
����������
�������

Citation: Park, S.-y.; Park, M.J.; Kim,

J.Y. Physiological Effects of Red-

Colored Food-Derived Bioactive

Compounds on Cardiovascular and

Metabolic Diseases. Appl. Sci. 2022,

12, 1786. https://doi.org/10.3390/

app12041786

Academic Editor: Jae-Ho Park

Received: 22 December 2021

Accepted: 2 February 2022

Published: 9 February 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

applied  
sciences

Review

Physiological Effects of Red-Colored Food-Derived Bioactive
Compounds on Cardiovascular and Metabolic Diseases
Soo-yeon Park 1 , Min Ju Park 2 and Ji Yeon Kim 2,3,*

1 Lab of Nanobio, Seoul National University of Science and Technology, 232, Gongneung-ro, Nowon-gu,
Seoul 01811, Korea; sooyeon.park@seoultech.ac.kr

2 Department of Food Science and Technology, Seoul National University of Science and Technology, 232,
Gongneung-ro, Nowon-gu, Seoul 01811, Korea; alswn1895@hanmail.net

3 Department of Nano Bio Engineering, Seoul National University of Science and Technology, 232,
Gongneung-ro, Nowon-gu, Seoul 01811, Korea

* Correspondence: jiyeonk@seoultech.ac.kr; Tel.: +82-2970-6740

Abstract: Cardiovascular diseases (CVDs) are a major global cause of disease and mortality. CVDs are
a group of disorders of the heart and blood vessels and include coronary artery disease, cerebrovas-
cular disease, heart failure, and other conditions. The most important behavioral risk factors for
heart disease and stroke are diet, physical activity, smoking, and drinking. Increased intake of fruits
and vegetables is associated with reducing the risk of metabolic syndrome and CVDs. Red-colored
foods align with cardiovascular health by protecting the heart and blood vessels. Red fruits and
vegetables include tomatoes, strawberries, raspberries, cranberries, cherries, red apples, beets, and
pomegranate. In vitro and in vivo studies, as well as clinical trials, show that the components of red
foods demonstrate various potential health benefits against disease. In conclusion, there are many
advantages to eating vegetable foods, especially red fruits and vegetables.

Keywords: red-colored food; cardiovascular disease; metabolic disease; phenolic compounds;
flavonoids; carotenoids

1. Introduction

Cardiovascular diseases (CVDs) are the leading global cause of illness and mortality [1].
CVDs are a group of disabilities in the heart and blood vessels and include coronary artery
disease, cerebrovascular disease, heart failure, and other conditions [2]. The most important
behavioral risk factors for heart disease and stroke are diet, physical activity, smoking,
and drinking [3]. In addition, risk factors are clustered together. Metabolic syndrome is
a combination of risk factors of metabolic origins, such as inflammation and oxidative
stress, and is associated with cardiovascular disease and type 2 diabetes [4]. Chronic
inflammation is closely related to an imbalanced immune response and ultimately results
in a variety of conditions, such as cardiovascular diseases, diabetes, obesity, pulmonary
diseases, immunological diseases, and other life-threatening diseases [5]. The effects of
behavioral risk factors can appear in individuals as elevated blood pressure, raised blood
glucose levels, increased lipid markers, and obesity. These intermediate-risk factors can
be estimated and indicate an increased risk of heart attack, stroke, heart failure, and other
complications [6]. Cessation of tobacco use, reduced dietary salt intake, consumption of
more fruit and vegetables, regular physical activity, and avoidance of alcohol consumption
have been shown to reduce the risk of cardiometabolic disease [7].

Recently, awareness of the importance of dietary factors as a major determinant of
metabolic syndrome has increased. Increased intake of fruits and vegetables is associated
with a reduced risk of metabolic syndrome and CVDs [8–11]. Plant parts such as fruits,
bark, roots, peels, leaves, and flowers contain several important nutritional and functional
compounds that play various roles in the treatment, management, and prevention of
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chronic diseases [12–15]. In particular, the 2015–2020 Dietary Guidelines emphasize a
healthy dietary habit throughout life that encourages diversity and nutrient density across
several color categories, such as dark-green, red, and orange vegetables [16].

