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Abstract: Acoustic conjugate metamaterials (ACMs), in which the imaginary parts of the effective
complex mass density and bulk compressibility are cancelled out in the refractive index, possess
the elements of loss and gain simultaneously. Previous works have focused on panel ACMs for
plane wave incidence. In this paper, we explore the extraordinary scattering properties, including the
acoustic equivalent lasing (AEL) and coherent perfect absorption (CPA) modes, of a three-dimensional
ACM sphere, where incident spherical waves with specific topological orders could be extremely
scattered and totally absorbed, respectively. Theoretical analysis and numerical simulations show that
the AEL or CPA mode with a single order can be realized with a small monolayer ACM sphere with
appropriate parameters. A huge (relative to incident wavelength) ACM sphere with pure imaginary
parameters could support the even- (or odd-) order AEL and odd- (or even-) order CPA modes
simultaneously. In addition, the AEL and/or CPA with multiple orders could be realized based on a
small multilayered ACM sphere. The proposed ACM sphere may provide an alternative method to
design acoustic functional devices, such as amplifiers and absorbers.

Keywords: acoustic conjugate metamaterial; acoustic equivalent lasing; coherent perfect absorption

1. Introduction

Acoustic metamaterials [1–10], composed of subwavelength structural units with spe-
cific designs, can exhibit almost arbitrary effective mass density and bulk compressibility,
which not only greatly expand the variety of materials, but also enable the effective regula-
tion of acoustic waves. In order to break through the limitations of conventional materials,
acoustic metamaterials with negative and zero parameters have been studied extensively.
Usually, negative acoustic parameters are attributed to specific resonances. For example, a
cubic unit composed of a lead ball coated with silicone rubber can realize negative density
when dipole resonances occur [1], while Helmholtz resonators can realize negative bulk
compressibility when monopole resonances occur [4]. A negative effective density or
bulk compressibility constitutes a single negative material [11–15], which can be used for
acoustic insulation and noise reduction [16]. Acoustic waves cannot penetrate a single
negative material but travel only along its surface due to the pure imaginary property of the
refractive index. Combined with the negative density and bulk compressibility, a double
negative material is formed [17–19], which can realize planar focusing, subwavelength
imaging [20,21], and so on. Double negative materials can be realized, for example, by a
system comprising two coupled membranes with two resonance modes (monopole and
dipole) [22]. In addition, zero index materials have also been extensively studied [23–27], by
which superreflection, total transmission, and cloaking can be realized. However, previous
studies of acoustic metamaterials have focused on the real parts of acoustic parameters.
It is also important to take the imaginary parts (indicating loss and gain of the materials)
into account [28]. For example, a topological gallery insulator based on a gain medium
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enables the out-coupling of topological acoustic equivalent lasing (AEL) modes with the
desired handedness [28], and nonreciprocity energy transmission can be realized by lossy
materials [29–32].

A conjugate metamaterial, whose effective relative permittivity and permeability are
complex conjugates of each other, was proposed in the field of electromagnetism more
than a decade ago [33]. Based on the electromagnetic conjugate metamaterials, many
excellent phenomena were realized, such as perfect absorption and amplification [34–36].
Inspired by this, acoustic conjugate metamaterials (ACMs) have recently been proposed,
where the phases of the effective mass density and bulk compressibility are complex
conjugates [37]. The ACMs possess a real refractive index, indicating the existence of
undecaying propagating waves in the ACMs, although the materials exhibit the elements of
gain and loss simultaneously. Based on an ACM slab, AEL and coherent perfect absorption
(CPA) modes were realized for plane wave incidence. However, research on spherical
ACMs has seldom been reported. In this paper, we explore the extraordinary scattering
properties of a three-dimensional (3D) ACM sphere under spherical wave incidence with
different topological orders. Analytical derivations with rigorous scattering theory and
consistent simulations demonstrate that the AEL mode or (and) CPA mode, where incident
spherical waves with specific topological orders are extremely scattered or (and) totally
absorbed, could be realized with a small (huge) monolayer ACM sphere. Meanwhile, a
multilayered ACM sphere is proposed to realize the AEL and/or CPA modes for spherical
wave incidence with multiple orders.

This paper is organized as follows. In Section 2, we first propose an ACM sphere and
build its scattering model. In Sections 3 and 4, we demonstrate the AEL and CPA modes,
respectively, based on a small monolayer ACM sphere. In Section 5, we demonstrate the
simultaneous realization of AEL and CPA modes based on a huge monolayer ACM sphere.
In Section 6, a multilayered ACM sphere is proposed to realize the AEL and/or CPA modes
with multiple orders. Section 7 contains a conclusion.

