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Abstract: Nowadays there is a growing demand for nutraceuticals to prevent diseases related to
redox imbalances, such as atherosclerosis and diabetes, being crucial to search for new matrixes rich
in bioactive compounds. This work aims to characterize the value-added compounds extracted from
Curcubita pepo seeds using green methodologies, namely microwave-assisted extraction (MAE) and
ultrasound-assisted extraction (UAE), employing water as an extracting solvent for two ratios (condi-
tion 1: 1 mg/20 mL; condition 2: 2.5 mg/20 mL). The extract with the best antioxidant/antiradical
activity in FRAP (71.09 µmol FSE/g DW) and DPPH (5.08 mg TE/g DW) assays was MAE condition
1, while MAE condition 2 exhibited the highest activity in the ABTS assay (13.29 mg AAE/g DW)
and TPC (16.89 mg GAE/g DW). A remarkable scavenging capacity was observed, particularly for
HOCl, with IC50 values ranging from 1.88–13.50 µg/mL. A total of 21 phenolic compounds were
identified, being catechin (4.567–7.354 mg/g DW), caffeine (1.147–2.401 mg/g DW) and gallic acid
(0.945–1.337 mg/g DW) predominant. No adverse effects were observed on Caco-2 viability after
exposure to MAE extracts, while the other conditions led to a slight viability decrease in NSC-34.
These results highlighted that the extract from MAE condition 2 is the most promising as a potential
nutraceutical ingredient.

Keywords: Curcubita pepo seeds; green extraction techniques; nutraceutical industry; valorization;
sustainability

1. Introduction

Nutraceuticals are bioactive compounds extracted from their original food matrix [1]
that provide medical or health benefits by preventing or treating diseases [2]. In the past
years, nutraceuticals received particular attention from consumers due to their potential to
improve health, delay the aging process, increase life expectancy, prevent chronic diseases,
and even support the structure or function of the body [3]. Different studies reported
that nutraceuticals, such as ginseng, green tea, sumac, folic acid and cod liver oil, present
promising results in different pathological complications, such as atherosclerosis [4,5],
cardiovascular diseases [6,7], diabetes [8], cancer [9,10] and neurological disorders [11].
Furthermore, recently published reports demonstrated the positive effects of nutraceuti-
cal plants as Zizyphus jujube [12] or Lavandula officinalis [13] on the Alzheimer’s disease,
learning and memory. Extracts from coneflowers or herbs of other plants, namely Echinacea
angustfolia, E. pallida and E. purpurea, revealed to improve immune function and lower sus-
ceptibility to some diseases [3]. The ability of nutraceuticals to neutralize these conditions
is often related with their capacity to restore redox balance [14–16].

The Cucurbitaceae family, also known as cucurbits, are a large group of almost
800 species that include squashes, pumpkins, melons and gourds [17]. Cucurbita pepo, also
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referred to as “summer squash” or “zucchini”, originates from Central and South America,
being currently cultivated worldwide in warm regions [18]. It is the most produced species
of the Cucurbitaceae family, and one of the oldest known cultivated species, with Mexican
archaeological evidence dating from 7000 BC [19,20]. C. pepo is an economically important
crop in which immature fruits, leaves, peel, blossoms, and seeds are consumed due to their
nutritional and medicinal benefits [21].

The seeds of the Cucurbitaceae family are globally used for the treatment of different
diseases, particularly due to their antiviral, anti-inflammatory, anti-ulcerative, antidiabetic
and antioxidant activities as well as analgesic for urinary disorders [17]. A few studies
using C. pepo seed extracts were published in the past years, revealing wound healing [22],
hair growth promotion [23] and anthelmintic [24] properties, besides their ability to inhibit
the cell growth of hyperplastic and cancer cells [25]. Moreover, the treatment with C. pepo
extract conducted to a substantial improvement of the lower urinary tract symptoms that
are suggestive of benign prostatic hyperplasia [26].

According to different authors, C. pepo seeds are rich in several bioactive compounds,
such as polyphenols [27], which have anti-aging and anticarcinogenic effects and may protect
against vascular inflammation and cardiovascular and neurodegenerative diseases [28–31].
α- and γ-tocopherols [32] are also present, defending cells from oxidative stress and inflam-
mation [33], while carotenoids (e.g., β-carotene and β-cryptoxanthin) may protect against
different chronic diseases, including cancer [34] and cardiovascular diseases [35]. Besides that,
carotenoids improve the cognitive and visual functions [36]. In addition, C. pepo seeds are rich
in polyunsaturated fatty acids [37], zinc [38], and phytosterols such as β-sitosterol [32], which
may reduce the blood cholesterol [39] and decrease the risk of certain types of cancer [40].
β-sitosterol is also the bioactive compound responsible for the successful use of C. pepo seeds
in the treatment of benign prostatic hyperplasia [41–43]. Berberine and palmatine are also
present in considerable amounts [24], conferring to nematocidal [24], antimalarial [44], an-
tileishmaniasis [45], anti-schistosomiasis [46] and Toxoplasma gondii inhibitory properties [47].

