
����������
�������

Citation: Marton, S.; Lüdtke, S.;

Bartelt, C. Explanations for Neural

Networks by Neural Networks. Appl.

Sci. 2022, 12, 980. https://doi.org/

10.3390/app12030980

Academic Editors: María Paz

Sesmero Lorente, Plamen Angelov

and Jose Antonio Iglesias Martinez

Received: 8 December 2021

Accepted: 15 January 2022

Published: 18 January 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

applied
sciences

Article

Explanations for Neural Networks by Neural Networks
Sascha Marton * , Stefan Lüdtke and Christian Bartelt

Institute for Enterprise Systems, University of Mannheim, 68131 Mannheim, Germany;
luedtke@es.uni-mannheim.de (S.L.); bartelt@es.uni-mannheim.de (C.B.)
* Correspondence: marton@es.uni-mannheim.de

Abstract: Understanding the function learned by a neural network is crucial in many domains, e.g.,
to detect a model’s adaption to concept drift in online learning. Existing global surrogate model
approaches generate explanations by maximizing the fidelity between the neural network and a
surrogate model on a sample-basis, which can be very time-consuming. Therefore, these approaches
are not applicable in scenarios where timely or frequent explanations are required. In this paper,
we introduce a real-time approach for generating a symbolic representation of the function learned
by a neural network. Our idea is to generate explanations via another neural network (called the
Interpretation Network, or I-Net), which maps network parameters to a symbolic representation of the
network function. We show that the training of an I-Net for a family of functions can be performed
up-front and subsequent generation of an explanation only requires querying the I-Net once, which
is computationally very efficient and does not require training data. We empirically evaluate our
approach for the case of low-order polynomials as explanations, and show that it achieves competitive
results for various data and function complexities. To the best of our knowledge, this is the first
approach that attempts to learn mapping from neural networks to symbolic representations.

Keywords: Explainable AI (XAI); interpretability; explainability; neural networks; machine learning;
symbolic representations

1. Introduction

The ability of artificial neural networks to act as general function approximators has
led to impressive results in many application areas. However, the price for this universal
applicability is the limited interpretability of the trained model. Overcoming this limitation
is a subject of active research in the machine learning community [1]. Popular approaches
for explaining the results of neural networks such as LIME [2], SHAP [3], or LRP [4] focus
on the impact of different attributes on the predictions of the model for certain examples.
While this provides a partial explanation for individual examples, it does not shed a light on
the complete network function. Especially when dealing with streaming data, uncovering
the network function is very important, e.g., for detecting the adjustment of a model to
concept drift or for the identification of catastrophic forgetting.

While there are existing approaches for constructing a compact representation of the
network function (such as symbolic metamodeling [5] and symbolic regression [6], for
instance), they generate their explanations on a sample-basis. Generating explanations
through maximizing the fidelity to the neural network on a sample-basis means that the
optimization process for finding a suitable explanation must be performed independently
for each model we want to interpret. Since this optimization process is usually very
time-consuming, it precludes the application of this method in scenarios where timely
explanations are required. Furthermore, they require access to the training data, or at least
knowledge of its distribution [7].

In this paper, we present a novel approach that enables the real-time, post-hoc extrac-
tion of a symbolic representation of the network function from an already trained neural
network λ solely based on its parameters (i.e., weights and biases). The fundamental idea

Appl. Sci. 2022, 12, 980. https://doi.org/10.3390/app12030980 https://www.mdpi.com/journal/applsci

https://doi.org/10.3390/app12030980
https://doi.org/10.3390/app12030980
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/applsci
https://www.mdpi.com
https://orcid.org/0000-0001-8151-9223
https://orcid.org/0000-0002-1488-4236
https://orcid.org/0000-0003-0426-6714
https://doi.org/10.3390/app12030980
https://www.mdpi.com/journal/applsci
https://www.mdpi.com/article/10.3390/app12030980?type=check_update&version=2

Appl. Sci. 2022, 12, 980 2 of 14

underlying our approach is to use a neural network (called Interpretation Network, or I-Net)
which maps the parameters of the network λ to a corresponding symbolic representation
(e.g., a low-order polynomial). Accordingly, we transfer the task of interpreting neural
networks to a machine learning problem, which we solve using neural networks them-
selves. The I-Net can be trained up-front for a family of functions, so that generating a
symbolic expression for a given network λ only requires querying the I-Net once. This way,
our approach is applicable when real-time interpretations are required (e.g., in an online
learning scenario) or when the training data are either not available anymore or cannot be
shared (e.g., personal data). We demonstrate our approach on the example of low-order
polynomials, which can approximate a wide range of functions and can efficiently be
learned with neural networks, as shown by Andoni et al. [8]. Using low-order polynomials
as explanations allows reading of the influence of variables (and interactions of variables)
directly from the corresponding coefficients. This makes polynomials interpretable com-
prehensible functions, allowing interpretability on a modular level. Even if we focus on
polynomials in this paper, the approach is general by design and can be applied to arbitrary
functions with symbolic representations, e.g., Boolean functions or decision trees.

This paper has four contributions:

1. We introduce the general framework of Interpretation Networks (I-Nets) as means
of learning the mapping from a neural network to a symbolic representation of the
network function;

2. We show how I-Nets can be trained up-front, without requiring access to training
data or querying the target network (Section 2);

3. We propose a specific instance of this framework, where the symbolic representations
are low-order polynomials (Section 3). Therefore, this instance allows explanations
for models where sparse polynomials offer a reasonable explanation;

4. We empirically evaluate our approach against symbolic regression [6], showing that it
achieves competitive results without time-consuming optimizations for each specific
generated explanation (Section 4).