Red-colored foods align with the cardiovascular system by protecting the heart and
blood vessels [17]. Popular red fruits and vegetables are tomatoes, strawberries, raspberries,
cranberries, cherries, red apples, beets, and pomegranates. These foods also tend to be
high in certain phytonutrients that may have health benefits, such as antioxidant, anti-
inflammatory, and immune-modulating activities, and may improve lipid levels and reduce
blood pressure. The main phytonutrients include anthocyanins, astaxanthin, and lycopene,
and the wider class of flavonoids represents the various colors and has physiological
effects [18,19]. In vitro and in vivo studies, along with clinical trials, have indicated that
the components of red foods have various potential health benefits against diseases. These
studies report the health effects of red fruits and vegetables and different mechanisms that
are involved in these protective effects. Therefore, this review focuses on the physiological
effects of red-colored food on metabolic and cardiovascular risk factors.

However, many studies have focused on each red-colored vegetable or fruit and the
efficacy of phytochemicals contained in them, and comprehensive studies are lacking.
Therefore, this review focuses on the physiological effects of red-colored food on metabolic
and cardiovascular risk factors, comprehensively deals with most red color groups of
vegetables and fruits, and classified by the bioactive compounds.

2. Red-Colored Foods and Bioactive Compounds

Red-colored foods have been shown to contain much higher levels of bioactive com-
pounds such as phenolic compounds, flavonoids, and carotenoids than other foods. The
high amount of bioactive compounds in red-colored food can be utilized as a functional
food source against many diseases, such as diabetes, cardiovascular disease, and various
other oxidative stress-induced metabolic diseases.

Table 1 and Supplementary File S1, are from FooDB (https://foodb.ca/ (accessed
15 January 2022)). Web-based searches of the PubMed database were performed using the
following terms: (“Beet” OR “Tomato” OR “Italian sweet red pepper” OR “Red radish” OR
“Cranberry” OR “Pomegranate” OR “Cherry” OR “Red sweet potato” OR “Strawberry”
OR “Red raspberry” OR “Watermelon” OR “Red grapefruit” OR “Hibiscus” OR “Red
apples” OR “Prickly pear” OR “Plum” OR “Red onion” OR “Radicchio” OR “Acerola”
OR “Redcurrant” OR “Red huckleberry” OR “Fig” OR “Adzuki bean”) and (“flavonoid”
OR “carotenoids” OR “phenolic acid” OR “bioactive compounds”) and (“cardiovascular
disease”) and (“metabolic disease) and (“clinical trial”). The summaries of these published
articles in Tables 2–5 include intervention studies.

https://foodb.ca/
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Table 1. Bioactive compounds of red-colored food and their dietary sources.

Major Flavonoid
Classes Structure Family Members Dietary Sources

Flavonols

- Quercetin 1) 5) 6) 7) 8) 9) 11) 12) 14) 16) 17) 18) 19)

- Quercetin 3,4′-diglucoside 15)

- Quercetin 4′,7-diglucoside 15)

- Quercetin 7-glucuronoside 3-sophoroside 15)

- Quercetin 3-rutinoside 9) 10) 14) 17) 19)

- Quercetin 3-alpha-D-galactoside 9)

- Quercetin 3-O-xylosyl-glucuronide 9)

- Quercetin 3-xyloside 12)

- Quercitrin 3) 5)

- Isoquercetin 7) 9) 12) 14) 17) 19)

- Kaempferol 2) 4) 5) 6) 8) 9) 11) 12) 14) 16)

- Kaempferol 3-glucuronide 8) 9)

- Kaempferol 3-rutinoside 19)

- Kaempferol 3-neohesperidoside
7-(2”-feruloylglucoside) 15)

- Kaempferol 3-neohesperidoside
7-(2”-p-coumaroylglucoside) 15)