Nevertheless, most of the authors employed organic solvents in the extractive step or,
at least, used cold pressing methods aiming to obtain the lipidic fraction. Therefore, the use
of water as an alternative solvent led to a greener extraction process and, simultaneously,
avoided the extraction of a significant amount of lipids that are naturally present in C. pepo
seeds. Allied to the selection of less-polluting solvents, it is imperative to select eco-friendly
extraction methods. Therefore, technologies such as microwave-assisted extraction (MAE)
and ultrasound-assisted extraction (UAE) arise as an alternative to the traditional ones [48].
MAE is a conventional, automated green extraction technique that allows the extraction
of active components from different matrices [49,50]. By using microwave energy, MAE
heats the solvents in contact with samples, disrupts the cell membrane, and releases the
intracellular components into the solvents [50,51]. This is opposite to the conventional
methods, such as Soxhlet extraction, that often requires 12–24 h of extraction periods and
hundreds of milliliters of organic solvents [50]. When compared to such methods, MAE
requires shorter extraction times, decreasing the degradation of the extracted components
as well as the costs and the volume of the solvents used, and therefore improving the purity
of the final extracts [52–56].

On the other hand, UAE is also an environmentally friendly, simple, effective, and
inexpensive technique, with applications in pharmaceutical, cosmetic, and alimentary
fields that have become more popular since 2007 [57–59]. This sustainable technique
uses ultrasounds waves, which induce cavitation and thermal and mechanical effects in
the extraction medium, and disrupt the cell walls of the matrix [58]. This phenomenon
leads to the release of intracellular components into the solvents, without producing
considerable modifications in the structure and properties of the compounds [60]. Some
advantages of this technique include the use of small amounts of matrixes and solvents,
short extraction times and samples throughput increment [61]. UAE also avoids the
thermal decomposition of heat sensitive compounds, since it is a non-thermal process [62].
Furthermore, UAE achieves higher extraction yields in comparison with maceration and
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Soxhlet extractions [63]. Overall, these methodologies are less time-consuming, easy to
execute, low-cost and usually lead to higher extraction yields, being reported by different
authors as successfully in the recovery of high-added value compounds from plants [64–66].

Considering these points, the main goal of this study was the extraction of value-
added compounds from C. pepo seeds using two green extraction methods, namely MAE
and UAE, and water as solvent. Besides that, aiming to evaluate the influence of the ratio
on the bioactive composition of the extracts, two different amounts of sample were used,
namely 1 g/20 mL (condition 1) and 2.5 g/20 mL (condition 2). Afterwards, the extracts
were characterized regarding antioxidant activity, radical scavenging capacity, phenolic
profile, and in vitro cellular effects, aiming to determine their potential use as ingredients
for nutraceutical purposes. To the best of our knowledge, this is the first study that uses
these techniques and solvent to valorize C. pepo seeds. The possibility of it being used as
a nutraceutical ingredient was comprehensively evaluated by analyzing its antioxidant
activity, radical scavenging capacity, phenolic profile, and in vitro cellular effects.

2. Materials and Methods
2.1. Chemicals

Trolox and 2,2-diphenyl-1-picryl-hydrazyl (DPPH) were obtained from Sigma-Aldrich
(Steinheim, Germany). Folin–Ciocalteu’s reagent and gallic acid were purchased from
Sigma Chemical Co. (St. Louis, MO, USA). Dulbecco’s Modified Eagle Medium (DMEM),
Fetal Bovine Serum (FBS), Hank’s Balanced Salt Solution (HBSS), non-essential amino acids,
penicillin, streptomycin, and trypsin–EDTA were obtained from Invitrogen Corporation
(Life Technologies, S.A., Madrid, Spain). Dimethyl sulfoxide (DMSO) was supplied by
AppliChem (Darmstadt, Germany).

HPLC solvents were provided by Sigma-Aldrich (Milan, Italy). Phenolic compounds’
individual standards used for the identification or quantification in extracts were purchased
from Sigma-Aldrich (Steinheim, Germany) and their purity was at least above 95%.

The Caco-2 cell line was obtained from American Type Culture Collection (ATCC,
USA). Mouse Motor Neuron-Like Hybrid cells (NSC-34 cell line) were obtained from
Cedarlane (Hornby, ON, Canada).

2.2. Samples

C. pepo seeds were obtained from local producers in September 2021, Braga, Portu-
gal. The seeds were dehydrated (Excalibur Food Dehydrator, Sacramento, CA, USA) at
41 ◦C for 24 h, grinded in a miller (Moulinex A320) and stored at 4 ◦C in the dark until
further extraction.