2. The I-Net Approach
2.1. Explanations for Neural Networks

We start by formalizing the task of generating symbolic representations (explanations)
from black-box models, i.e., neural networks. A neural network represents a function
λ : X → Y. Our goal is to obtain a function g : X → Y, such that g approximates λ, i.e.,
∀x ∈ X : λ(x) ≈ g(x). More specifically, we are interested in functions g that have a
simple, interpretable representation. There is no universal agreement about what constitutes
an interpretable function [9]. A usual requirement is that g should have substantially
fewer parameters and interdependencies than λ [2]. In Section 3, we propose to use sparse
polynomials as function family of g.

For this paper, it is useful to explicitly distinguish between the functions λ and g, and
their representations θλ ∈ Θλ and θg ∈ Θg. We can think of θλ and θg as parameters of λ
and g, respectively. For example, when λ is a neural network, θλ is the vector of all weights
and biases of λ, in some systematic order that allows reconstructing the function λ from
θλ. Similarly, θg is the parameter vector for the symbolic model, e.g., coefficients of sparse
polynomials, as we will introduce in Section 3.

The process of generating explanations can be formalized as a function I : Θλ → Θg
that maps representations of λ to representations of g. We are interested in functions I with
a high fidelity to the neural network, i.e., where ∀x : λ(x) ≈ g(x). Existing approaches
for generating symbolic explanations implement I via a sample-based procedure. They
generate a set of samples {xi, λ(xi)}M

i=1 from λ (where X usually constitutes the data used
for the training of λ), and then fit a function g to those samples. This procedure must be
repeated for each θλ ∈ Θλ independently.

Symbolic regression [6] uses genetic programming to find a symbolic expression that
maximizes the fidelity of g based on a set of data points. Accordingly, for interpretability

Appl. Sci. 2022, 12, 980 3 of 14

purposes, we can apply the algorithm to the predictions of λ, assuming we have query
access. Therefore, the functional form of the expressions has to be selected in terms of
the allowed operations prior to application. In contrast, symbolic metamodeling [5] does
not require predefining the functional form of the expressions. Instead, it uses Meijer
G-functions [10] and their parameterization, which allows uncovering infinitely many func-
tional forms (for instance arithmetic, polynomial, algebraic, and analytic expressions) based
on a fixed-dimensional parameter space [5]. Furthermore, the corresponding metamodels
can be optimized using gradient descent.

While these approaches can lead to concise and accurate explanations in g, they
can be computationally very expensive due to the large number of required samples
and difficult, time-consuming optimization of the parameters of g. Furthermore, they
require the network function λ to start the optimization process which precludes real-time
explanations. Specifically, in an online learning situation, it can be necessary to generate
explanations in real time, making existing methods become infeasible.

2.2. Explanations for Neural Networks by Neural Networks

To overcome this problem, we propose to implement I as a neural network. This concept
is visualized in Figure 1. Thus, we can train I up-front, so that generating an explanation g
only requires querying the I-Net once, which is possible in (close to) real-time.

w1
⠇
wm
w1
⠇
wm

(e.g. for
Polynomials)(e.g. for

Polynomials)

(𝜆-Network)

Black-Box Model 1

Translation
(e.g. for Polynomials)

w1
⠇
w|w|

𝑔! = 𝑥03 + 2𝑥0𝑥12 − 𝑥1 + 1

𝑔" = 𝑥02 + 𝑥12 + 3

𝑔# = 𝑥03𝑥1 − 𝑥02 + 𝑥1

Network Parameters 𝜽𝝀 Output Function 𝒈

𝒙(!)
𝒙(")

... 𝒙(#)

𝜆(") (𝒙("))

𝜆(#)(𝒙(#))

𝜆(!)(𝒙(!))
...

Figure 1. Overview of the I-Net translation approach. The neural network parameters as input are
translated into a symbolic representation of a mathematical function.

As described before, our goal is to obtain an I-Net that computes θg with ∀x : λ(x) ≈
g(x). More precisely, we can use a distance measure, such as the mean absolute error (MAE)
over a set of sample points {xi}M

i=1 to quantify the agreement (the fidelity) between λ and g:

MAE(θλ, θg) =
1
M

M

∑
i=1
|λ(x(i))− g(x(i))|

Given a set of network parameters Θλ = {θ(i)λ }
N
i=1, the loss function of the I-Net can

be computed as

LI =
1
|Θλ| ∑

θλ∈Θλ

MAE(θλ, I(θλ)).

Note that training an I-Net does not require any supervision of the desired network
output θg, but instead we only measure the fidelity between network input λ and network
output g. Since both the polynomial function g and the neural network function λ, which
are required in the loss, are differentiable, we can ensure an efficient computation.

Here, we focus on generating explanations for fixed function families. That is, each
I-Net is learned based on networks λ, which were trained using functions belonging to

Appl. Sci. 2022, 12, 980 4 of 14

the same family, e.g., polynomials of fixed dimensionality. For training such an I-Net,
we require a set Θλ, where each θλ ∈ Θλ represents a neural network trained on that
function family.

Fortunately, it is not necessary to use real data for training. Instead, it is sufficient to
sample a set of functions from the family of interest and train networks λ to approximate
these functions. Interestingly, as we will see later, I-Nets trained on such samples can still
generate accurate explanations for networks that were not trained explicitly on the same
function family (see Section 4.2.3).

More specifically, training data for the I-Net can be created in three steps:

1. Sample a set of parameter vectors θg∗ ;
2. For each θg∗ , generate a set of input-output pairs {(x, g∗(x))}M

i=1;
3. For each θg∗ , train a network λ on {(x, g∗(x))}M

i=1

Here, g∗ represents the target function of a network λ. We explicitly distinguish between
g∗ and g, since our goal is finding a function g that approximates what the neural network
has actually learned (i.e., the network function) and not the target function g∗ (i.e., what the
neural network should learn). A specific example of this procedure for the case of sparse
polynomials is shown in Algorithm 1.

Note that sampling is only necessary during generation of Θλ and in the loss function
of the I-Net, but not when generating explanations using the I-Net. This has a number of
advantages compared to conventional, sample-based algorithms. First, we can generate
explanations in (close to) real-time, because generating explanations only requires querying
the I-Net once instead of performing a costly optimization, and the I-Net can be trained
up-front, even without knowing the network function λ.