- Kaempferol 3-neohesperidoside
7-(2”-p-coumaroyllaminaribioside) 15)

- Kaempferol 3-sophoroside
7-(2-feruloylglucoside) 15)

- Kaempferol 3-sophoroside 7-glucuronide 15)

- Kaempferol 3,4′-diglucoside
7-(2-feruloylglucoside) 15)

- Kaempferide 14)

- Dihydrokaempferol 14)

- Isorhamnetin 6) 13) 15)

- Isorhamnetin 3-O-(beta-D-glucopyranosyl-(1-
> 6)-beta-D-glucopyranoside) 1)

- Isorhamnetin 4′-glucoside 15)

- Myricetin 5) 6) 8) 12) 14) 17)

Beet1), Tomato2), Italian sweet red pepper3), Red
radish4), Cranberry5), Cherry6), Red sweet potato7),
Strawberry8), Red raspberry9), Watermelon10), Red
grapefruit11), Red apples12), Prickly pear13), Plum14),

Red onion15), Acerola16), Redcurrant17), Red
huckleberry18), Fig19)
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Table 1. Cont.

Major Flavonoid
Classes Structure Family Members Dietary Sources

- Myricetin 3-arabinofuranoside 5)

- Myricetin 3-glucoside 17)

- Hyperin 5) 12) 14)

- Avicularin 5) 12)

- Astragalin 5) 8) 9) 19)

- Astragalin 4′-glucoside 15)

- Morin 8)

Flavones

- Luteolin1) 2) 4) 5)

- Luteolin 7-O-(2-apiosyl-6-malonyl)-glucoside
2)

- Apigenin 3)

- Apigenin 7-glucoside 5)

- Apigenin 6-C-arabinosyl-8-C-glucoside 6)

- Apigenin 6-C-glucosyl-8-C-arabinoside 6)

Beet1), Italian sweet red pepper2), Red sweet
potato3), Watermelon4), Red apples5), Fig6)

Flavanols

- Catechin 3) 4) 5) 7) 8) 9)

- alpha-Catechin 1) 2) 3) 6) 9)

- Catechin 3-gallate 3) 6)

- Epicatechin 3-gallate 3) 4)

- Epigallocatechin 1) 3) 4) 6) 8)

- Gallocatechin 4) 8)

- ent-Epicatechin 6)

Cranberry1), Pomegranate2), Cherry3), Strawberry4),
Red raspberry5), Red apples6), Plum7), Redcurrant8),

Fig9)

Flavanones
- Betagarin 1)

- (S)-Naringenin 2)

- Hesperetin 2)

Beet1), Red grapefruit2)
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Table 1. Cont.

Major Flavonoid
Classes Structure Family Members Dietary Sources

Anthocyanins

- Anthocyanins 1) 11)

- Proanthocyanidin A2 6)

- Cyanidin 1) 2) 4) 5) 6) 7) 9) 11)

- Cyanidin 3-arabinoside 1) 6)

- Cyanidin 3-galactoside 1) 6)

- Cyanidin 3-(caffeoyl-sophoroside)
5-glucoside 3)

- Cyanidin 3-(dicaffeoyl-sophoroside)
5-glucoside 3)

- Cyanidin 3-(6”-succinyl-glucoside) 4)

- Cyanidin 3-(2G-glucosylrutinoside) 5) 10)

- Cyanidin 3-(2G-xylosylrutinoside) 10)

- Cyanidin 3-(3”-malonyl-glucoside) 8)

- Cyanidin 3-(3”,6”-dimalonylglucoside) 4) 8)

- Cyanidin 3-laminaribioside 8)

- Cyanidin 3-O-[4-Hydroxy-E-cinnamoyl-(- >
6)-b-D-glucopyranosyl-(1- >
2)-b-D-glucopyranoside] 5-glucoside 8)

- Cyanidin 3-sambubioside 10)

- Cyanidin 3-glucosyl-rutinoside 10)

- Cyanidin 3-xylosyl-rutinoside 10)