2.3. Preparation of C. pepo Extracts

The MAE was performed on a MARS-X 1500 W (Microwave Accelerated Reaction
System for Extraction and Digestion, CEM, Mathews, NC, USA), using closed Teflon
extraction vessels. Samples of grinded C. pepo seeds were extracted with 20 mL of deionized
water. Two different quantities of samples (1 mg/20 mL and 2.5 mg/20 mL) were used in
order to determine the best ratio. Microwave power was fixed at 300 W and the extraction
was performed at 25 ◦C for 30 min, with constant medium stirring, according to the
procedure described by Silva et al. [67].

The UAE was accomplished using a Sonic Vibracell (model VC 750, Newtown, CT,
USA), at room temperature for 30 min. Sonication was performed with a probe of 13 mm
diameter with 40% of amplitude. The power was fixed at 750 W and the frequency at
20 kHz, as reported by Lameirão et al. [68].

After extraction, the solutions were filtrated through a Whatman No. 1 filter paper and
frozen at −80 ◦C for subsequent lyophilization (Telstar, model Cryodos−80, Spain). After
lyophilization, extracts were stocked at room temperature (20 ◦C) and kept in the dark. For
the further experiments, the final residue was dissolved in deionized water, except for the
DPPH assay, in which the extracts were dissolved in a hydroalcoholic (1:10, v/v) solution.
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In the following sections, the nomenclature used will be MAE condition 1 (1 mg/20 mL),
MAE condition 2 (2.5 mg/20 mL), UAE condition 1 (1 mg/20 mL) and UAE condition 2
(2.5 mg/20 mL). These ratios were based on preliminary studies performed by the research
team (data not shown).

2.4. Total Phenolic Content (TPC)

The determination of the total phenolic content (TPC) was performed following the
Folin–Ciocalteu procedure designed by Singleton and Rossi [69], with slight modifications.
Gallic acid was used as standard for the calibration curve (linearity range = 5–100 µg/mL;
R2 > 0.997). The results were expressed as milligrams of gallic acid equivalents (GAE) per
gram of extract on dry weight (DW) (mg GAE/g DW).

2.5. In Vitro Antioxidant and Antiradical Activities
2.5.1. ABTS•+ Radical Scavenging Activity Assay

The extracts ABTS•+ scavenging capacity was directly assessed in a 96-well microplate
as described by Re et al. [70], with minor modifications. Ascorbic acid was prepared as
standard for the calibration curve (linearity range: 5–50 µg/mL; R2 > 0.981). The results
were presented as mg ascorbic acid equivalents (AAE) per gram of extract on DW (mg
AAE/g DW).

2.5.2. DPPH• Radical Scavenging Activity Assay

The antiradical activity by scavenging of DPPH• radicals was evaluated following the
procedure previously described by Pinto et al. [71]. Trolox was the standard used for the
calibration curve (linearity range: 5–75 µg/mL; R2 > 0.990). Results were expressed as mg
of Trolox equivalents (TE) per gram of extract on DW (mg TE/g DW).

2.5.3. Ferric Reducing Antioxidant Power Assay

Ferric reducing antioxidant power (FRAP) was determined based on the reduction of
a ferric complex (Fe3+-TPTZ) to the ferrous form (Fe2+-TPTZ) by antioxidants, according to
Benzie and Strain [72], with minor modifications. The reaction mixture was incubated at
37 ◦C for 30 min and the absorbance was measured at 595 nm. The calibration curve was
prepared with a solution of ferrous sulphate 1mM as standard (linearity range: 25–500 µM;
R2 > 0.999). The results were expressed in µmol of ferrous sulphate equivalents (FSE) per
gram of extract on DW (µmol FSE/g DW).

2.5.4. Reactive Oxygen Species Scavenging Capacity Assays
Hypochlorous Acid Scavenging Assay (HOCl)

The hypochlorous acid (HOCl) quenching capacity of C. pepo extracts and the positive
controls (catechin and gallic acid) was determined according to the protocol described by
Gomes et al. [73]. The HOCl solution was prepared using NaOCl 1% (w/v) and the pH was
adjusted to 6.2 using H2SO4. The fluorescence signal was monitored for 5 min at 37 ◦C.
Results were expressed as the inhibition, in IC50 (µg/mL), of HOCl-induced oxidation of
DHR to rhodamine.

Superoxide Anion Radical Scavenging Assay (O2
•−)

The superoxide anion radical (O2
•−) scavenging assay was performed following the

procedure described by Gomes et al. [73]. O2
•− was produced using a non-enzymatic

system (NADH/PMS/O2) that induces the reduction of NBT into a purple-colored difor-
mazan. The absorbance was measured at 560 nm for 5 min. The results were presented as
the inhibition, in IC50 (µg/mL), of the NBT reduction to diformazan.

Peroxyl Radical Scavenging Assay (ORAC)

The peroxyl radical scavenging assay was performed to determine the capacity of
C. pepo extracts to quench this reactive oxygen species (ROS), following the procedure
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described by Gomes et al. [73]. The positive controls used were catechin and gallic acid.
GraphPad Prism 9.2.0 software (La Jolla, CA, USA) was used to plot the curves of inhibi-
tion percentage versus extract concentration and calculate the IC50 values. Results were
expressed as mg TE/g DW.