Secondly, the I-Net can utilize the complete function description θλ to generate an
explanation instead of relying on an incomplete description based on samples.

Algorithm 1 Generate training data for I-Net of sparse polynomials (here, U (0, 1) denotes
independent samples from a continuous, uniform distribution over the interval [0, 1])

1: function GENERATE(M, N, s)
2: for i = 1, . . . , N do
3: θg∗ [1 : s] ∼ U (−1, 1) . Sample s coefficients of target polynomial
4: θg∗ [s + 1 : 2s] ∼ Urn([0, 1, . . . , (n+d

d)] . Sample s monomial indices
5: for j = 1, . . . , M do . Generate samples from the polynomial
6: x(j) ∼ U (0, 1)
7: y(j) = g∗(x(j))

8: Fit neural network λ to the training set {x(j), y(j)}M
j=1

9: Add λ to training set Λ
10: return Λ

3. I-Nets for Sparse Polynomials

When choosing a function family for the generated explanations, a trade-off between
performance and interpretability has to be considered. While functions that are too sim-
ple might not be able to approximate the network function well, a function that is too
complex might not improve the interpretability. Here, we introduce a specific instance
of I-Nets, where g is a sparse polynomial. Within this approach, the user can adjust the
level of complexity themself by defining the maximum degree d of the polynomial and
the number of monomials (i.e., the sparsity) s. As usual, we consider a polynomial to be a
multivariate function

g(x1, . . . , xn) =
s

∑
i=1

c(i)
n

∏
j=1

xd(i,j)
j ,

where d(i,j) is the exponent of variable j in monomial i, and s is the number of monomials.

Appl. Sci. 2022, 12, 980 5 of 14

With an increasing number of variables and a higher degree of the polynomial, the
number of possible monomial terms expands rapidly and is calculated as (n+d

d), where d
is the degree and n the number of variables. Therefore, a cubic, bivariate polynomial has
(2+3

3) = 10 possible coefficients, each belonging to one of the following monomials:

0. x3
0x0

1 = x3
0

1. x2
0x1

1 = x2
0x1

2. x2
0x0

1 = x2
0

3. x1
0x2

1 = x0x2
1

4. x1
0x1

1 = x0x1

5. x1
0x0

1 = x0

6. x0
0x3

1 = x3
1

7. x0
0x2

1 = x2
1

8. x0
0x1

1 = x1

9. x0
0x0

1 = 1

Accordingly, it is straightforward to represent the bivariate, cubic polynomial g(x0, x1) =
3x3

0 + x1
0 − 5x0x2

1 − 3x1 − 4 as a vector θ′g of the coefficients, according to the encoding in
Figure 2a. The order of the elements in θ′g is sorted by the enumeration of monomials
shown above. It is easy to see that such a systematic evaluation of monomials exists for all
n and d.

3 0 1 −5 0 0 0 0 −3 −4

g(𝑥!, 𝑥") 	= 3𝑥!# + 𝑥!$ − 5𝑥!𝑥"$ − 3𝑥! − 4

0 1 2 3 4 5 6 7 8 9

0 2 3 8 9

𝜽𝒈" =
3 1 −5 −3 −4 0 2 3 8 9

g(𝑥!, 𝑥") 	= 3𝑥!# + 𝑥!$ − 5𝑥!𝑥"$ − 3𝑥! − 4
0 2 3 8 9

𝜽𝒈 	
=

(a) (b)

Figure 2. Polynomial representations: Comparison of dense and sparse polynomial representations
for an exemplary polynomial. (a) Dense polynomial representation: a value at position i represents the
coefficient of the i-th monomial in the systematic enumeration. (b) Sparse polynomial representation:
the polynomial is represented by pairs of the coefficient and index of the monomial in the systematic
enumeration.

In this paper, we are concerned with sparse polynomials, where only a small number
of monomials have nonzero coefficients. The reason for focusing on sparse polynomials is
twofold. First, we are concerned with explanations that can be inspected and interpreted by
humans. Although there is no universal agreement about what constitutes an interpretable
representation [9], we follow Ribeiro et al. [2] who use model complexity as a proxy for
interpretability. Thus, we argue that the number of monomials has to be relatively small to
serve as a useful and human-understandable representation. Secondly, constraining the
number of monomials is a form of regularization, preventing overfitting.

For sparse polynomials, the representation in Figure 2a is very inefficient, especially for
an increasing number of variables and degree. For instance, assuming we want to represent
a cubic polynomial with 10 variables, we would need a vector θ′g of length (10+3

3) = 286,
even if just a small number of monomials has non-zero coefficients. Additionally, it is
difficult for a neural network to predict zero coefficients when using this representation,
since linear outputs are not tailored towards predicting a value of 0. This would eventually
result in dense polynomials with many small coefficients, which precludes interpretability.

Thus, to efficiently represent and predict sparse polynomials, we define an alternative
representation, comprising the coefficient values along with the corresponding monomial
indices. This way, the function g(x0, x1) = 3x3

0 + x1
0 − 5x0x2

1 − 3x1 − 4 can be represented
as the vector θg, shown in Figure 2b. Within θg, the first s entries represent the coefficients
and the second s entries represent the corresponding monomial indices in the systematic

Appl. Sci. 2022, 12, 980 6 of 14

enumeration of monomials shown previously. The coefficient at position i for i = {0, . . . , s}
belongs to the monomial index at position s + i. Here, s defines the number of monomials
with non-zero coefficients, which we also call the sparsity of the polynomial in the following.

The architecture of the output layer of an I-Net for sparse polynomials is shown in
Figure 3. For the coefficient outputs, we use linear output activations. Each index output
is represented via (n+d

n) neurons with softmax activation (i.e., it can be seen as a separate
classification task for each index). This way, indices can be constrained to be integers in the
range [0, (n+d

d)], which would not be possible directly when using linear activations.