- Procyanidin trimer EEC 4) 7)

- Procyanidin B1 2) 4) 7)

- Procyanidin B2 2) 4) 5) 7)

- Procyanidin B3 2) 4) 7) 10) 11)

- Procyanidin B4 2) 4) 5) 6) 7)

- Procyanidin B5 2) 5) 6) 7)

- Procyanidin B7 2) 7)

- Procyanidin B8 5)

- Procyanidin C1 2) 6)

- Delphinidin 1) 6)

- Delphinidin 3-glucoside 5)

- Delphinidin 3-sambubioside 10)

- Prodelphinidin B3 10)

Cranberry1), Cherry2), Red sweet potato3),
Strawberry4), Red raspberry5), Red apples6), Plum7),

Red onion8), Acerola9), Redcurrant10), Fig11)
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Table 1. Cont.

Major Flavonoid
Classes Structure Family Members Dietary Sources

- Malvidin 1)

- Malvidin 3-glucoside 5)

- Peonidin 1) 2) 3) 6)

- Peonidin 3-arabinoside 1)

- Peonidin 3-glucoside 1) 2) 5) 7)

- Peonidin 3-galactoside 1)

- Peonidin 3-rutinoside 2) 7)

- Pelargonidin 2) 4) 6) 9) 11)

- Pelargonidin 3-arabinoside 4)

- Pelargonidin 3-glucoside 4) 5)

- Pelargonidin 3-(6”-succinyl-glucoside) 4)

- Pelargonidin 3-(6”-malonylglucoside) 4)

- Pelargonidin 3-sophoroside 5)

- Pelargonidin 3-(2gluglucosylrutinoside) 5)

- Pelargonidin 3-rutinoside 2) 4) 5)

Isoflavone
- Betavulgarin 1)

- Genistein 2) Beet1), Cherry2)
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Table 1. Cont.

Major Flavonoid
Classes Structure Family Members Dietary Sources

Carotenoids

- Carotene 15) 16)

- alpha-Carotene 3) 5) 6) 8)

- beta-Carotene
1) 2) 3) 4) 5) 6) 7) 8) 9) 10) 11) 12) 13) 14) 15)

- beta-Carotene 5,6-epoxide 11)

- gamma-Carotene 15) 15)

- delta-Carotene 2)

- delta-Carotene-1,2-epoxide 2)

- epsilon-Carotene 11)

- epsilon, gamma-Caroten-3-ol 2)

- (S)-1′,2′-Epoxy-1′,2′-dihydro-b,y-carotene 2)

- Lycophyll 2)

- Lycopene 2) 9)

- (9Z)-Lycopene 2)

- (15Z,9′Z)-7,7′,8,8′,11,12-Hexahydrolycopene
2)

- 7,8-Dihydrolycopene 9)

- (9Z,7′Z,9′Z)-7,8-Dihydrolycopene 2)

- (9Z,9′Z)-7,7′,8,8′-Tetrahydrolycopene 2) 5) 6)

- Prolycopene 2)

- Phytoene 6)

- Phytofluene 6) 9) 15)

- Lutein 2) 5) 8) 9) 11) 13) 14) 15)

- Zeaxanthin 2)

- (3R,3′R, all-E)-Zeaxanthin 2) 4) 9) 11) 14) 15)

- alpha-Cryptoxanthin 15)

- beta-Cryptoxanthin 3) 8) 9) 11) 12)

- Luteoxanthin 11)

- Flavoxanthin 13)

- Rubixanthin 15)

- Violaxanthin 15)

Beet1), Tomato2), Italian sweet red pepper3), Red
radish4), Cranberry5), Red sweet potato6),

Strawberry7), Red raspberry8), Watermelon9), Red
grapefruit10), Red apples11), Prickly pear12), Plum13),

Redcurrant14), Fig15), Adzuki bean16)
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Table 1. Cont.