2.6. Identification and Quantification of the Polyphenols Profile

The polyphenol identification and quantification were performed by HPLC with
photodiode array (PDA) detection, as described in detail by Moreira et al. [64]. A Gemini
C18 column (250 mm × 4.6 mm, 5 µm, Phenomenex, Alcobendas, Spain) was used for the
separation at 25 ◦C. The results were expressed as mg of each phenolic compound per gram
of extract on DW (mg/g DW).

2.7. Cell Viability Assays

The 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay was
performed to evaluate the effect of the extracts on intestinal and neuronal cell lines aiming
to screen the absence of toxicity for future use as a nutraceutical ingredient. Briefly, cells
were incubated during 24 h with fresh medium in the absence or in the presence of the
extracts (0.1, 1, 10, 100 and 1000 µg/mL) dissolved in cell culture medium. Two cell lines
were employed: Caco-2 (clone type C2BBe1) and NCS-34. Passage 69–70 and 29–30 of
Caco-2 and NCS-34 were, respectively, used for the MTT assay. Cells were grown according
to the methodology described by Pinto et al. [74].

2.8. Statistical Analysis

Data were presented as mean ± standard deviation of at least three independent
experiments. IBM SPSS Statistics 28.0.1.0 software (SPSS Inc., Chicago, IL, USA) was used
to investigate statistical differences among results. After the evaluation of the normality of
the data, one-way ANOVA was applied to determine the differences between samples and
post hoc comparisons of the means were carried out using Tukey’s HSD test. A meaningful
significance was accepted for p < 0.05.

3. Results and Discussion
3.1. Extraction Yield of C. pepo Seed Extracts

Extraction yield is one of the principal factors for the selection of an extractive tech-
nique, depending not only on the matrix and solvents used, but also on the technique and
respective extraction conditions (e.g., ratio, temperature, volume, among others) [64,75].
Therefore, to optimize the extraction efficiency, different extraction conditions were used,
namely the solid–liquid ratios (1 g/20 mL and 2.5 g/20 mL) and the extraction techniques
(MAE and UAE). As observed in Table 1, the extraction yields of C. pepo seed extracts varied
between 16.30% (MAE condition 2) and 28.41% (UAE condition 2). UAE led to higher
yields (25.19% and 28.41%, respectively, for condition 1 and 2) when compared to MAE
(23.62% and 16.30%, respectively, for condition 1 and 2). These differences may be due to a
higher amount of compounds extracted by the UAE technique.
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Table 1. Extraction yield, total phenolic content (TPC), in vitro antioxidant/antiradical activities
(evaluated by ABTS, FRAP and DPPH assays) of C. pepo extracts prepared by MAE and UAE. Values
are expressed as mean ± standard deviation (n = 3).

Extraction
Techniques Ratio (g/mL) Extraction

Yield (%)
TPC

(mg GAE/g DW)
FRAP

(µmol FSE/g DW)

ABTS
(mg AAE/g

DW)

DPPH
(mg TE/g

DW)

MAE
1/20 (condition 1) 23.62 ± 0.02 12.63 ± 1.01 b 71.09 ± 1.07 a 13.29 ± 0.69 4.93 ± 0.93

2.5/20 (condition 2) 16.30 ± 0.07 16.89 ± 1.06 a 59.75 ± 1.09 b 12.42 ± 0.85 5.08 ± 0.84

UAE
1/20 (condition 1) 25.19 ± 0.04 12.17 ± 0.72 b 52.32 ± 1.95 c 12.87 ± 1.76 4.35 ± 0.73

2.5/20 (condition 2) 28.41 ± 0.10 12.40 ± 0.91 b 45.80 ± 1.37 d 11.38 ± 3.54 4.54 ± 1.40

Different letters (a, b, c, d) in the same column indicate significant differences between extracts (p < 0.05).
TPC: total phenolic content; FRAP: ferric reducing antioxidant power; FSE: ferrous sulphate equivalents; AAE:
ascorbic acid equivalents; TE: trolox equivalents; DW: dry weight.