Interpretation-Net Output Layer

Variable Output (Softmax Activations)
Identifier 5th Variable Identifier 1st Variable

Coefficient Output
(Linear Activations)

3 1 −5 −3 −4 0 2 3 8 9

𝑔(𝑥!, 𝑥") = 3𝑥!# + 𝑥!$ − 5𝑥!𝑥"$ − 3𝑥! − 4
0 2 3 8 9

𝜽𝒈 =

3 1 …−5 −3 −4 0.80 0.09 0.02 0.01 0.01 0.030.01 0.01 0.01 0.01 0.02 0.09 0.02 0.01 0.01 0.030.01 0.01 0.790.01

0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9

Monomial Encoding

0. 𝑥!#
1. 𝑥!$𝑥"
2. 𝑥!$
3. 𝑥!𝑥"$
4. 𝑥!𝑥"

5. 𝑥!
6. 𝑥"$
7. 𝑥"$
8. 𝑥"
9. 1

Figure 3. I-Net output layer. The sparse polynomial representation is predicted by the I-Net using
different output layers and activations.

We use the sparse polynomial representation as explanations, i.e., as outputs of I-Nets.
Note that for a given I-Net, the sparsity parameter s (which defines the dimensionality
of θλ) is fixed. For an efficient I-Net training and evaluation, we need datasets where
polynomial functions can act as reasonable explanations, i.e., datasets where we would
choose the function family of polynomials for interpretability purposes in the first place.
Therefore, Algorithm 1 shows how reasonable training data (i.e., parameters θλ) for an
I-Net are generated. First, we sample parameter vectors θg∗ of sparse polynomials as target
functions with fixed sparsity s. Thereby, the coefficient values are sampled independently
of U (−1, 1). The position indices in θg∗ are sampled from an urn without replacement with
values [0, 1, . . . , (n+d

d)]. Then, for each θg∗ , a number of sample points x are drawn from
U (0, 1), and the target function values y = g∗(x) are calculated to generate training data.
Accordingly, we have N datasets with M samples of dimensionality n comprising random
datapoints with function values for a randomly generated polynomial of degree d and
sparsity s. Next, a network λ is trained on the sampled data, so that ∀x ∈ X : g∗(x) ≈ λ(x).
The set of parameters of these networks λ can then be used for training an I-Net. The
resulting I-Net can generate explanations for sparse polynomials with fixed sparsity s.

4. Evaluation

The goal of the evaluation is to show that I-Nets can produce real-time explanations
while still achieving competitive performance compared to symbolic regression using ge-
netic programming [6]. Specifically, within our experiments we investigated the following
research questions:

1. What is the runtime of the different methods for generating explanations with respect
to the dimensionality of the function (Section 4.2.2)?

Appl. Sci. 2022, 12, 980 7 of 14

2. What is the error of the generated explanations in terms of MAE between original
network λ and explanation g (Section 4.2.2)?

3. How does the error of the I-Net explanations change with respect to noise in the
training data of λ (Section 4.2.3)?

We did not include symbolic metamodeling [5] in the evaluation, which has only
been successfully used for classification and has not achieved reasonable results for re-
gression, as investigated here (We used the official implementation available under: https:
//github.com/ahmedmalaa/Symbolic-Metamodeling (accessed on 1 December 2021)).
Furthermore, we found that the generated explanations are usually very complex and
cannot be restricted in complexity. Thus, we argue that they do not serve as human-
understandable representations, especially with an increasing complexity of the dataset or
an increasing number of variables.

4.1. Experimental Setup

For the evaluation, we trained a set of 100 neural networks λ for each parametrization
on randomly generated functions according to Algorithm 1 with the specifications shown
in Table 1. This way, the evaluation was performed on datasets where polynomials can act
as reasonable explanations with a sufficiently high fidelity. The set of randomly generated
polynomials and data points used for the evaluation is distinct from the training set of
I-Net, i.e., they are unseeded during the training, thus ensuring a fair comparison. The
dataset to train the λ-Nets was split into disjointed train, valid, and test datasets where
2813 samples were used for the training, 937 samples for the validation, and 1250 samples
for the performance evaluation.

Table 1. Dataset specifications for λ-Net training.

Parameter
Dataset Specification

Evaluation Visualization

number_of_variables (n) 5 10 15 1
degree (d) 3 3 3 5
sparsity (s) 5 10 15 3

Noise a {0, 0.1, 0.2, 0.3} {0, 0.1, 0.2, 0.3} {0, 0.1, 0.2, 0.3} 0

λ-Net Data Set Size (N) 5000 5000 5000 5000
a The noise was injected for each dataset separately by adding a value drawn from N (0, max(f (x1), . . . , f (xN))−
min(f (x1), . . . , f (xN))) multiplied by the specified noise level.

The parameters used for training the λ-Nets are summarized in Table 2. For the λ-Nets
we selected the parameters based on the findings of Andoni et al. [8], which prove that
neural networks with a single hidden layer are able to learn sparse, cubic polynomials
efficiently using SGD with 5× s neurons. We decided to use Adam instead of SGD due
to its faster convergence. As activation function, we selected ReLU, which is defined as
f (x) = max(0, x) due to its computational efficiency and good performance, especially
in supervised settings [11]. The parameters for the I-Net training were selected based
on coarse to fine tuning to optimize the performance and are summarized in Table 2.
Furthermore, the degree and sparsity for the I-Net output layer are set according to the
dataset specifications in Table 1.

For symbolic regression, the parameters were tuned similar to the I-Net using coarse to
fine grid search. We used the symbolic regression implementation of gplearn (Available at
https://gplearn.readthedocs.io/en/stable/reference.html#symbolic-regressor (accessed
on 1 December 2021)). More details on the hyperparameters and settings of the symbolic
regression baseline are described in Appendix A.

https://github.com/ahmedmalaa/Symbolic-Metamodeling
https://github.com/ahmedmalaa/Symbolic-Metamodeling
https://gplearn.readthedocs.io/en/stable/reference.html#symbolic-regressor

Appl. Sci. 2022, 12, 980 8 of 14

Table 2. Parameters used for the λ-Net and I-Net training.

