 | Condition 2 | Condition 1 | Condition 2 | |
Alkaloids | ||||
Caffeine | 2.401 ± 0.120 | 1.147 ± 0.057 | 1.483 ± 0.074 | 2.373 ± 0.119 |
Chalconoids | ||||
Phloridzin | ND | ND | 1.502 ± 0.075 | 2.062 ± 0.103 |
Flavanols | ||||
Catechin | 5.634 ± 0.282 | 4.567 ± 0.228 | 5.753 ± 0.288 | 7.354 ± 0.368 |
Epicatechin | 0.278 ± 0.014 | <LOD | 0.549 ± 0.027 | 0.654 ± 0.033 |
Flavanones | ||||
Naringin | 0.016 ± 0.001 | 0.072 ± 0.004 | 0.102 ± 0.005 | 0.116 ± 0.006 |
Flavonols | ||||
Rutin | ND | ND | 0.045 ± 0.002 | 0.054 ± 0.003 |
Myricetin | 0.299 ± 0.015 | ND | 0.392 ± 0.020 | <LOQ |
Phenolic acids | ||||
Gallic acid | 1.337 ± 0.067 | 0.945 ± 0.047 | 1.061 ± 0.053 | 1.236 ± 0.062 |
Protocatechuic acid | 0.378 ± 0.019 | 0.712 ± 0.036 | 1.989 ± 0.099 | 1.970 ± 0.098 |
Neochlorogenic acid | 0.224 ± 0.011 | <LOD | 0.106 ± 0.005 | <LOQ |
Caftaric acid | 0.174 ± 0.009 | 0.176 ± 0.009 | 0.090 ± 0.005 | 0.081 ± 0.004 |
Chlorogenic acid | 0.079 ± 0.004 | 0.111 ± 0.006 | 1.490 ± 0.074 | 1.419 ± 0.071 |
4-O-caffeyolquinic acid | 0.396 ± 0.018 | 0.369 ± 0.018 | 0.399 ± 0.020 | 0.533 ± 0.0267 |
Vanillic acid | 0.224 ± 0.011 | 0.269 ± 0.013 | 0.531 ± 0.027 | 0.835 ± 0.042 |
Caffeic acid | 0.050 ± 0.002 | 0.032 ± 0.002 | 0.152 ± 0.008 | 0.184 ± 0.009 |
Syringic acid | 0.047 ± 0.002 | 0.083 ± 0.004 | 0.183 ± 0.009 | 0.197 ± 0.010 |
p-Coumaric acid | 0.123 ± 0.006 | 0.142 ± 0.007 | 0.257 ± 0.013 | 0.303 ± 0.015 |
trans-Ferulic acid | 0.061 ± 0.003 | 0.044 ± 0.002 | 0.080 ± 0.004 | 0.132 ± 0.007 |
Sinapic acid | 0.155 ± 0.080 | 0.093 ± 0.005 | 0.062 ± 0.003 | ND |
4,5-di-O-caffeoylquinic acid | 0.555 ± 0.028 | 0.336 ± 0.017 | 0.693 ± 0.035 | 0.840 ± 0.042 |
Stilbenoids | ||||
trans-polydatin | 0.072 ± 0.004 | 0.055 ± 0.003 | 0.090 ± 0.004 | <LOQ |
Total | 12.511 | 9.154 | 17.006 | 20.340 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Macedo, C.; Silva, A.M.; Ferreira, A.S.; Moreira, M.M.; Delerue-Matos, C.; Rodrigues, F. Microwave- and Ultrasound-Assisted Extraction of Cucurbita pepo Seeds: A Comparison Study of Antioxidant Activity, Phenolic Profile, and In-Vitro Cells Effects. Appl. Sci. 2022, 12, 1763. https://doi.org/10.3390/app12031763
Macedo C, Silva AM, Ferreira AS, Moreira MM, Delerue-Matos C, Rodrigues F. Microwave- and Ultrasound-Assisted Extraction of Cucurbita pepo Seeds: A Comparison Study of Antioxidant Activity, Phenolic Profile, and In-Vitro Cells Effects. Applied Sciences. 2022; 12(3):1763. https://doi.org/10.3390/app12031763
Chicago/Turabian StyleMacedo, Catarina, Ana Margarida Silva, Ana Sofia Ferreira, Manuela M. Moreira, Cristina Delerue-Matos, and Francisca Rodrigues. 2022. "Microwave- and Ultrasound-Assisted Extraction of Cucurbita pepo Seeds: A Comparison Study of Antioxidant Activity, Phenolic Profile, and In-Vitro Cells Effects" Applied Sciences 12, no. 3: 1763. https://doi.org/10.3390/app12031763
APA StyleMacedo, C., Silva, A. M., Ferreira, A. S., Moreira, M. M., Delerue-Matos, C., & Rodrigues, F. (2022). Microwave- and Ultrasound-Assisted Extraction of Cucurbita pepo Seeds: A Comparison Study of Antioxidant Activity, Phenolic Profile, and In-Vitro Cells Effects. Applied Sciences, 12(3), 1763. https://doi.org/10.3390/app12031763