2. Scattering Model of an ACM Sphere

For an acoustic scattering system, where a scatterer couples to a discrete set of scat-
tering channels (denoted as l), the harmonic pressure field outside the scatterer can be
expressed as

p
(→

r , t
)
= ∑

l

[
al pin

l

(→
r
)
+ bl pout

l

(→
r
)]

e−iωt. (1)

Here, ω is the angular frequency, pin
l

(→
r
)

and pout
l

(→
r
)

indicate the acoustic input and
output l-th channel mode with proper analytic form. For a plane scatterer, the channel
modes are plane waves, while for a cylindrical scatterer, they are cylindrical waves. The
coefficients al and bl are the complex amplitudes of the incoming and outgoing channel
waves, which are further related by the scattering matrix S as

bl = ∑
m

Sl,mam, (2)

where l and m denote scattering channels. It is noted that the scattering matrix S is
symmetric, namely, Sl,m = Sm,l . The scattering matrix could describe the acoustic response
of the scatterer under incidence. For example, by fine tailoring the acoustic parameters
(including gain) and geometry of the scatterer, an eigenvalue of the scattering matrix could
diverge at a real frequency, and the corresponding eigenstate indicates a solution with
only outgoing waves, namely, a lasing mode [37]. Thus, the scattering system works as
an acoustic equivalent laser at this frequency, which produces coherent outgoing waves
with extensive intensities. The time-reversed counterpart to this lasing mode is a CPA
mode [38–46], where the acoustic and geometric parameters of the scatterer are the same as
those in the lasing mode, except that the gain is replaced with loss with equal magnitude.
Here, an eigenvalue of the scattering matrix tends to zero at the same frequency for the
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lasing mode, and the corresponding eigenstate indicates a solution without outgoing
waves. Now, the scattering system works as an acoustic coherent perfect absorber at this
frequency, which could totally absorb a specific coherent incident wave pattern determined
by the eigenstate. An acoustic system with effective loss (gain) could realize only the CPA
(AEL) effect [38], while the simultaneous realization of AEL and CPA effects requires a
system consisting of both gain and loss, which has been proposed based on an acoustic
parity-time symmetric system [39] and an anti-parity-time symmetric system [40]. Besides,
previous studies focused on one-dimensional (1D) and two-dimensional (2D) systems. In
1D systems, the AEL and CPA effects were demonstrated for plane normal incidence [39,40].
In a 2D panel system, such effects could be realized for plane oblique incidence [37]. In a
2D cylindrical system, the CPA effect was realized for cylindrical incidence with angular
momentum [38]. In this work, we propose a multilayered ACM sphere to realize the AEL
and CPA effects individually/simultaneously for spherical incidence.

Figure 1a,b show the diagram of the proposed multilayered ACM sphere in a 3D
view and a cross section in the yz-plane, respectively. The multilayered ACM sphere is
immersed in a conventional background medium (labeled as the zeroth region), whose
mass density ρ0 and bulk compressibility β0 are both real and positive. The outer radius
of the q-th layer (q = 1, 2, . . . , Q) of the ACM sphere is Rq, and each layer is characterized
by the refractive index nq and effective mass density ρq. The effective mass density ρq

and bulk compressibility βq for the q-th ACM layer are expressed as ρq =
∣∣ρq
∣∣eiαq and

βq =
∣∣βq
∣∣e−iαq , respectively, whose phases are complex conjugates of each other. Here,∣∣ρq

∣∣ (
∣∣βq
∣∣) denotes the amplitude of the effective mass density (bulk compressibility), αq

denotes a phase angle, and nq = ±
√

ρqβq/ρ0β0 is the refractive index of the q-th ACM
layer. For 0 < αq < π/2 and 3π/2 < αq < 2π, the sign “+” is taken, and the ACM features
right-handedness (positive refractive index), while for π/2 < αq < 3π/2, the sign “−” is
taken, and the ACM features left-handedness (negative refractive index). In particular,
when αq = π/2 and αq = 3π/2, the ACM is called a pure imaginary metamaterial, and the
material exhibits ambiguous handedness. When αq = 0 and αq = π, the ACM degenerates
into double-positive and double-negative materials, respectively.
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Figure 1. The diagram of a multilayered ACM sphere system: (a) a 3D view; (b) a cross section in the
yz-plane.

Due to the spherical symmetry of the proposed ACM sphere, the channel modes used
to describe the acoustic field distribution (see Equation (1)) are naturally spherical waves,
which are a set of orthogonal separate variable solutions of the acoustic Helmholtz equation
in spherical coordinates (r, θ, ϕ). Here, r, θ and ϕ denote the radius, angular and azimuthal
angles in spherical coordinates, respectively. The case of axial symmetry is considered here,
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where the acoustic field is independent of coordinate ϕ. Therefore, for 0 ≤ q ≤ Q− 1, the
total acoustic pressure in the q-th region can be expressed as

pq(r, θ) =
∞

∑
l=0

[
al

qh(2)l
(
kqr
)
+ bl

qh(1)l
(
kqr
)]

Pl(cos θ). (3)

Here, h(1)l and h(2)l are the spherical Hankel functions of the first and second kinds
with the order l, and Pl(cos θ) is the Legendre polynomial of order l, respectively. The
parameter kq = nqk0 denotes the wavenumber for the q-th region, in which k0 = 2π/λ0 is
the wavenumber for the background medium and λ0 is the wavelength in the background
medium. The expressions al

qh(2)l
(
kqr
)

Pl(cos θ) and bl
qh(1)l

(
kqr
)

Pl(cos θ) represent the in-
coming and outgoing channel spherical waves of order l in the q-th region, with al

q and bl
q

being the corresponding complex amplitudes. Here, the time variant item e−iωt is omitted
for simplicity. The radial evolution of the spherical waves is given by the spherical Hankel
functions, and the field evolution over θ is given by Pl(cos θ).