Major Phenolic Acid
Classes Structure Family Members Dietary Sources

Hydroxybenzoic acids

- Benzoic acid 3) 7)

- 3-Hydroxybenzoic acid 3)

- 4-Hydroxybenzoic acid 1) 3) 4) 5) 6) 7) 11) 12)

- 2,3-Dihydroxybenzoic acid 3)

- 2,4-Dihydroxybenzoic acid 3)

- 2,4,6-Trihydroxybenzoic acid 9)

- 6-O-Benzoyl-alpha-D-glucose 3)

- Salicylates 1) 7)

- Ethyl salicylate 2)

- Methyl salicylate 11)

- Salicylic acid 1) 3) 5) 6) 7) 8) 11)

- Syringic acid 1)

- Gentisic acid 7)

- Gallic acid 6) 7) 10)

- Phthalic acid 5)

- Vanillic acid 1) 3) 4) 5) 6) 7)

Beet1), Tomato2), Cranberry3), Strawberry4), Red
raspberry5), Red grapefruit6), Red apples7), Plum8),

Red onion9), Radicchio (Red chicory)10),
Redcurrant11), Red huckleberry12)

Hydroxycinnamic acids

- Caffeic acid 1) 4) 5) 6) 7) 8) 9) 10) 11) 12) 14) 16) 17)

- 1-O-Caffeoylglucose 7) 15)

- p-Coumaric acid 1) 4) 5) 7) 8) 10) 11) 12) 15) 16) 17)

- trans-p-Coumaric acid 11)

- 1-O-p-Coumaroyl-beta-D-glucose 3) 7) 15)

- Cinnamic acid 15)

- Hydroxycinnamic acid 8) 11)

- Ferulic acid 1) 4) 5) 10) 11) 12) 16) 17)

- Diferuloylputrescine 2)

- trans-Sinapic acid 4) 5) 10) 11)

- (3b,5a,6b,22a,25R)-Furostane-22-methoxy-
3,6,26-triol 3-[glucosyl-(1- > 2)-[xylosyl-(1- >
3)]-glucosyl-(1- > 4)-galactoside] 26-glucoside
13)

Beet1), Tomato2), Italian sweet red pepper3), Red
radish4), Cranberry5), Red sweet potato6),

Strawberry7), Red raspberry8), Watermelon9), Red
grapefruit10), Red apples11), Plum12), Red onion13),

Radicchio (Red chicory)14), Redcurrant15), Red
huckleberry16), Fig17)
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Table 1. Cont.

Major Organosulfur Compound Classes Structure Family Members Dietary Sources

Organosulfur compounds

- Indole 4)

- 1H-Indole-3-acetic acid 2)

- 1H-Indole-3-carboxaldehyde 1)

- Cycloalliin 3)

Tomato1), Red radish2), Red onion3), Fig4)

Identical superscript numbers in dietary sources and family members column represents pairs.
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Table 2. Biological activities of red-colored food-derived flavonols, flavones, flavanols, and flavanones.

The First Author
(Publication

Year)
Study Design Duration Intervention Control Participants Mean Age Main Outcome

Koutsos,
Athanasios, et al.

(2020) [20]

Double-blind,
randomized,

placebo-
controlled,
crossover

8 weeks
2 apples/d (340
g without core)

(n = 40)

Sugar-and
energy-matched

apple control
beverage (n = 40)

29–69 years old,
with BMI 19–33
kg/m2 and TC >

5.2 mmol/L
(mildly hyperc-
holesterolemic)

51.0 ± 11.0

Total cholesterol
(TC) ↓

Low-density
lipoprotein

(LDL) ↓
Triacylglycerol ↓

Intercellular
adhesion

molecule 1
(ICAM-1) ↓

Chai, Sheau C.,
et al. (2012) [21]

Randomized,
placebo-

controlled
12 months Dried apple (75

g/day) (n = 45) Placebo (n = 55)

Postmenopausal
women (1 to 10

years
past menopause)

56.6 ± 4.5
Atherogenic

cholesterol levels
↓

Asgary,
Sedigheh, et al.