Parameter λ-Hyperparameters I-Hyperparameters

Hidden Layer Neurons a [5× s] [4096, 2048, 1024, 512]
Hidden Layer Activation ReLU ReLU

Batch Size 64 256
Optimizer Adam Adam

Learning Rate 0.001 0.0001
Loss Function MAE LI-Net (with M = 500)

Training Epochs 1,000 500
Early Stopping Yes Yes

Number of Training Samples 5,000 45,000
a In this context, s stands for the sparsity of θg

The λ-Nets used for learning the I-Net were trained on randomly generated functions
according to the specification in Table 1. Since the training of 45,000 neural networks for
each data-set complexity as well as the application of symbolic regression on 100 neural
networks is very time-consuming, all experiments were conducted without repetition
and using an arbitrarily selected random seed, ensuring the reproducibility of our results.
Our approach was implemented in Python using TensorFlow [12] and is available at
https://doi.org/10.5281/zenodo.5865088 (accessed on 1 December 2021).

4.2. Experimental Results
4.2.1. Inspection of Explanation and Complexity

In the following section, we inspect the explanations generated by I-Nets and compare
them with symbolic regression based on their complexity. In addition to the evaluation
settings from Table 1, we also consider the case of n = 1, to allow for a visual comparison.

In Figure 4, we can see explanations for a selected but arbitrary neural network gener-
ated by the I-Net and symbolic regression along with the target function g∗. Additionally,
the dotted blue line shows the predictions of the corresponding neural network λ trained
on g∗. The corresponding expressions and the fidelity (w.r.t. λ) are shown in Table 3. We
can observe that the neural network was able to learn the polynomial target function very
accurately, as the functions completely overlap. The I-Net achieved the best performance
in this case (MAE = 0.0220) and was also able to approximately capture the functional form.
The function generated by symbolic regression comprises just a single term and achieved an
MAE of 0.0566. While the error can be considered as close to the I-Net, symbolic regression
was not able to capture the functional form in the given interval.

0.0 0.2 0.4 0.6 0.8 1.0
Variable Values

0.5

0.4

0.3

0.2

0.1

0.0

Fu
nc

tio
n

Va
lu

es

Target Polynomial
Lambda-Net Predictions
Interpretation-Net Polynomial
Symbolic Regression Polynomial

Figure 4. Exemplary visualization of the explanations. This plot visualizes the function generated by
the evaluated approaches for n = 1 on an arbitrarily selected dataset. The corresponding mathematical
expressions and their fidelity can be found in Table 3.

For the multivariate case, a visual comparison of the functions to the model’s predic-
tions is not possible. Instead, Table 3 shows the polynomials for arbitrarily selected datasets

https://doi.org/10.5281/zenodo.5865088

Appl. Sci. 2022, 12, 980 9 of 14

of each considered complexity. As expected, the complexity of the polynomial generated
by the I-Net matches the sparsity defined in Table 1. Accordingly, the complexity of the
explanation increases with the complexity of the underlying dataset used for the training
of λ. For symbolic regression, complexity of the explanations (w.r.t. number of monomials)
does not increase similarly. Instead, especially for n = 15, the individual monomials have a
higher complexity comprising four different variables, while the maximum degree for the
I-Net is three. The fact that the explanation complexity for symbolic regression does not
increase substantially can be attributed to the selection of a high parsimony_coefficient
which punishes large functions during the optimization, preventing overfitting and long
runtimes (see Appendix A for details).

Table 3. Examples of generated polynomials.

Number of Variables I-Net Symbolic Regression

Function (Fidelity)

n = 1 3.1812x4 − 3.1752x3 − 0.0694
(MAE: 0.0220)

−0.5060x
(MAE: 0.0566)

n = 5
−0.0749x0x1x4 + 0.5084x1x2 − 0.2185x1x4 −

0.432x2x2
4 + 0.0939x2

3x4
(MAE: 0.0068)

0.2180x2
2 + 0.4360x1x2 − 0.6540x4x2

(MAE: 0.0373)

n = 10

0.1837x2
0x3 − 0.2915x0x3x4 − 0.4966x0x5x6 −

0.3588x2
1 + 0.0340x1x3x8 − 0.1769x2x3 +

0.1238x2
3 − 0.0746x3x6x7 − 0.3337x2

6 −
0.3666x6x8

(MAE: 0.1436)

−1.0000x1x5x9 − 0.6430x6
(MAE: 0.1371)

n = 15

0.0722x3
0 + 0.6574x0x2x8 + 0.0555x0x7x13 +

0.0764x0x10 + 0.1436x2
1x3 − 0.0359x2x3 −

0.1764x2x9x13 + 0.2182x2x13x14 +
0.5176x2

3x11 + 0.0369x4 + 0.1653x6x7x12 −
0.0552x6x12x14 + 0.2252x7x8x9 +
0.2166x9x10x14 + 0.1979x9x11x14

(MAE: 0.1971)

1.0000x3x8 + 1.0000x1x5x7x11 +
1.0000x1x5x7x14
(MAE: 0.1498)

4.2.2. Runtime and Performance Evaluation

The goal of this experiment was to compare our approach with symbolic regression
based on the runtime, as well as the fidelity between the predicted symbolic expression
and the corresponding λ-Net.

Figure 5 shows the time required for generating an explanation for a single network.
At the smallest setting (n = 5), symbolic regression needs approximately 160 s for the
interpretation. There is no notable increase in the runtime with an increasing number of
variables. This can again be explained by the parsimony_coefficient, which restricts the
complexity resulting in functions with similar complexity even when the dataset complexity
and the number of variables increases (see Section 4.2.1 for a more in-depth evaluation
of the function complexity). However, if more complex functions are considered within
symbolic regression, the runtime increases significantly, especially for high-dimensional
learning problems. Using I-Nets, the training process can be performed up-front, and
interpretations can be generated in close to real-time (∼0.003 s), regardless of the number
of variables and function complexity.