Because of the orthogonality of the spherical waves, the continuity of acoustic pressure
at the interface r = Rq reads

h(1)l
(
kq−1Rq

)
sl

q−1 − Cl
qal

q/al
q−1 = −h(2)l

(
kq−1Rq

)
, (4)

while the continuity of radial acoustic velocity at r = Rq leads to

ηqh(1)
′

l
(
kq−1Rq

)
sl

q−1 − ηq−1Dl
qal

q/al
q−1 = −ηqh(2)

′

l
(
kq−1Rq

)
. (5)

Here, ηq = ρq/
(
nqρ0

)
denotes the acoustic impedance of the q-th region relative to the

background medium, the scattering coefficient sl
q−1 = bl

q−1/al
q−1 is the ratio between the

complex amplitudes of the outgoing and incoming spherical waves in the (q-1)-th region,

h(1)
′

l and h(2)
′

l are the first-order derivatives of the corresponding spherical functions, Cl
q =

h(2)l
(
kqRq

)
+ sl

qh(1)l
(
kqRq

)
, and Dl

q = h(2)
′

l
(
kqRq

)
+ sl

qh(1)
′

l
(
kqRq

)
, respectively. According

to Equations (4) and (5), the scattering coefficient for the (q-1)-th region of order l can be
obtained as

sl
q−1 =

ηq−1Dl
qh(2)l (kq−1Rq)− ηqCl

qh(2)
′

l (kq−1Rq)

ηqCl
qh(1)

′

l (kq−1Rq)− ηq−1Dl
qh(1)l (kq−1Rq)

. (6)

Then, Equation (6) is a recursive formula that could apply to all q ∈ [1, Q− 1].
Since the spherical Hankel functions diverge at the origin, the acoustic pressure field

in the Q-th region should be expressed as

pQ(r, θ) =
∞

∑
l=0

al
Q jl(kQr)Pl(cos θ), (7)

where al
Q is the complex amplitude of the penetrated channel spherical wave of order l, and

jl is the spherical Bessel function of the first kind with order l. By applying the continuous
pressure and radial velocity boundary conditions at r = RQ, the scattering coefficient in
the (Q − 1)-th region, i.e., sl

Q−1, can be expressed as

sl
Q−1 =

ηQ−1 j′ l(kQRQ)h
(2)
l (kQ−1RQ)− ηQ jl(kQRQ)h

(2)′

l (kQ−1RQ)

ηQ jl(kQRQ)h
(1)′

l (kQ−1RQ)− ηQ−1 j′ l(kQRQ)h
(1)
l (kQ−1RQ)

. (8)

Here, j′l is the first-order derivative of jl .
By iterating Equations (6) and (8), all scattering coefficients sl

q (q = 0, 1, . . . , Q − 1) can
be obtained. Similar to the process for solving the scattering coefficients, the transmission
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coefficient in the q-th region, i.e., al
q/al

q−1 (q = 1, 2, . . . , Q), can be obtained accordingly
by applying continuous boundary conditions. Then, the total acoustic field in the whole
domain can be completely reconstructed from Equations (3) and (7) for a given incident
pattern. Due to the orthogonality of the spherical channel waves, there is no interchannel
scattering. According to Equation (2), therefore, the scattering matrix of the proposed ACM
sphere system is diagonal with on-diagonal elements sl

0, and the scattering coefficient sl
0

is also an eigenvalue of the scattering matrix for the proposed system. In the following,
we focus on the extraordinary scattering properties of the ACM sphere by analyzing the
scattering coefficient sl

0.

3. AEL Based on a Small Monolayer Sphere

Let us start with the simplest case of a small monolayer ACM sphere, i.e., Q = 1. Then,
the scattering coefficient of the monolayer ACM sphere can be obtained by taking Q = 1
into Equation (8), i.e.,

sl
0 =

j′ l(k1R1)h
(2)
l (k0R1)− η1 jl(k1R1)h

(2)′

l (k0R1)

η1 jl(k1R1)h
(1)′

l (k0R1)− j′ l(k1R1)h
(1)
l (k0R1)

. (9)

The AEL mode corresponds to a divergent eigenvalue of the scattering matrix, namely,
a divergence scattering coefficient sl

0 for the proposed system. Therefore, the condition
for the AEL mode, which could generate a strong spherical wave with the order l, can be
concluded from the zero of the denominator of Equation (9), namely

h(1)l (k0R1)

h(1)′l (k0R1)
= exp(iα1)

|ρ1|
|n1|ρ0

jl(|n1|k0R1)

j′l(|n1|k0R1)
. (10)

For simplicity, we define Al(|n1|) = jl(|n1|k0R1)/j′l(|n1|k0R1) and Bl = h(1)l (k0R1)/

h(1)
′

l (k0R1), so Equation (10) can be simplified to

Bl = exp(iα1)|ρ1|Al(|n1|)/(ρ0|n1|). (11)

