Towards an Assembly Support System with Dynamic Bayesian Network
Abstract
:1. Introduction
2. Related Work
3. Next Assembly Step Prediction through Dynamic Bayesian Network
3.1. The Target Product
3.2. The DBN as a Prediction Model
4. Experimental Results
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Ruppert, T.; Jaskó, S.; Holczinger, T.; Abonyi, J. Enabling Technologies for Operator 4.0: A Survey. Appl. Sci. 2018, 8, 1650. [Google Scholar] [CrossRef] [Green Version]
- Sun, S.; Zheng, X.; Gong, B.; Paredes, J.G.; Ordieres-Meré, J. Healthy Operator 4.0: A Human Cyber–Physical System Architecture for Smart Workplaces. Sensors 2020, 20, 2011. [Google Scholar] [CrossRef] [Green Version]
- Bortolini, M.; Ferrari, E.; Gamberi, M.; Pilati, F.; Faccio, M. Assembly system design in the Industry 4.0 era: A general framework. IFAC-PapersOnLine 2017, 50, 5700–5705. [Google Scholar] [CrossRef]
- Miqueo, A.; Torralba, M.; Yagüe-Fabra, J.A. Lean Manual Assembly 4.0: A Systematic Review. Appl. Sci. 2020, 10, 8555. [Google Scholar] [CrossRef]
- Longo, F.; Nicoletti, L.; Padovano, A. Smart operators in industry 4.0: A human-centered approach to enhance operators’ capabilities and competencies within the new smart factory context. Comput. Ind. Eng. 2017, 113, 144–159. [Google Scholar] [CrossRef]
- Danielsson, O.; Holm, M.; Syberfeldt, A. Augmented reality smart glasses in industrial assembly: Current status and future challenges. J. Ind. Inf. Integr. 2020, 20, 100175. [Google Scholar] [CrossRef]
- Santi, G.; Ceruti, A.; Liverani, A.; Osti, F. Augmented Reality in Industry 4.0 and Future Innovation Programs. Technologies 2021, 9, 33. [Google Scholar] [CrossRef]
- Faccio, M.; Ferrari, E.; Gamberi, M.; Pilati, F. Human Factor Analyser for work measurement of manual manufacturing and assembly processes. Int. J. Adv. Manuf. Technol. 2019, 103, 861–877. [Google Scholar] [CrossRef]
- Ling, S.; Guo, D.; Zhang, T.; Rong, Y.; Huang, G.Q. Computer Vision-enabled Human-Cyber-Physical Workstations Collaboration for Reconfigurable Assembly System. Procedia Manuf. 2020, 51, 565–570. [Google Scholar] [CrossRef]
- Matei, A.; Tocu, N.-A.; Zamfirescu, C.-B.; Gellert, A.; Neghina, M. Engineering a Digital Twin for Manual Assembling. In Part IV. Leveraging Applications of Formal Methods, Verification and Validation: Tools and Trends, Proceedings of the 9th International Symposium on Leveraging Applications of Formal Methods, ISoLA 2020, Rhodes, Greece, 20–30 October 2020; Tiziana, M., Bernhard, S., Eds.; Springer: Cham, Switzerland, 2021; Volume 12479. [Google Scholar] [CrossRef]
- Gellert, A.; Precup, S.-A.; Pirvu, B.-C.; Zamfirescu, C.-B. Prediction-Based Assembly Assistance System. In Proceedings of the 25th IEEE International Conference on Emerging Technologies and Factory Automation, Vienna, Austria, 8–11 September 2020; pp. 1065–1068. [Google Scholar] [CrossRef]
- Gellert, A.; Precup, S.-A.; Pirvu, B.-C.; Fiore, U.; Zamfirescu, C.-B.; Palmieri, F. An Empirical Evaluation of Prediction by Partial Matching in Assembly Assistance Systems. Appl. Sci. 2021, 11, 3278. [Google Scholar] [CrossRef]
- Nguyen, T.D.; McFarland, R.; Kleinsorge, M.; Krüger, J.; Seliger, G. Adaptive Qualification and Assistance Modules for Manual Assembly Workplaces. Procedia CIRP 2015, 26, 115–120. [Google Scholar] [CrossRef] [Green Version]
- Hinrichsen, S.; Bendzioch, S. How Digital Assistance Systems Improve Work Productivity in Assembly. In Advances in Human Factors and Systems Interaction; Nunes, I., Ed.; Springer: Cham, Switzerland, 2018; Volume 781, pp. 332–342. [Google Scholar] [CrossRef]