(2016) [22]

Assessor-blind,
randomized,

placebo-
controlled,
crossover

4 weeks Beetroot juice
250 mL (n = 12)

Cooked beet 250
g (n = 12)

25–68 years old,
SBP 130–139 mm
Hg or DBP 85–89

mm Hg

52.8 ± 5.8

High-sensitivity
C-reactive

protein (hs-CRP)
↓

Tumor necrosis
factor-alpha
(TNF-α) ↓

Flow-mediated
dilation (FMD) ↑
Total antioxidant

capacity ↑
High-density
lipoprotein

(HDL)
cholesterol ↑
Low-density
lipoprotein

(LDL) cholesterol
↓

Total cholesterol
(TC) ↓

Moazzen,
Hossein, and
Mohammad

Alizadeh. (2017)
[23]

Double-blind,
randomized,

placebo-
controlled,
crossover

acute
500 mL of pure
pomegranate
juice (n = 31)

Placebo (n = 31)

18–70 years old,
having at least

three out of five
components of

metabolic
syndrome

51.6 ± 10.0

High-sensitivity
C-reactive

protein (hs-CRP)
↓

Systolic blood
pressure ↓

Diastolic blood
pressure ↓

Ebrahimi-
Mamaghani,
Mehranghiz,

et al. (2014) [24]

Single-blind,
randomized,

placebo-
controlled,

parallel

8 weeks

Red onion 2 ×
40–50 g/day for
overweight/2 ×
50–60 g/day for

obese (n = 27)

2 × 10–15 g/day
(n = 27)

17–37 years old,
BMI between 25
and 40 kg/m2,

low intake (< 93
g) of liliaceous

vegetables

26.6 ± 5.8

Low-density
lipoprotein

(LDL) cholesterol
↓

Total cholesterol
(TC) ↓

Dow, Caitlin A.,
et al. (2012) [25]

Randomized,
placebo

controlled,
parallel

6 weeks
Grapefruit with
each meal (3 x
daily) (n = 42)

Placebo (n = 32)

Overweight and
obese men and
premenopausal

women

41.2 ± 11.0

Systolic blood
pressure ↓

Low-density
lipoprotein

(LDL) cholesterol
↓

Total cholesterol
(TC) ↓

Table 3. Biological activities of red-colored food-derived anthocyanins.

The First Author
(Publication

Year)
Study Design Duration Intervention Control Participants Mean Age Main Outcome

Basu, Arpita,
et al. (2011) [26]

Double-blind,
randomized,

placebo-
controlled

8 weeks
Cranberry juice
(480 mL/day)

(n = 36)

Placebo
(480 mL/day)

Metabolic
syndrome 52.0 ± 8.0

Plasma
antioxidant
capacity ↑

Oxidized-low-
density

lipoprotein
(Ox-LDL) ↓

Malondialdehyde
(MDA) ↓
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Table 3. Cont.

The First Author
(Publication

Year)
Study Design Duration Intervention Control Participants Mean Age Main Outcome

Novotny, Janet
A., et al. (2015)

[27]

Double-blind,
randomized,

placebo-
controlled,

parallel

8 weeks Cranberry juice
(240 mL) (n = 30) Placebo (n = 30)

25–65 years of
age with a BMI
between 20 and

38 kg/m2

50.6 ± 1.2

Diastolic blood
pressure ↓

Fasting plasma
glucose ↓

Richter, Chesney
K., et al. (2021)

[28]

Double-blind,
randomized,

placebo-
controlled,

parallel

12 weeks
Cranberry juice

(500 mL/d)
(n = 30)

Placebo juice
(n = 30)

Middle-aged
adults with over-
weight/obesity

49.8 ± 1.3
24-h diastolic
ambulatory

blood pressure ↓

Aboo Bakkar,
Zainie, et al.
(2019) [29]

Double-blind,
randomized,

placebo-
controlled,
crossover

4 weeks

1.7 g freeze-dried
cherry

(235 mg/day
anthocyanins)

(n = 12)