The function Al is the ratio of the spherical Bessel function of the first kind to its
derivative and therefore is real, while Bl is the ratio of the spherical Hankel function
of the first kind to its derivative, which is complex. Thus, Equation (11) can be further
expressed as

exp(iφl)ξl = exp(iα1)|ρ1|Al(|n1|)/(ρ0|n1|), (12)

where ξl and φl are the amplitude and phase of Bl , respectively. There are two kinds of
solutions for Equation (12), denoted as:

α1 = φl , Al(|n1|) = ρ0|n1|ξl/|ρ1|, (13)

α1 = φl + π, Al(|n1|) = −ρ0|n1|ξl/|ρ1|. (14)

If the amplitude of the mass density |ρ1| = |n1|ρ0 is taken for the ACM sphere, the
acoustic parameters of the ACM sphere are simply determined by the phase angle α1 and
n1, and Equations (13) and (14) can be rewritten as

αL
1 = φl , Al

(∣∣∣nL
1

∣∣∣) = ξl , (15)

αL
1 = φl + π, Al

(∣∣∣nL
1

∣∣∣) = −ξl . (16)

Here, αL
1 and nL

1 satisfying Equations (15) and (16) represent the particular phase angle
and refractive index of the monolayer ACM sphere, respectively, leading to the AEL mode,
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where the ACM sphere could generate a strong spherical wave with the order l at a given
working frequency.

Figure 2a,b show the phase φl and amplitude ξl of Bl (see Equation (12)) versus R1,
in which black solid, red dashed, and blue dotted curves correspond to l = 0, 1, and 2,
respectively. For R1 = 0.35λ0, φ0 = −0.6358π, φ1 = −0.6818π, and φ2 = −0.8170π (see
Figure 2a); ξ0 = 0.9103, ξ1 = 1.0151, and ξ2 = 1.0901 (see Figure 2b). Therefore, some
values of αL

1 and nL
1 can be found to realize the AEL mode when R1 = 0.35λ0. Taking

l = 0 as an example, Figure 2c shows the Al for l = 0 versus the refractive index |n1|. The
values of

∣∣nL
1

∣∣ that lead to the AEL mode for l = 0 can be found to search the intersections
of ξ0 (or −ξ0) (black dashed lines) and A0 (black solid curves). For example, for l = 0,
αL

1 = −0.6358π and
∣∣nL

1

∣∣ = 1.7163 satisfy Equation (15); αL
1 = 0.3642π and

∣∣nL
1

∣∣ = 0.9698
satisfy Equation (16). Similarly, when l = 1, αL

1 = −0.6818π and
∣∣nL

1

∣∣ = 2.3674 for Equation
(15); αL

1 = 0.3182π and
∣∣nL

1

∣∣ = 1.5894 for Equation (16). When l = 2, αL
1 = −0.8170π and∣∣nL

1

∣∣ = 2.9715 for Equation (15); αL
1 = 0.1830π and

∣∣nL
1

∣∣ = 2.1567 for Equation (16). It
is worth noting that Equations (15) and (16) have more solutions with larger

∣∣nL
1

∣∣ due to
oscillatory properties of the function Al for a fixed order l.
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The AEL modes are further numerically simulated by using the finite element method
based on the above analytical derivations. Figure 3 shows the total acoustic pressure
fields in the yz-plane for spherical wave with an order l impinging on an ACM sphere
with particular acoustic parameters, in which Figure 3a–c correspond to l = 0, 1 and 2,
respectively. Without loss of generality, the background medium is set as air with the mass
density ρ0 = 1.21 kg/m3 and the bulk compressibility β0 = 1/ρ0c2

0 in all simulations. Here,
the sound speed of air c0 = 343 m/s. The incidence wavelength is set as λ0 = 1 m, and the
distribution of the incident pressure field at the outer simulation boundary (r = λ0) is set to
Pl(cos θ). The inner black circles in the figures denote the outer radius of the ACM sphere
(R1 = 0.35λ0). For l = 0 (Figure 3a), αL

1 = −0.6358π and
∣∣nL

1

∣∣ = 1.7163 are taken to realize
the AEL mode. Similarly, for l = 1 (Figure 3b), αL

1 = −0.6818π and
∣∣nL

1

∣∣ = 2.3674 are taken,
while for l = 2 (Figure 3c), αL

1 = −0.8170π and
∣∣nL

1

∣∣ = 2.9715 are taken. For l = 0, the acoustic
field distribution shows the shape of concentric circles and is completely determined by
the coordinate r; when l = 1, the acoustic intensity along the z-axis is the strongest, and
the field is symmetric about the z-axis; when l = 2, the maximum of the acoustic intensity
is distributed along the y-axis and z-axis, and the acoustic field is symmetrical about the
y-axis and z-axis. In all cases, the total acoustic pressure fields are very intense (see color
bars) relative to the incidence. Therefore, the AEL mode is successfully realized based
on an ACM sphere with appropriate parameters, where a strong spherical wave with the
desired order l is scattered.
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Figure 3. Simulated total acoustic pressure fields of the AEL modes in the yz-plane for spherical
wave incidence with order l. (a) l = 0, αL

1 = −0.6358π, and
∣∣nL

1

∣∣ = 1.7163. (b) l = 1, αL
1 = −0.6818π,

and
∣∣nL

1

∣∣ = 2.3674. (c) l = 2, αL
1 = −0.8170π, and

∣∣nL
1

∣∣ = 2.9715. In all simulations, R1 = 0.35λ0,
λ0 = 1 m, and the distribution of the incident pressure field at the outer simulation boundary (r = λ0)
is Pl(cos θ).