- Sochor, R.; Kraus, L.; Merkel, L.; Braunreuther, S.; Reinhart, G. Approach to Increase Worker Acceptance of Cognitive Assistance Systems in Manual Assembly. Procedia CIRP 2019, 81, 926–931. [Google Scholar] [CrossRef]
- Petzoldt, C.; Keiser, D.; Beinke, T.; Freitag, M. Functionalities and Implementation of Future Informational Assistance Systems for Manual Assembly. In Subject-Oriented Business Process Management. The Digital Workplace—Nucleus of Transformation. S-BPM ONE 2020. Communications in Computer and Information Science; Freitag, M., Kinra, A., Kotzab, H., Kreowski, H.J., Thoben, K.D., Eds.; Springer: Cham, Switzerland, 2020; Volume 1278, pp. 88–109. [Google Scholar] [CrossRef]
- Blankemeyer, S.; Wiemann, R.; Raatz, A. Intuitive Assembly Support System Using Augmented Reality. In Tagungsband des 3. Kongresses Montage Handhabung Industrieroboter; Schüppstuhl, T., Tracht, K., Franke, J., Eds.; Springer: Berlin/Heidelberg, Germany, 2018. [Google Scholar] [CrossRef]
- Wang, Y.; Zhang, S.; Wan, B.; He, W.; Bai, X. Point cloud and visual feature-based tracking method for an augmented reality-aided mechanical assembly system. Int. J. Adv. Manuf. Technol. 2018, 99, 2341–2352. [Google Scholar] [CrossRef]
- Amin, A.-; Tao, W.; Doell, D.; Lingard, R.; Yin, Z.; Leu, M.C.; Qin, R. Action Recognition in Manufacturing Assembly using Multimodal Sensor Fusion. Procedia Manuf. 2019, 39, 158–167. [Google Scholar] [CrossRef]
- Zhang, Z.; Wang, W.; Chen, Y.; Jia, Y.; Peng, G. Prediction of Human Actions in Assembly Process by a Spatial-Temporal End-to-End Learning Model. In SAE Technical Paper 2019-01-0509; SAE International: Warrendale, PA, USA, 2019. [Google Scholar] [CrossRef]
- Hawkins, K.P.; Vo, N.; Bansal, S.; Bobick, A.F. Probabilistic human action prediction and wait-sensitive planning for responsive human-robot collaboration. In Proceedings of the 2013 13th IEEE-RAS International Conference on Humanoid Robots (Humanoids), Atlanta, GA, USA, 15–17 October 2013; pp. 499–506. [Google Scholar] [CrossRef]
- Zhang, J.; Wang, P.; Gao, R.X. Hybrid machine learning for human action recognition and prediction in assembly. Robot. Comput. Manuf. 2021, 72, 102184. [Google Scholar] [CrossRef]
- Dojer, N.; Gambin, A.; Mizera, A.; Wilczyński, B.; Tiuryn, J. Applying dynamic Bayesian networks to perturbed gene expression data. BMC Bioinform. 2006, 7, 249. [Google Scholar] [CrossRef] [Green Version]
- Zou, M.; Conzen, S.D. A new dynamic Bayesian network (DBN) approach for identifying gene regulatory networks from time course microarray data. Bioinformatics 2005, 21, 71–79. [Google Scholar] [CrossRef] [Green Version]
- Sun, J.; Sun, J. A dynamic Bayesian network model for real-time crash prediction using traffic speed conditions data. Transp. Res. Part C Emerg. Technol. 2015, 54, 176–186. [Google Scholar] [CrossRef]
- Beckmann, J.; Koop, G.; Korobilis, D.; Schüssler, R.A. Exchange rate predictability and dynamic Bayesian learning. J. Appl. Econ. 2020, 35, 410–421. [Google Scholar] [CrossRef] [Green Version]
- Du, Y.; Chen, F.; Xu, W.; Li, Y. Recognizing Interaction Activities using Dynamic Bayesian Network. In Proceedings of the 18th International Conference on Pattern Recognition, Hong Kong, China, 20–24 August 2006; Volume 1, pp. 618–621. [Google Scholar] [CrossRef]