3.2. Antioxidant/Antiradical Activity

The extraction conditions and the experimental values of TPC, ABTS, DPPH and
FRAP assays are presented in Table 1. The TPC varied from 12.17 mg GAE/g DW
(UAE condition 1) to 16.89 mg GAE/g DW (MAE condition 2). These results are in line with
the results obtained by HPLC–PDA analysis (Section 3.4), which confirmed that the MAE
condition 2 extract has the highest content in phenolic compounds, while the UAE condi-
tion 1 extract achieved one of the lowest. The TPC values are considerably higher than the
ones obtained for C. pepo seeds extracted using acetone as a solvent in an Ultra Turax mixer
(8.37 mg GAE/g DW) [76]. The TPC of MAE condition 2 extract is in line with the value
reported by Mondal et al. [77] for an ethanolic extract of C. pepo leaves and stems (17.49 mg
GAE/g DW), using the cold extraction method. Oppositely, conventional extracts of C. pepo
fresh seeds dried at 65 ◦C and prepared with ultrapure water displayed a substantially
lower content (2.39 mg GAE/g DW) [78]. The TPC values are also considerably higher than
the ones reported for C. maxima seed oil extracted using chloroform/methanol (54.41 mg
GAE/Kg) as solvent [79]. Moreover, Peiretti et al. obtained a TPC of 9.82 mg of catechin
equivalents (CAE)/g of C. pepo seed extract using a mixture of 80:20 methanol/water (v/v)
as solvent, and a solid material to solvent ratio of 1:10 (w/v) in an ultrasonic water bath [27].
Nevertheless, the units used by the authors are not the same, making it not possible to
completely compare.

Regarding the DPPH assay, the results ranged from 4.35 mg TE/g DW (UAE condition 1)
to 5.08 mg TE/g DW (MAE condition 2), with no significant differences between the extracts.
These values are lower than the ones reported using conventional extracts of C. pepo fresh
seeds dried at 65 ◦C and employing water as a solvent (118.19 µmol of TE/g) [78]. As far
as we know, no more studies have been performed regarding the scavenging capacity of
this radical.

In regards to the antioxidant activity evaluated by the FRAP assay, the MAE condition
1 extract achieved the best result (71.09 µmol FSE/g DW), while the UAE condition 2 extract
achieved the worst (45.80 µmol FSE/g DW). These values are in line with the ones reported
by Peirerri et al. (54 µmol FSE/g DW) for C. pepo seeds using 80:20 methanol/water (v/v)
as a solvent [27]. Nevertheless, it should be highlighted that these authors used organic
solvents, while in the present study, water was the only solvent employed.

Concerning the ABTS assay, the results varied between 11.38 mg AAE/g DW (UAE
condition 2) and 13.29 mg AAE/g DW (MAE condition 1), with no significant differences
between extracts. These results are not in accordance with the TPC ones, which could be
justified by the ABTS mechanism of assay. The ABTS assay measures the relative ability of
the antiradical compounds present in the extracts to scavenge the ABTS•+ cation generated
in vitro. Nevertheless, some matrixes may have interferents, which do not scavenge the
cation and lead to worse results. Therefore, the antiradical assays should always combine
different radical assays (such as ABTS or DPPH).



Appl. Sci. 2022, 12, 1763 7 of 16

Kulczyński et al. obtained an ABTS value of 79.30 mg Trolox/100 g DW for C. maxima
seed extracts using an ultrasonic water bath for 1h at 30 ◦C, employing water as an extrac-
tion solvent [80]. Using ethanol and methanol as an extraction solvent, Nawirska–Olszańska
et al. obtained ABTS values of 7.92 and 1.95 µM Trolox/g fresh weight (FW), respectively,
using C. pepo (Miranda cultivar) seed extracts and the UAE technique [81]. Nevertheless,
the results obtained in the present study could not be compared with these ones since the
units are different.

3.3. Reactive Oxygen Species Scavenging Capacity Assays

Reactive species are the principal cause of oxidative stress, being divided in reactive
oxygen and nitrogen species (ROS and RNS, respectively). These molecules, produced dur-
ing the body aerobic metabolism, may cause oxidative damage of amino acids, DNA, lipids,
and proteins [82–84]. The radical scavenging activity results are summarized in Table 2.

Table 2. Reactive oxygen species scavenging capacity (evaluated by O2•−, HOCl and ORAC assays)
of C. pepo extracts prepared by microwave-assisted extraction and ultrasound-assisted extraction
(MAE and UAE, respectively). Values are expressed as mean ± standard deviation (n = 3).

Reactive Oxygen Species

Extraction
Technique Conditions O2•−

IC50 (µg/mL)
HOCl

IC50 (µg/mL)
ORAC

µg TE/mg DW

MAE Condition 1 - 2.29 ± 0.11 c 0.28 ± 0.025
Condition 2 134.59 ± 29.31 b,c 6.32 ± 0.10 b 0.04 ± 0.01

UAE Condition 1 221.88 ± 0.00 a 1.88 ± 0.23 c 1.13 ± 0.28
Condition 2 178.68 ± 42.60 a,b 13.50 ± 0.75 a 0.67 ± 0.06

Positive controls
Catechin 84.40 ± 10.33 c,d 0.31 ± 0.05 d 6.60 ± 9.29

Gallic acid 24.55 ± 3.49 d 3.27 ± 0.29 c 7.31 ± 2.63
Different letters (a, b, c, d) in the same column indicate significant differences between extracts (p < 0.05).
IC50 = In vitro concentration required to decrease in 50% the reactivity of the studied reactive species in the tested
media. ORAC: Peroxyl radical scavenging assay; TE: trolox equivalents; DW: dry weight.