4. CPA Based on a Small Monolayer Sphere

In contrast to the AEL mode, the CPA mode corresponds to a vanishing eigenvalue of
the scattering matrix, namely, a vanishing scattering coefficient sl

0 for the proposed system.
Then, the incident spherical wave with the order l could be fully absorbed without any
scattered waves. Therefore, the condition for the CPA mode can be concluded from the
zero of the numerator of Equation (9), namely

h(2)l (k0R1)

h(2)′l (k0R1)
= exp(iα1)

|ρ1|
|n1|ρ0

jl(|n1|k0R1)

j′l(|n1|k0R1)
. (17)

By numerically solving Equation (17), based on a similar procedure for solving Equa-
tion (10), one can obtain a series phase angle (αC

1 ) and refractive index (nC
1 ) solutions for

realizing the CPA mode with the desired order l at a given working frequency. It is worth
pointing out that Equations (10) and (17) have the same form but different kinds of spherical
Hankel functions. Due to the complex conjugate nature between the first and second kinds
of spherical Hankel functions, for the same radius R1, the solutions (αC

1 , nC
1 ) of Equation (17)

have a special relationship with that (αL
1 , nL

1 ) of Equation (10), namely

αC
1 = −αL

1 ,
∣∣∣nC

1

∣∣∣ = ∣∣∣nL
1

∣∣∣. (18)

On the other hand, the CPA mode could be regarded as a time reversal counter-
part of the lasing [40–45]. Therefore, an AEL mode always corresponds to a CPA mode
where the acoustic constitutive parameters of the two modes are complex conjugates. For
the proposed ACM sphere, the complex conjugate acoustic parameters directly lead to
Equation (18). In the following, instead of directly solving Equation (17), we employ the
particular parameters (αL

1 , nL
1 ) for achieving the AEL (see previous section), together with

Equation (18) to obtain the parameter solutions (αC
1 , nC

1 ) for achieving the CPA.
Figure 4 shows the simulated total acoustic pressure fields in the yz-plane where

spherical waves with orders l = 0, 1, and 2 are incident on ACM spheres with particular
acoustic parameters, respectively. The radii (R1) for all ACM spheres are 0.35λ0, with
λ0 = 1 m as the incidence wavelength, and the distribution of the incident pressure field at
the outer simulation boundary (r = λ0) is set as Pl(cos θ). In the case of l = 0 (Figure 4a),
αC

1 = 0.6358π and
∣∣nC

1

∣∣ = 1.7163 are taken to realize the CPA mode. Similarly, for l = 1
(Figure 4b), αC

1 = 0.6818π and
∣∣nC

1

∣∣ = 2.3674; for l = 2 (Figure 4c), αC
1 = 0.8170π and∣∣nC

1

∣∣ = 2.9715. In other words, all the simulation parameters in Figures 3 and 4 are the
same, except that the acoustic parameters of the ACM spheres in Figure 4 are complex
conjugates with those in Figure 3.
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Figure 4. Simulated total acoustic pressure fields of the CPA modes in the yz-plane for spherical
wave incidence with order l. (a) l = 0, αC

1 = 0.6358π, and
∣∣nC

1

∣∣ = 1.7163. (b) l = 1, αC
1 = 0.6818π,

and
∣∣nC

1

∣∣ = 2.3674. (c) l = 2, αC
1 = 0.8170π, and

∣∣nC
1

∣∣ = 2.9715. In all simulations, R1 = 0.35λ0,
λ0 = 1 m, and the distribution of the incident pressure field at the outer simulation boundary (r = λ0)
is Pl(cos θ).

In contrast to the AEL modes (Figure 3), the acoustic fields in Figure 4 are weak (see
color bars). Quantitatively, the values of the total fields at the outer simulation boundary are
very close to Pl(cos θ), respectively, which are equal to the incident pressure. Meanwhile,
when l = 0, the acoustic field presents the shape of concentric circles. When l = 1 (2), the
acoustic field is symmetric about the z-axis (y-axis and z-axis). The field profiles outside
the spheres maintain the shapes of 0th-order, 1st-order, and 2nd-order spherical waves,
respectively, and no obvious interference pattern is observed. The incident spherical waves
with desired order l are thus totally absorbed without any scattering. Therefore, the CPA
modes for spherical wave incidence with the order l are realized based on the ACM sphere
with appropriate parameters.