- Frigault, M.; Wang, L.; Singhal, A.; Jajodia, S. Measuring network security using dynamic bayesian network. In Proceedings of the 4th ACM workshop on Quality of Protection, Alexandria, VA, USA, 27 October 2008; pp. 23–30. [Google Scholar] [CrossRef]
- Chapelle, O.; Zhang, Y. A dynamic bayesian network click model for web search ranking. In Proceedings of the 18th International Conference on World Wide Web, Madrid, Spain, 20–24 April 2009; pp. 1–10. [Google Scholar] [CrossRef] [Green Version]
- Gellert, A.; Zamfirescu, C.-B. Using Two-Level Context-Based Predictors for Assembly Assistance in Smart Factories. In Intelligent Methods in Computing, Communications and Control. ICCCC 2020. Advances in Intelligent Systems and Computing; Dzitac, I., Dzitac, S., Filip, F., Kacprzyk, J., Manolescu, M.J., Oros, H., Eds.; Springer: Cham, Switzerland, 2021; Volume 1243. [Google Scholar] [CrossRef]
- Gellert, A.; Zamfirescu, C.-B. Assembly support systems with Markov predictors. J. Decis. Syst. 2020, 29, 63–70. [Google Scholar] [CrossRef]
- Precup, S.-A.; Gellert, A.; Dorobantiu, A.; Zamfirescu, C.-B. Assembly Process Modeling through Long Short-Term Memory. In Recent Challenges in Intelligent Information and Database Systems, Proceedings of the 13th Asian Conference, ACIIDS 2021, Phuket, Thailand, 7–10 April 2021; Hong, T.-P., Wojtkiewicz, K., Chawuthai, R., Sitek, P., Eds.; Springer: Singapore, 2021; Volume 1371, pp. 28–39. [Google Scholar] [CrossRef]
- Ghahramani, Z. Learning Dynamic Bayesian Networks. In Adaptive Processing of Sequences and Data Structures. NN 1997. Lecture Notes in Computer Science; Giles, C.L., Gori, M., Eds.; Springer: Berlin/Heidelberg, Germany, 1998; Volume 1387, pp. 168–197. [Google Scholar] [CrossRef] [Green Version]
- Ankan, A.; Panda, A. pgmpy: Probabilistic Graphical Models using Python. In Proceedings of the 14th Python in Science Conference, Austin, TX, USA, 6–12 July 2015; pp. 6–11. [Google Scholar] [CrossRef] [Green Version]
- Ganesh, S.; Cave, V. p-values, p-values everywhere! N. Z. Vet. J. 2018, 66, 55–56. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- OpenVINO. Available online: https://docs.openvino.ai/latest/index.html (accessed on 6 December 2021).
Feature | F-Value | p-Value |
---|---|---|
Assembly Experience | 0.00079 | 0.97762 |
Age | 0.10553 | 0.74631 |
Stress level before the assembly | 0.36950 | 0.54535 |
Hungry | 0.55439 | 0.45917 |
Under influence of medication | 0.69261 | 0.40827 |
Preferred hand | 2.40527 | 0.12570 |
Gender | 2.86426 | 0.09528 |
Sleep quality | 2.87701 | 0.09456 |
Eyeglass wearer | 3.99500 | 0.04975 |
Height | 6.98954 | 0.01023 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Precup, S.-A.; Gellert, A.; Matei, A.; Gita, M.; Zamfirescu, C.-B. Towards an Assembly Support System with Dynamic Bayesian Network. Appl. Sci. 2022, 12, 985. https://doi.org/10.3390/app12030985
Precup S-A, Gellert A, Matei A, Gita M, Zamfirescu C-B. Towards an Assembly Support System with Dynamic Bayesian Network. Applied Sciences. 2022; 12(3):985. https://doi.org/10.3390/app12030985
Chicago/Turabian StylePrecup, Stefan-Alexandru, Arpad Gellert, Alexandru Matei, Maria Gita, and Constantin-Bala Zamfirescu. 2022. "Towards an Assembly Support System with Dynamic Bayesian Network" Applied Sciences 12, no. 3: 985. https://doi.org/10.3390/app12030985
APA StylePrecup, S. -A., Gellert, A., Matei, A., Gita, M., & Zamfirescu, C. -B. (2022). Towards an Assembly Support System with Dynamic Bayesian Network. Applied Sciences, 12(3), 985. https://doi.org/10.3390/app12030985