Among ROS, superoxide radical (O2
•−) has particular importance as it is one of the

most aggressive oxygen species in the human organism, being enrolled in the development
of aging and chronic diseases, such as atherosclerosis, ischemic heart disease, diabetes
mellitus, cancer, neurodegenerative diseases, immunosuppression and others [85–88]. Phe-
nolic compounds have demonstrated a strong scavenging capacity of superoxide anion [89].
Concerning this species quenching assay (Table 2), gallic acid and catechin were the best
scavengers, with IC50 values of 24.55 µg/mL and 84.40 µg/mL, respectively, followed
by MAE condition 2 (IC50 = 134.59 µg/mL), UAE condition 2 (IC50 = 178.68 µg/mL) and
UAE condition 1 (IC50 = 221.88 µg/mL). It is important to emphasize that there are no
significant differences (p > 0.05) between MAE condition 2 extract and catechin used as
positive control.

Among the ROS studied, the best results were achieved by hypochlorous acid (HOCl).
For this species, the UAE condition 1 (IC50 = 1.88 µg/mL) and MAE condition 1
(IC50 = 2.29 µg/mL) extracts achieved the best results, being not significantly different from
gallic acid (IC50 = 3.27 µg/mL) used as positive control. These results are followed by MAE
condition 2 (IC50 = 6.32 µg/mL) and UAE condition 2 (IC50 = 13.50 µg/mL) extracts.

Regarding the oxygen radical absorbance capacity, the values of C. pepo extracts varied
between 0.04 µg TE/mg DW (MAE condition 2) and 1.13 µg TE/mg DW (UAE condition 1),
with no significant difference between the extracts and the positive controls employed.

To the best of our knowledge, this is the first study that screened the radical scavenging
activity of C. pepo extracts. Nevertheless, comparing with other seed matrixes, the results
are very interesting. For example, using tea seed oil extracted by cold pressing, Liu et al.
obtained a IC50 = 1.73 mg/mL for the O2

•− radical [90], which indicates that this extract
has a lower radical scavenging capacity than the C. pepo extracts tested. Annatto seed
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extracts, obtained by a conventional extraction employing distilled water as the solvent,
displayed an IC50 = 1.0 µg/mL for the HOCl and an IC50 = 0.11 µmol TE/mL for the ORAC
assay. However, no O2

•− radical scavenging activity was detected within the assayed
concentration range (15–25 µg/mL) [91].

3.4. Phenolic Compounds of C. pepo Seed Extract

Phenolic compounds are a group of non-enzymatic antioxidants that have the ability
to combat free radicals, which, when in excess, may lead to increased oxidative stress and
consequently to cell aging. The phenolic composition of the C. pepo extracts is summarized
in Table 3.

Table 3. Identification and quantification (mg/g DW) of the phenolic compounds present in C. pepo
seed extracts obtained by UAE and MAE at different extraction conditions through HPLC–PDA
analysis. Results are expressed as mean ± standard deviations (n = 3).

Compounds
UAE (mg/g DW) MAE (mg/g DW)

Condition 1 Condition 2 Condition 1 Condition 2

Alkaloids

Caffeine 2.401 ± 0.120 1.147 ± 0.057 1.483 ± 0.074 2.373 ± 0.119

Chalconoids

Phloridzin ND ND 1.502 ± 0.075 2.062 ± 0.103

Flavanols

Catechin 5.634 ± 0.282 4.567 ± 0.228 5.753 ± 0.288 7.354 ± 0.368
Epicatechin 0.278 ± 0.014 <LOD 0.549 ± 0.027 0.654 ± 0.033

Flavanones

Naringin 0.016 ± 0.001 0.072 ± 0.004 0.102 ± 0.005 0.116 ± 0.006

Flavonols

Rutin ND ND 0.045 ± 0.002 0.054 ± 0.003
Myricetin 0.299 ± 0.015 ND 0.392 ± 0.020 <LOQ

Phenolic acids

Gallic acid 1.337 ± 0.067 0.945 ± 0.047 1.061 ± 0.053 1.236 ± 0.062
Protocatechuic acid 0.378 ± 0.019 0.712 ± 0.036 1.989 ± 0.099 1.970 ± 0.098
Neochlorogenic acid 0.224 ± 0.011 <LOD 0.106 ± 0.005 <LOQ

Caftaric acid 0.174 ± 0.009 0.176 ± 0.009 0.090 ± 0.005 0.081 ± 0.004
Chlorogenic acid 0.079 ± 0.004 0.111 ± 0.006 1.490 ± 0.074 1.419 ± 0.071

4-O-caffeyolquinic acid 0.396 ± 0.018 0.369 ± 0.018 0.399 ± 0.020 0.533 ± 0.0267
Vanillic acid 0.224 ± 0.011 0.269 ± 0.013 0.531 ± 0.027 0.835 ± 0.042
Caffeic acid 0.050 ± 0.002 0.032 ± 0.002 0.152 ± 0.008 0.184 ± 0.009