5. Simultaneous AEL and CPA Based on a Huge Monolayer Sphere

In the previous sections, it was demonstrated that by fine modulating the acoustic
and geometric parameters of a small monolayer ACM sphere, an AEL or CPA mode with
order l could be realized at a working frequency. In this section, we will show that a huge
monolayer ACM sphere can support the AEL and CPA modes simultaneously. When R1
is far beyond the incidence wavelength λ0, i.e., R1 � λ0, the phases φl of Bl for all orders
l approach −π/2 (see Figure 2a), and the amplitudes ξl of Bl approach 1 (see Figure 2b).
Therefore, when R1 � λ0, together with |ρ1| = |n1|ρ0, the condition to realize the AEL
mode (see Equations (15) and (16)) can be written as

αL
1 = −π/2, Al

(∣∣∣nL
1

∣∣∣) = 1, (19)

αL
1 = π/2, Al

(∣∣∣nL
1

∣∣∣) = −1. (20)

Furthermore, when R1 � λ0, the function Al(|n1|) will approach

Al(|n1|)→ tan(|n1|k0R1) (for even l), (21)

Al(|n1|)→ − cot(|n1|k0R1) (for odd l). (22)

Therefore, for even-order l, the condition to realize the AEL mode can be expressed as

αL
1 = −π/2, tan

(∣∣∣nL
1

∣∣∣k0R1

)
= 1, (23)

αL
1 = π/2, tan

(∣∣∣nL
1

∣∣∣k0R1

)
= −1, (24)
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while that for odd order l is

αL
1 = −π/2, cot

(∣∣∣nL
1

∣∣∣k0R1

)
= −1, (25)

αL
1 = π/2, cot

(∣∣∣nL
1

∣∣∣k0R1

)
= 1. (26)

According to Equation (18), for even-order l, the corresponding CPA mode condition
can be expressed as

αC
1 = π/2, tan

(∣∣∣nC
1

∣∣∣k0R1

)
= 1, (27)

αC
1 = −π/2, tan

(∣∣∣nC
1

∣∣∣k0R1

)
= −1, (28)

while that for odd order l is

αC
1 = π/2, cot

(∣∣∣nC
1

∣∣∣k0R1

)
= −1, (29)

αC
1 = −π/2, cot

(∣∣∣nC
1

∣∣∣k0R1

)
= 1. (30)

Comparing Equations (23)–(26) and (27)–(30), when α1 = −π/2 (α1 = π/2) and
tan(|n1|k0R1) = cot(|n1|k0R1) = 1 [tan(|n1|k0R1) = cot(|n1|k0R1) = −1], the large ACM
sphere will extremely amplify spherical waves with all even orders l and totally absorb
spherical waves with all odd orders l simultaneously. In contrast, when α1 = −π/2
(α1 = π/2) and tan(|n1|k0R1) = cot(|n1|k0R1) = −1 [tan(|n1|k0R1) = cot(|n1|k0R1) = 1],
the large ACM sphere will extremely amplify spherical waves with all odd orders l and
perfectly absorb spherical waves with all even orders l.

Figure 5a,b show Al(|n1|) with l = even and l = odd, respectively, in which R1 = 100λ0.
Some values of |n1| can be found to realize the coexistence of the AEL and CPA modes. For
example, if |n1| = 1.0112, Al = 1 for even l and Al = −1 for odd l. In this case, if the phase
α1 of the ACM sphere is further set as−π/2 (π/2), the AEL (CPA) mode occurs for all even
orders l, and the CPA (AEL) mode occurs for all odd orders l. Similarly, if |n1| = 1.0187,
Al = −1 for even l, and Al = 1 for odd l. In this case, by further setting the phase α1 of the
ACM sphere as −π/2 (π/2), it could realize the CPA (AEL) mode for all even orders l and
the AEL (CPA) mode for all odd orders l. Figure 5c,d show the scattering coefficient

∣∣∣sl
0

∣∣∣ for
orders from 0 to 5 when |n1| = 1.0112 and |n1| = 1.0187, respectively, in which α1 = −π/2
and R1 = 100λ0. Figure 5c,d show that

∣∣∣sl
0

∣∣∣ tends to zero for l = 1, 3 and 5 (l = 0, 2 and
4) and tends to large values for l = 0, 2 and 4 (l = 1, 3 and 5). These results demonstrate
that the coexistence of the AEL and CPA modes could be realized with an ACM sphere of
radius much larger than the incident wavelength. Here, the phase α1 of the ACM sphere
must be −π/2 or π/2, which results in a special ACM called pure imaginary materials.
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6. AEL and CPA for Multiple Orders Based on a Small Multilayered Sphere

Based on a small monolayer ACM sphere, the AEL or CPA modes are realized, but it
can only amplify or absorb spherical wave with a single order l. A monolayer ACM sphere
with a radius much larger than the wavelength could simultaneously realize even (or odd)
order AEL modes and odd (or even) order CPA modes, but the bulky geometry may limit its
potential applications. In order to manipulate spherical waves with multiple channel orders
simultaneously, a multilayered ACM sphere is considered because it contains material
parameters with more degrees of freedom. Generally, a multilayered structure consisting of
Q layers could simultaneously manipulate spherical waves with total Q orders [46]. Here,
a three-layered ACM sphere (Q = 3) is proposed as an example, where the outer radius
of each layer is R1 = 0.35 m, R2 = 0.25 m, and R3 = 0.15 m, the incident wavelength
is λ0 = 1 m, and the refractive indexes of three layers

∣∣nq
∣∣ are all set to 2 for simplicity,

unless otherwise stated. Then, the scattering coefficient sl
0 can be obtained by iterating