Figure 6 shows the error of the explanation in terms of MAE between function values
of the λ-Net and the corresponding explanation g computed by the I-Net.

Appl. Sci. 2022, 12, 980 10 of 14

n=5 n=10 n=15
Variables

101

102

103

104

105

Ru
nt

im
e

(m
s)

Interpretation Network
Symbolic Regression

Figure 5. Runtime evaluation. The plot shows a comparison of the average time (in milliseconds)
required for explaining a single neural network for symbolic regression and the I-Net on a logarith-
mic scale.

n=5 n=10 n=15
Variables

0.0

0.1

0.2

0.3

0.4

0.5

M
AE

Interpretation Network
Symbolic Regression

Figure 6. I-Net performance comparison with symbolic regression. This plot shows the performance
in terms of the MAE for all evaluated approaches for three different dataset complexities.

When comparing the mean errors of both approaches, we can observe that symbolic
regression achieves a higher fidelity to the neural network, especially for n = 5 and
n = 10. For n = 15, however, the error difference diminishes. Additionally, we can see
that the standard deviation of the error for symbolic regression is low, while I-Nets have a
comparatively higher standard deviation. While there are cases in which the performance
of I-Nets is superior to symbolic regression, there are also networks where the I-Net
is not able to make reasonable predictions, resulting in high errors that lower the mean
performance of I-Nets. We suspect that a more sophisticated architecture, a more in-depth
hyperparameter optimization, and a larger training data set with higher variety would
allow increased the performance of I-Nets, subject to further work.

Furthermore, optimization for symbolic regression was conducted on only 5000 sam-
ples, which can be considered to be very low compared to most real-world tasks. However,
there was no significant improvement in performance for a larger sample size in our eval-
uation, which would justify the use of a larger set of samples. This can be traced back to
the fact that the underlying network function is close to a polynomial function, which can
already be approximated well with a small number of samples. However, this assumption
may not hold in other scenarios.

4.2.3. I-Net Performance on Noisy Data

As mentioned before, a key advantage of our approach is that the I-Net can be trained
upstream and in a one-time effort based on synthetic data. We only need to ensure that
the function family used as I-Net output is able to approximate the neural network we
want to interpret sufficiently well. In this experiment, we show that an I-Net trained

Appl. Sci. 2022, 12, 980 11 of 14

on a clean, synthetic dataset can be applied to neural networks that have been trained
on previously unseen datasets, even if they contain noise and do not explicitly form a
polynomial function. Figure 7 shows the performance of the I-Net for different noise levels.
Here, the interpretation for the different noise levels is conducted with the same I-Net.

n=5 n=10 n=15
Variables

0.00

0.05

0.10

0.15

0.20

0.25
M

AE

noise=0
noise=0.1
noise=0.2
noise=0.3

Figure 7. I-Net performance evaluation on noisy data. The plot displays the mean absolute error
between the λ-Nets and the functions predicted by the I-Net for different levels of noise and numbers
of variables.

As we can see, the performance of the I-Net does not significantly change for different
noise levels for all numbers of variables. Accordingly, I-Nets that learned on λ-Nets that
were trained on synthetic, clean data are able to make accurate predictions for previously
unseen neural networks, even if they are trained on noisy data. Therefore, I-Nets can also
be applied to realistic scenarios where noise is inherently contained in the data without
requiring additional information or training.

5. Related Approaches

Various methods to interpret black-box models have been proposed in the past decades.
Overviews from different perspectives can be found in [1,7,9]. According to the taxonomy
of Molnar [7], our approach can be classified as global, post-hoc, and model specific, with
an intrinsically interpretable model (i.e., a polynomial function) as interpretation. Therefore,
we focus on global interpretation methods with the goal of uncovering the decision-making
process of the model based on the impact of the learned parameters (e.g., weights and biases
of a neural network) on its features [7]. Global explanations therefore allow us to better
understand the relationship and interactions between the features within the learned model.
In contrast, local explainability methods such as LIME [13] or SHAP [3] only generate
explanations for the models’ prediction on a single instance. Therefore, they aim for local
fidelity, which means that the explanation only accounts for this specific instance of interest
and does not claim to have a high fidelity for further instances. This is fundamentally
different from the goal of global interpretability, where we want to find an interpretation
that has a high fidelity for the complete model and not only for a specific instance.

There is a wide range of active research in the field of global interpretability. One
part of global interpretability research focuses on uncovering the impact of a feature or
a set of features on the model’s predictions, as in, for instance, partial dependency plots
(PDP) [14,15], feature interaction [16–18], or (permutation) feature importance [19]. Another
area of global interpretability is concerned with finding data points that are representative
for the learned model in order to increase the interpretability, as in, for instance, prototypes
and criticisms [7]. While the previously mentioned approaches are similar to I-Nets as
global interpretability methods that can be applied post-hoc, they differ significantly in the
results of the interpretation method.

As it presents an intrinsically interpretable model as a result of the interpretation,
the most relevant work for our paper is work on global surrogate models. Global surro-
gate models, according to Molnar [7], are defined as an interpretable model trained to

Appl. Sci. 2022, 12, 980 12 of 14

approximate the predictions of a black-box model. Thus, interpretability is achieved by
inspecting the parameters of the surrogate model. In the literature, surrogate models are
considered as model-agnostic and are trained based on the prediction of the model we
want to interpret [1,7]. Existing approaches usually differ only in the type of surrogate
model that is chosen and the training procedure of the model. Different types of surrogate
models have been explored, including mathematical functions [5,20], decision trees [21–23],
or rule sets [24,25].