Syringic acid 0.047 ± 0.002 0.083 ± 0.004 0.183 ± 0.009 0.197 ± 0.010
p-Coumaric acid 0.123 ± 0.006 0.142 ± 0.007 0.257 ± 0.013 0.303 ± 0.015
trans-Ferulic acid 0.061 ± 0.003 0.044 ± 0.002 0.080 ± 0.004 0.132 ± 0.007

Sinapic acid 0.155 ± 0.080 0.093 ± 0.005 0.062 ± 0.003 ND
4,5-di-O-caffeoylquinic acid 0.555 ± 0.028 0.336 ± 0.017 0.693 ± 0.035 0.840 ± 0.042

Stilbenoids

trans-polydatin 0.072 ± 0.004 0.055 ± 0.003 0.090 ± 0.004 <LOQ

Total 12.511 9.154 17.006 20.340
ND: not detected; LOD: limit of detection; LOQ: limit of quantitation; DW: dry weight.

MAE condition 2 achieved the highest concentration of phenolic compounds
(20.34 mg/g DW), followed by MAE condition 1 (17.01 mg/g DW), UAE condition 1
(12.51 mg/g DW) and UAE condition 2 (9.15 mg/g DW). The lower concentration of pheno-
lic compounds in the UAE extracts may be explained by the partial degradation of phenolic
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acids by ultrasonic waves and the creation of highly reactive hydroxyl radicals during the
UAE process, which has been reported by several authors [92–94].

In all extracts, the phenolic compound present in the highest quantity was catechin.
Quantitatively, in addition to catechin, the compounds identified in higher amounts were
caffeine and gallic acid in the UAE condition 1 and UAE condition 2 extracts, and caffeine,
phloridzin, gallic acid, protocatechuic acid, and chlorogenic acid in the MAE condition 1
and MAE condition 2 extracts. Moreover, caffeine, catechin, naringin, gallic acid, pro-
tocatechuic acid, caftaric acid, chlorogenic acid, 4-O-caffeyolquinic acid, vanillic acid,
caffeic acid, syringic acid, p-coumaric acid, ferulic acid and 4,5-di-O-caffeoylquinic acid
are present in all samples. Phloridzin and rutin were only detected in the UAE extracts.
The phenolic compounds 3,5-di-caffeoylquinic acid, quercetin-3-O-galactoside, resvera-
trol, quercetin-3-O-glucopyranoside, ellagic acid, cinnamic acid, quercitrin, kaempferol-3-
O-glucoside, isorhamnetin-3-O-glucoside, kaempferol-3-O-rutinoside, isorhamnetin-3-O-
rutinoside, naringenin, trans-epsilon viniferin, quercetin, phloretin, tiliroside, kaempferol,
apigenin and chrysin were not detected in any of the C. pepo extracts.

To the best of our knowledge, this is the first work that identified and quantified the
phenolic compounds present in C. pepo seed extracts. Nevertheless, it is possible to compare
the results with other Cucurbita seed extracts. The results obtained by Ennebs et al. shown
that C. moschata seed extract contains less phenolic compounds than C. pepo, as only six
phenolic acids (quinic acid, protocatechuic acid, caffeic acid, syringic acid, trans-ferulic
acid and 4,5-Di-O-caffeoylquinic acid) were identified in C. moschata seed extracts using
LC-ESI-MS, employing hexane, chloroform, ethyl acetate and methanol as the extraction
solvent [95].

Employing ultrasounds as the extraction method and methanol/H2O 80:20 (v/v) as
the solvent, Iswaldi et al. identified 10 phenolic acids (p-coumaric acid, ferulic acid, caftaric
acid, caffeic acid, 3-O-caffeoylquinic acid, caffeic acid, 2-O-caffeoylmalic acid, dicaffeoyltar-
taric acid, dicaffeic acid and sinapic acid) and 16 flavonoids (including luteolin O-glucoside,
quercetin 3-O-rhamnosyl-rhamnosyl-glucoside, quercetin rutinoside, glucoside, isorham-
netin 3-rutinoside-7-rhamnoside and different kaempferol glycosides) in C. pepo whole fruit
extracts, using LC-DAD-Q-TOF MS [96].

3.5. Cytotoxic Effects of C. pepo Seed Extracts towards Intestinal and Neuronal Cells

Caco-2, an intestinal cell line, was used to evaluate the cytotoxicity of the C. pepo
extracts obtained by UAE and MAE. This cell line allows the study the compound absorp-
tion across the intestinal epithelium, being commonly employed to evaluate the extracts
safety [97]. According to Figure 1, the exposure of this cell line to increasing concentrations
(0.1–1000 µg/mL) of MAE C. pepo extracts showed a viability around 100%, without sig-
nificant differences (p > 0.05). On the other hand, only the concentration of 0.1 µg/mL of
the UAE condition 1 extract maintained a viability of 101.36%, being significantly different
from the other concentrations (p < 0.05). At higher concentrations, the viability ranged
between 70.20% (1000 µg/mL) and 77.82% (1 µg/mL). The UAE condition 2 displayed
viabilities above 88.78%, being not significantly different (p > 0.05). The lower viability dis-
played by Caco-2 cells incubated with UAE C. pepo extracts may be explained by the higher
content on neochlorogenic acid and caftaric acid present in the extracts. These compounds
have antiproliferative activity and may effectively inhibit the growth of colorectal cancer
cells [98,99].