Placebo (n = 12)
Nonsmokers,

with no known
history of disease

52.8 ± 5.8

Flow-mediated
dilation (FMD)

response ↑
Plasma nitrate
and nitrite ↑

Plasma
peroxiredoxin

concentration ↑

Johnson, Sarah
A., et al. (2020)

[30]

Single-blind,
randomized,

placebo-
controlled,

parallel

12 weeks Cherry juice
240 mL (n = 9)

Isocaloric
placebo-control
drink (n = 10)

20–60 years of
age with MetS

29.3 ± 1.1
(cherry)

44.2 ± 4.1
(control)

Total cholesterol
↓

Oxidized-low-
density

lipoprotein
(Ox-LDL) ↓
Vascular cell

adhesion protein
1 (VCAM-1) ↓

Kent, Katherine,
et al. (2016) [31]

A pilot crossover
study acute

Cherry juice 100
mL × 3 (0, 1, 2 h)

(n = 13)

Cherry juice 300
mL (0 h) (n = 13)

Young (18–35
years of age) and
older adults (55 +

years of age)

21.8 ± 0.9
(young)

77.5 ± 6.2 (older)

Systolic blood
pressure ↓

(cherry juice
300 mL)

Diastolic blood
pressure ↓

(cherry juice
300 mL)

Heart rate ↓
(cherry juice

300 mL)

Keane, Karen M.,
et al. (2016) [32]

Double-blind,
randomized,

placebo-
controlled,
crossover

acute
60 mL dose of
Cherry juice

(n = 15)
Placebo (n = 15)

Early
hypertension

(systolic blood
pressure (SBP)
≥ 130 mm Hg,
diastolic blood
pressure ≥80

mm Hg, or both)

31.0 ± 9.0 Systolic blood
pressure ↓

Desai, Terun,
Michael Roberts,

and Lindsay
Bottoms (2021)

[33]

Single-blind,
randomized,

placebo-
controlled,
crossover

7 days Cherry juice
(n = 12) Placebo (n = 12) Metabolic

syndrome 50.0 ± 10.0

Systolic blood
pressure ↓

Diastolic blood
pressure ↓
Glucose ↓

Total cholesterol
↓Low-density

lipoprotein
(LDL)-

cholesterol
↓

Basu, Arpita,
et al. (2010) [34]

Randomized,
placebo-

controlled
8 weeks

2 cups
strawberry

beverage + 2
cups of water a

day (50 g
freeze-dried
strawberries)

(n = 12)

4 cups of water a
day (n = 15)

Metabolic
syndrome 47.0 ± 3.0

Total cholesterol
↓

Low-density
lipoprotein

(LDL)-
cholesterol ↓
Vascular cell

adhesion protein
1 (VCAM-1) ↓

Basu, Arpita,
et al. (2021) [35]

Double-blind,
randomized,

placebo-
controlled,
crossover

14 weeks
32 g strawberry

powder/day
(n = 33)

Placebo (n = 33) Metabolic
syndrome 53.0 ± 10.0

Insulin ↓
Lipid article

profiles ↓
Serum PAI-1 ↓
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Table 4. Biological activities of red-colored food-derived carotenoids.

The First
Author

(Publication
Year)

Study
Design Duration Intervention Control Participants Mean Age Main

Outcome

Colmán-
Martínez,

Mariel, et al.
(2017) [36]

An open,
prospective,
randomized,

placebo-
controlled,
crossover

4 weeks Tomato juice
(n = 28)

Water
(n = 28)

High cardio-
vascular

risk
69.7 ± 3.1

Intercellular
adhesion

molecule 1
(ICAM-1) ↓
Vascular cell

adhesion
protein 1

(VCAM-1) ↓

Ferro, Yvelise,
et al. (2021)

[37]

Crossover
study 6 weeks

Tomato sauce
150 mL/day
(Carotenoids

3.5 mg/g)
(n = 61)

Sterol-
enriched
yogurt
(n = 91)