While the result of the interpretation (i.e., an intrinsically interpretable model) of
global surrogate models matches our approach, there are also major differences. All
mentioned approaches require an optimization process during interpretation, whereas
our approach transforms the interpretation task into a machine learning problem that
is solved using neural networks up-front. Additionally, existing approaches generate
interpretations based on samples from the model to be interpreted, making them model-
agnostic. In contrast, the I-Net uses the network parameters of the λ network as the basis
for generating explanations; therefore, this approach is model-specific by definition.

In summary, unlike existing approaches, I-Nets enable real-time interpretations of
previously unseen and already trained models by a representation of their network function
without relying on any data.

6. Conclusions and Future Work

In this paper, we introduced a machine learning approach for the real-time extraction
of mathematical functions from already trained neural networks. The presented method
relies on the offline training of so-called Interpretation Networks (I-Nets) for a certain family
of functions. These I-Nets enable the translation of neural network parameters (i.e., the
weights and biases) to corresponding, human understandable terms in a well-defined
algebraic language. Our approach increases the interpretability of neural networks post-
hoc and in real-time by identifying and extracting the respective network function as an
interpretable function. We empirically showed that I-Nets can learn to generate polynomial
expressions corresponding to given weights and biases of neural networks for different
dataset complexities and with different noise levels. We showed that I-Nets can achieve
competitive results for the function family of sparse polynomials.

Because of their ability to generate explanations in real-time, I-Nets are especially
suited for dynamic environments such as online learning. In this context, they can, for
instance, be applied to detect whether a model has adopted a concept drift in the data
or to identify catastrophic forgetting by inspecting the symbolic representation of the
network function. In addition, the original training data is not required, because our
approach directly works on the model parameters, which implicitly contain all relevant
information about the network function. Thus, explanations can be generated without
exposing confidential training data or when the training data is not available. Furthermore,
using the model parameters does not require proper querying. Additionally, I-Nets allow
the user to specify the complexity of the explanation based on their needs and therefore
can always ensure explanations with a reasonable level of complexity.

In this paper, we focused on lower order polynomials with a moderate number of
variables. Using sparse polynomials as explanations, we assume that the model we want
to interpret can be represented sufficiently well using this function family. Therefore, the
function family of sparse polynomials is not well-suited to explain highly non-linear models,
such as, for instance, convolutional neural networks trained on image data. However, the
advantage of I-Nets is that the general approach is not limited to a specific function family
(i.e., polynomials). Therefore, the transfer of I-Nets to cover further function families is
subject to further work.

Appendix A. Parameters of Baseline Model

The parameters of symbolic regression are summarized in Table A1. The value for the
parsimony_coefficient, which regularizes the complexity during the optimization, was

Appl. Sci. 2022, 12, 980 13 of 14

not included in the hyperparameter optimization, since values smaller than 0.001 frequently
resulted in functions that were too complex for function value calculation and led to a
termination of the optimization process without a significant increase in performance.
The set of considered functions for symbolic regression was selected to include only the
operations necessary to represent polynomials.

Table A1. Parameter settings for symbolic regression.

Parameter Value

dataset size 5000
early stopping 10
max_opt_mins 60

metric MAE

population_size 5000
generations 100

parsimony_coefficient 0.001
function_set (‘add’, ‘sub’, ‘mul’)
init_depth (log2(s), log2(s))

Additionally, early stopping in gplearn was implemented based on a specific target
score, but it is not possible to terminate the optimization if no improvement is achieved
over a specified number of generations. We added this functionality to improve the
performance of symbolic regression and ensure comparability. In addition to early stopping,
we implemented a mechanism to terminate the optimization and pick the best individual
after a specified timeframe (in minutes) to cap the runtime as well as the complexity.

Furthermore, gplearn uses syntax trees to represent the functions during optimization.
Therefore, we selected the init_depth in a way that the maximum length of the functions
in the initial population (which is the maximum number of leaf nodes in a syntax tree
computed by 2max_depth) matches the sparsity s selected for the I-Net to ensure a fair
comparison.

Appendix B. Symbols

Table A2. Abbreviation form.

Symbol Meaning

λ neural network function
Λ set of neural network functions
g (polynomial) function as output of an explanation method
g∗ (polynomial) function as target of a learning problem
θ representation of a function
Θ set of function representations
I function that maps representations of λ to representations of g

M number of samples points
N number of data sets/trained models
n number of variables
d degree
s sparsity

U uniform distribution
Urn urn distribution
N normal distribution

Author Contributions: Conceptualization, S.M. and C.B.; methodology, S.M.; validation, S.M., S.L.
and C.B.; data curation, S.M.; writing—original draft preparation, S.M. and C.B.; writing—review
and editing, S.M., S.L. and C.B.; visualization, S.M.; supervision, S.L. and C.B.; funding acquisition,
C.B. All authors have read and agreed to the published version of the manuscript.

Appl. Sci. 2022, 12, 980 14 of 14

Funding: This research received no external funding.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: The code including data generation used within this paper is available
at https://doi.org/10.5281/zenodo.5865088 (accessed on 1 December 2021).

Acknowledgments: This research was supported by the German Federal Ministry for Economic
Affairs and Energy (BMWi).

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Guidotti, R.; Monreale, A.; Ruggieri, S.; Turini, F.; Giannotti, F.; Pedreschi, D. A survey of methods for explaining black box

models. ACM Comput. Surv. (CSUR) 2018, 51, 1–42. [CrossRef]
2. Ribeiro, M.T.; Singh, S.; Guestrin, C. “Why should i trust you?” Explaining the predictions of any classifier. In Proceedings of the

22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, San Francisco, CA, USA, 13–17 August
2016; pp. 1135–1144.

3. Lundberg, S.M.; Lee, S.I. A unified approach to interpreting model predictions. In Proceedings of the 31st International
Conference on Neural Information Processing Systems, Long Beach, CA, USA, 4–9 December 2017; pp. 4765–4774.

4. Montavon, G.; Binder, A.; Lapuschkin, S.; Samek, W.; Müller, K.R. Layer-wise relevance propagation: An overview. In Explainable
AI: Interpreting, Explaining and Visualizing Deep Learning; Springer: Berlin/Heidelberg, Germany, 2019; pp. 193–209.