Equations (6) and (8).
We first aim to realize the AEL mode for order l = 1 and the CPA modes for orders

l = 0 and 2, which requires s0
0 = 0, s1

0 → ∞ , and s2
0 = 0, simultaneously. By numerically

solving these three equations, one can finally find the required acoustic parameters of
the three-layered ACM sphere as ρ1 = (1.5075 + 0.0089i)ρ0, ρ2 = (−0.1038 + 0.8555i)ρ0,
and ρ3 = (−0.0537 + 0.2748i)ρ0, respectively. For a three-layered ACM sphere with such
acoustic parameters, Figure 6a–c show the simulated total pressure fields in the yz-plane
where spherical waves with orders l = 0, 1 and 2, respectively, are incident on the sphere. For
l = 0 (see Figure 6a) and l = 2 (see Figure 6c), the values of the total fields at the outermost
simulation boundary r = λ0 are close to the corresponding incident pressure Pl(cos θ), and
no obvious interference pattern is observed in the background medium, indicating the
realization of CPA modes for orders l = 0 and 2. In contrast, for l = 1 (see Figure 6b), the
total acoustic field in the air is far beyond the incidence field (see color bar), verifying the
realization of the AEL mode for order l = 1.



Appl. Sci. 2022, 12, 1777 11 of 14

Appl. Sci. 2022, 12, x FOR PEER REVIEW 10 of 13 
 

consisting of Q layers could simultaneously manipulate spherical waves with total Q 
orders [46]. Here, a three-layered ACM sphere (Q = 3) is proposed as an example, where 
the outer radius of each layer is 𝑅ଵ = 0.35 m, 𝑅ଶ = 0.25 m, and 𝑅ଷ = 0.15 m, the incident 
wavelength is 𝜆଴ = 1 m, and the refractive indexes of three layers ห𝑛௤ห are all set to 2 for 
simplicity, unless otherwise stated. Then, the scattering coefficient 𝑠଴௟  can be obtained by 
iterating Equations (6) and (8). 

We first aim to realize the AEL mode for order l = 1 and the CPA modes for orders l 
= 0 and 2, which requires 𝑠଴଴ = 0, 𝑠଴ଵ → ∞, and 𝑠଴ଶ = 0, simultaneously. By numerically 
solving these three equations, one can finally find the required acoustic parameters of the 
three-layered ACM sphere as 𝜌ଵ = (1.5075 + 0.0089𝑖)𝜌଴ , 𝜌ଶ = (−0.1038 + 0.8555𝑖)𝜌଴ , 
and 𝜌ଷ = (−0.0537 + 0.2748𝑖)𝜌଴, respectively. For a three-layered ACM sphere with such 
acoustic parameters, Figure 6a–c show the simulated total pressure fields in the yz-plane 
where spherical waves with orders l = 0, 1, and 2, respectively, are incident on the sphere. 
For l = 0 (see Figure 6a) and l = 2 (see Figure 6c), the values of the total fields at the 
outermost simulation boundary 𝑟 = 𝜆଴ are close to the corresponding incident pressure 𝑃௟(cos 𝜃), and no obvious interference pattern is observed in the background medium, 
indicating the realization of CPA modes for orders l = 0 and 2. In contrast, for l = 1 (see 
Figure 6b), the total acoustic field in the air is far beyond the incidence field (see color bar), 
verifying the realization of the AEL mode for order l = 1. 

 
Figure 6. Simulated total acoustic pressure fields of the AEL and CPA modes in the yz-plane for 
spherical wave incidence with different orders l based on a three-layered ACM sphere: (a) l = 0; (b) 
l = 1; (c) l = 2. In all simulations, 𝑅ଵ = 0.35 m, 𝑅ଶ = 0.25 m, 𝑅ଷ = 0.15 m, |𝑛ଵ| = |𝑛ଶ| = |𝑛ଷ| = 2, 𝜌1 = (1.5075 + 0.0089𝑖)𝜌0 , 𝜌2 = (−0.1038 + 0.8555𝑖)𝜌0 , 𝜌3 = (−0.0537 + 0.2748𝑖)𝜌0 , 𝜆଴ = 1 m , 
and the distribution of the incident pressure field at the outermost simulation boundary (𝑟 = 𝜆଴) is 𝑃௟(cos 𝜃). 

In addition, the multilayered structure could be designed to manipulate spherical 
waves with multiple orders at different frequencies f. For the second example, a three-
layered ACM sphere is designed to realize a CPA mode with order l = 0 at 300 Hz, an AEL 
mode at 343 Hz for l = 1, and a CPA mode at 400 Hz for l = 2. By solving 𝑠଴଴ = 0 at 300 Hz, 𝑠଴ଵ → ∞ at 343 Hz, and 𝑠଴ଶ = 0 at 400 Hz simultaneously, it can be obtained that 𝜌ଵ =(1.0810 − 1.7525𝑖)𝜌଴ , 𝜌ଶ = (0.1611 − 2.5259𝑖)𝜌଴ , and 𝜌ଷ = (−0.1425 + 0.2342𝑖)𝜌଴ , 
respectively. The corresponding simulated results are shown in the upper panels of Figure 
7a–c. For l = 0 (see Figure 7a), the acoustic field is independent of θ, while for l = 2 (see 
Figure 7c), the acoustic intensity is strong along the y and z-axes. In both cases, the values 
at the outermost simulation boundary r = 1 m are very close to the corresponding setting 
incidence pressure 𝑃௟(cos 𝜃), and no obvious interference pattern is observed. Therefore, 
the CPA modes are realized for two orders at two frequencies. For l = 1 (see Figure 7b), 
the acoustic intensity is maximal along the z-axis and minimal along the y-axis. In 
addition, the total field far exceeds the incidence, i.e., the AEL mode occurs. 