In the present study, NSC-34 cell line was used to evaluate the potential neurotoxicity
of C. pepo extracts obtained by UAE and MAE (Figure 2). NSC-34 is a hybrid cell line that
has similar morphological and physiological properties to motor neurons [100]. This cell
line in culture mimics the synthesis and storage of acetylcholine (ACh) and the expression
of neurofilament proteins [100]. After 24 h of incubation in the presence of different
concentrations (0.1–1000 µg/mL) of C. pepo extracts, it was possible to observe a decrease
of the NSC-34 cell viability, mainly in the MAE and UAE condition 1 extracts (Figure 2).
Indeed, at the highest concentration tested (1000 µg/mL), the cells’ viability was 9.92% and
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19.58%, for MAE condition 1 and UAE condition 1, respectively, with significant differences
(p < 0.05). In these cases, it was possible to determine the IC50 values of 253.68 (MAE
condition 1) and 95.32 µg/mL (UAE condition 1).
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Oppositely, MAE and UAE condition 2 showed an increasing trend with increased
concentrations. For MAE condition 2, the results varied from 54.17% (0.1 µg/mL) to 82.97%
(1000 µg/mL). In the case of UAE condition 2 extracts, the highest cell viability (98.21%)
was found for the highest concentration tested (1000 µg/mL), following in descending
order 100, 1, 10 and 0.1 µg/mL.

The inferior cells’ viability observed after exposure to MAE condition 1 and UAE
condition 1 extracts may be due to the presence in higher amounts of the antiproliferative
compounds neochlorogenic acid and caftaric acid, which is not observed in MAE condition
2 and UAE condition 2 extracts. Besides that, MAE condition 2 and UAE condition 2
extracts present other compounds (e.g., catechin, gallic acid or protocatechuic acid) with
benefic cell effects in higher quantities, justifying a possible protective effect. Further
studies are needed to justify these differences.

To the best of our knowledge, this is the first study that screens the in vitro effects of
C. pepo extracts on the viability of cell lines. Li et al. [101] evaluated the cytotoxicity effect
of C. moschata polysaccharides on Caco-2 through the CCK-8 assay, reporting a viability
above 90% for all tested concentrations (0, 250, 500, 1000, 1500 µg/mL) [101]. These results
are in line with the ones obtained in the present study for Caco-2.

4. Conclusions

In this work, value-added compounds from C. pepo seeds were extracted using green
techniques—UAE and MAE—and an eco-friendly solvent—water, aiming a potential use
as nutraceutical ingredient. Two different ratio conditions were employed.

FRAP scavenging activity ranged from 45.80 to 71.09 µmol FSE/g DW (UAE condition 2
and MAE condition 1, respectively), while DPPH values varied between 4.35 mg TE/g
DW (UAE condition 1) and 5.08 mg TE/g DW (MAE condition 2). The extract with the
best performance at ABTS assay was MAE condition 1 (13.29 mg AAE/g DW), while
UAE condition 2 was the worst (11.38 mg AAE/g DW). The extract with the highest TPC
value was MAE condition 2 (16.89 mg GAE/g DW), and UAE condition 1 had the lowest
(12.17 mg GAE/g DW). All extracts displayed a remarkable scavenging capacity for HOCl,
with IC50 values ranging from 1.88 (UAE condition 1) to 13.50 µg/mL (UAE condition 2).

HPLC–PDA analysis revealed the presence of alkaloids, chalconoids, flavanols, fla-
vanones, flavonols, phenolic acids and stilbenoids. A total of 21 phenolic compounds were
identified, with catechin, caffeine and gallic acid being present in higher quantities. No
adverse effects were detected in Caco-2 viability to MAE extracts up to 1000 µg/mL, while
all the other conditions tested led to a slight decrease of cell viability.

The results shown that a higher sample-to-solvent ratio led to an increase in the
amount of phenolic compounds present in both MAE and UAE extracts, which led to
better results in ORAC, O2

•−, TPC and DPPH assays. Overall, these results highlighted
that C. pepo seeds are a potential source of antioxidant/antiradical compounds and that
the extract MAE condition 2 is rich in bioactive compounds with potential uses in the
nutraceutical field.

Moreover, the results obtained in this study show that higher sample-to-solvent
ratios using MAE technology can lead to the extraction of a greater amount of phenolic
compounds. Therefore, further studies are needed to screen the effects on neuronal enzymes
(such as acetylcholinesterase or butyrylcholinesterase) as well as 3D intestinal permeation
studies to screen the amounts that are absorbed at intestinal level.
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