5. Alaa, A.M.; van der Schaar, M. Demystifying Black-box Models with Symbolic Metamodels. Adv. Neural Inf. Process. Syst. 2019,
32, 11304–11314.

6. Menezes, T.; Roth, C. Symbolic regression of generative network models. Sci. Rep. 2014, 4, 6284. [CrossRef] [PubMed]
7. Molnar, C. Interpretable Machine Learning. 2020. Available online: https://christophm.github.io/interpretable-ml-book/cite.

html (accessed on 1 December 2021).
8. Andoni, A.; Panigrahy, R.; Valiant, G.; Zhang, L. Learning polynomials with neural networks. In Proceedings of the International

Conference on Machine Learning, Beijing, China, 21–26 June 2014; pp. 1908–1916.
9. Lipton, Z.C. The Mythos of Model Interpretability: In machine learning, the concept of interpretability is both important and

slippery. Queue 2018, 16, 31–57. [CrossRef]
10. Beals, R.; Szmigielski, J. Meijer G-functions: A gentle introduction. Not. AMS 2013, 60, 866–872. [CrossRef]
11. Glorot, X.; Bordes, A.; Bengio, Y. Deep sparse rectifier neural networks. In Proceedings of the Fourteenth International Conference

on Artificial Intelligence and Statistics, Ft. Lauderdale, FL, USA, 11–13 April 2011; pp. 315–323.
12. Abadi, M.; Agarwal, A.; Barham, P.; Brevdo, E.; Chen, Z.; Citro, C.; Corrado, G.S.; Davis, A.; Dean, J.; Devin, M.; et al. TensorFlow:

Large-Scale Machine Learning on Heterogeneous Systems. 2015. Available online: tensorflow.org (accessed on 1 December 2021).
13. Shrikumar, A.; Greenside, P.; Kundaje, A. Learning important features through propagating activation differences. In Proceedings

of the 34th International Conference on Machine Learning—JMLR.org, Sydney, Australia, 6–11 August 2017; Volume 70,
pp. 3145–3153.

14. Friedman, J.H. Greedy function approximation: A gradient boosting machine. Ann. Stat. 2001, 29, 1189–1232. [CrossRef]
15. Zhao, Q.; Hastie, T. Causal interpretations of black-box models. J. Bus. Econ. Stat. 2021, 39, 272–281. [CrossRef] [PubMed]
16. Friedman, J.H.; Popescu, B.E. Predictive learning via rule ensembles. Ann. Appl. Stat. 2008, 2, 916–954. [CrossRef]
17. Hooker, G. Discovering additive structure in black box functions. In Proceedings of the Tenth ACM SIGKDD International

Conference on Knowledge Discovery and Data Mining, Seattle, WA, USA, 22–25 August 2004; pp. 575–580.
18. Greenwell, B.M.; Boehmke, B.C.; McCarthy, A.J. A simple and effective model-based variable importance measure. arXiv 2018,

arXiv:1805.04755.
19. Fisher, A.; Rudin, C.; Dominici, F. All Models are Wrong, but Many are Useful: Learning a Variable’s Importance by Studying an

Entire Class of Prediction Models Simultaneously. J. Mach. Learn. Res. 2019, 20, 1–81.
20. Orzechowski, P.; La Cava, W.; Moore, J.H. Where are we now? A large benchmark study of recent symbolic regression methods.

In Proceedings of the Genetic and Evolutionary Computation Conference, Kyoto, Japan, 15–19 July 2018; pp. 1183–1190.
21. Frosst, N.; Hinton, G. Distilling a neural network into a soft decision tree. arXiv 2017, arXiv:1711.09784.
22. Liu, X.; Wang, X.; Matwin, S. Improving the interpretability of deep neural networks with knowledge distillation. In Proceedings

of the 2018 IEEE International Conference on Data Mining Workshops (ICDMW), Singapore, 17–20 November 2018; pp. 905–912.
23. Zhang, Q.; Yang, Y.; Ma, H.; Wu, Y.N. Interpreting cnns via decision trees. In Proceedings of the IEEE/CVF Conference on

Computer Vision and Pattern Recognition, Long Beach, CA, USA, 15–20 June 2019; pp. 6261–6270.
24. Zilke, J.R.; Loza Mencía, E.; Janssen, F. DeepRED—Rule Extraction from Deep Neural Networks. In Discovery Science; Calders, T.,

Ceci, M., Malerba, D., Eds.; Springer International Publishing: Cham, Switzerland, 2016; pp. 457–473.
25. Zhou, Z.H.; Jiang, Y.; Chen, S.F. Extracting symbolic rules from trained neural network ensembles. AI Commun. 2003, 16, 3–15.

https://doi.org/10.5281/zenodo.5865088
http://doi.org/10.1145/3236009
http://dx.doi.org/10.1038/srep06284
http://www.ncbi.nlm.nih.gov/pubmed/25190000
https://christophm.github.io/interpretable-ml-book/cite.html
https://christophm.github.io/interpretable-ml-book/cite.html
http://dx.doi.org/10.1145/3236386.3241340
http://dx.doi.org/10.1090/noti1016
tensorflow.org
http://dx.doi.org/10.1214/aos/1013203451
http://dx.doi.org/10.1080/07350015.2019.1624293
http://www.ncbi.nlm.nih.gov/pubmed/33132490
http://dx.doi.org/10.1214/07-AOAS148

	Introduction
	The I-Net Approach
	Explanations for Neural Networks
	Explanations for Neural Networks by Neural Networks

	I-Nets for Sparse Polynomials
	Evaluation
	Experimental Setup
	Experimental Results
	Inspection of Explanation and Complexity
	Runtime and Performance Evaluation
	I-Net Performance on Noisy Data

	Related Approaches
	Conclusions and Future Work
	Parameters of Baseline Model
	Symbols
	References