Figure 6. Simulated total acoustic pressure fields of the AEL and CPA modes in the yz-plane for
spherical wave incidence with different orders l based on a three-layered ACM sphere: (a) l = 0;
(b) l = 1; (c) l = 2. In all simulations, R1 = 0.35 m, R2 = 0.25 m, R3 = 0.15 m, |n1| = |n2| = |n3| = 2,
ρ1 = (1.5075 + 0.0089i)ρ0, ρ2 = (−0.1038 + 0.8555i)ρ0, ρ3 = (−0.0537 + 0.2748i)ρ0, λ0 = 1 m, and
the distribution of the incident pressure field at the outermost simulation boundary (r = λ0) is
Pl(cos θ).

In addition, the multilayered structure could be designed to manipulate spherical
waves with multiple orders at different frequencies f. For the second example, a three-
layered ACM sphere is designed to realize a CPA mode with order l = 0 at 300 Hz, an
AEL mode at 343 Hz for l = 1, and a CPA mode at 400 Hz for l = 2. By solving s0

0 = 0 at
300 Hz, s1

0 → ∞ at 343 Hz, and s2
0 = 0 at 400 Hz simultaneously, it can be obtained that

ρ1 = (1.0810− 1.7525i)ρ0, ρ2 = (0.1611− 2.5259i)ρ0, and ρ3 = (−0.1425 + 0.2342i)ρ0,
respectively. The corresponding simulated results are shown in the upper panels of
Figure 7a–c. For l = 0 (see Figure 7a), the acoustic field is independent of θ, while for
l = 2 (see Figure 7c), the acoustic intensity is strong along the y and z-axes. In both cases,
the values at the outermost simulation boundary r = 1 m are very close to the correspond-
ing setting incidence pressure Pl(cos θ), and no obvious interference pattern is observed.
Therefore, the CPA modes are realized for two orders at two frequencies. For l = 1 (see
Figure 7b), the acoustic intensity is maximal along the z-axis and minimal along the y-axis.
In addition, the total field far exceeds the incidence, i.e., the AEL mode occurs.
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layered ACM sphere. (a) l = 0 and f = 300 Hz. (b) l = 1 and f = 343 Hz. (c) l = 2 and f = 400 Hz. For the
upper panels, the acoustic parameters are ρ1 = (1.0810− 1.7525i)ρ0, ρ2 = (0.1611− 2.5259i)ρ0,
and ρ3 = (−0.1425 + 0.2342i)ρ0, while for the lower panels, ρ1 = (1.0810 + 1.7525i)ρ0,
ρ2 = (0.1611 + 2.5259i)ρ0, and ρ3 = (−0.1425− 0.2342i)ρ0. In all simulations, R1 = 0.35 m,
R2 = 0.25 m, R3 = 0.15 m, |n1| = |n2| = |n3| = 2, and the distribution of the incident pressure field
at the outermost simulation boundary (r = 1 m) is Pl(cos θ).

It is worth noting that since the AEL and CPA modes are each other’s time re-
versal counterparts, the time reversal results can be achieved by changing the sign of
the imaginary acoustic parameters. For example, a three-layered ACM sphere with
ρ1 = (1.0810 + 1.7525i)ρ0, ρ2 = (0.1611 + 2.5259i)ρ0, and ρ3 = (−0.1425− 0.2342i)ρ0
can realize an AEL mode at 300 Hz for l = 0, a CPA mode at 343 Hz for l = 1, and an AEL
mode at 400 Hz for l = 2. The corresponding simulations are shown in the lower panels of
Figure 7a–c, which are the time reversal patterns of those in the upper panels of Figure 7a–c.
That is, all simulation parameters are the same as those of the upper panels, except that the
acoustic parameters for the lower panels are complex conjugates with those for the upper
panels. As expected, the AEL mode at 300 Hz for l = 0, the CPA mode at 343 Hz for l = 1,
and the AEL mode at 400 Hz for l = 2 are all achieved.

7. Conclusions

In conclusion, we explore the extraordinary scattering properties of a 3D ACM sphere,
which possesses both loss and gain, under spherical wave incidence with different orders
l. It is found that the AEL and CPA modes could be realized by using an ACM sphere.
When the radius of the ACM sphere is far beyond the incidence wavelength, extreme
amplification and total absorption for spherical waves with even (or odd) orders and odd
(or even) orders can be realized simultaneously. For a small monolayer ACM sphere, only
the AEL or CPA mode for a fixed order l can be achieved. Therefore, the multilayered ACM
sphere is further considered to realize manipulation on spherical waves with multiple
orders. The proposed ACM spheres may provide an alternative method to design acoustic
functional devices, such as amplifiers and absorbers.
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