Between 30
and 45 years
of age and

BMIs
between 19

and
22 kg/m2

54.0 ± 11.0

Low-density
lipoprotein

(LDL)-
cholesterol

↓

Wolak, Talia,
et al. (2019)

[38]

Double-
blind,

randomized,
placebo-

controlled

8 weeks

Tomato
nutrient
complex
(30 mg

lycopene)
(n = 12)

Placebo
(n = 12)

Hypertensive
subjects 52.4 ± 8.2

Systolic
blood

pressure ↓

Xaplanteris,
Panagiotis,
et al. (2012)

[39]

Single-blind,
randomized,

placebo-
controlled,
crossover

14 days 70 g tomato
paste (n = 19)

Placebo
(n = 19)

Young,
healthy

volunteers
39.0 ± 13.0

Flow-
mediated
dilation
(FMD)

response ↑

Ghavipour,
Mahsa, et al.
(2013) [40]

Double-
blind,

randomized,
placebo-

controlled

20 days
330 mL/d of
tomato juice

(n = 53)

Water
(n = 53)

Overweight
and obese

females
23.3 ± 0.5 TNF-α ↓

IL-8 ↓

Ellis, Amy C.,
et al. (2021)

[41]

Double-
blind,

randomized,
placebo-

controlled,
crossover

4 weeks Watermelon
juice (n = 9)

Placebo
(n = 8)

Postmenopausal
women

55–70 years
of age with

BMI < 30 kg/m2

(non-obese)

60.0 ± 4.3 Serum
glucose ↓

Lum, Tiffany,
et al. (2019)

[42]
Crossover 4 weeks

Watermelon
(2 cups)
(n = 33)

Isocaloric
low-fat
cookies
(n = 33)

55–70 years
of age with
overweight

or obese
subjects

-
Systolic
blood

pressure ↓

Shanely, R.
Andrew, et al.

(2020) [43]

Randomized,
placebo-

controlled
6 weeks

710 mL of
Water-

melon/day
(n = 26)

Placebo
(n = 19)

50–75 years
of age with
Overweight
and obese

post-
menopausal

women

59.8 ± 0.87

Soluble
vascular cell

adhesion
molecule-1 ↓
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Table 5. Biological activities of other red-colored food-derived compounds.

The First
Author

(Publication
Year)

Study
Design Duration Intervention Control Participants Mean Age Main

Outcome

Abubakar,
Salisu M.,

et al. (2019)
[44]

Single-blind,
randomized,

placebo-
controlled,
crossover

acute

250 mL of the
aqueous
extract of

hibiscus with
a high-fat

meal (n = 25)

Placebo
(n = 25)

1% to 10%
cardiovascu-
lar disease

risk in
10 years

49.0 ± 2.0

% FMD ↑
Serum

glucose ↓
Plasma

insulin ↓
Serum tria-

cylglycerol ↓
C-reactive

protein (CRP)
↓

Takemura,
Shigeki, et al.

(2014) [45]

Double-
blind,

randomized,
placebo-

controlled

12 weeks

800 mg plum
capsule (4

capsule/day)
(n = 15)

Placebo
(n = 15)

Normal-high
BP or

hypertension
level 1

43.3 ± 12.9
Diastolic

blood
pressure ↓

2.1. Biological Activities of Flavonoids

A great variety of flavonoids are widely distributed in vegetables [46]. In gen-
eral, flavonoids are classified as flavonols, flavones, flavanols, flavanones, anthocyanins,
isoflavones, and chalcones, according to their structure, based on the C6-C3-C6 carbon
skeleton that combines two 6-carbon benzene rings with 3-carbons of the heterocyclic
ring [47]. One of the major subgroups that commonly occurs in vegetables is flavonoids
of the flavonol type, including kaempferol, quercetin, and myricetin. Quercetin and other
flavonoids exist as glycosides in vegetables [48]. Flavonoids are highly abundant as veg-
etable natural products and vary in their therapeutic benefits and biological activity [49]. In
recent decades, many studies have been conducted to explain the mechanisms associated
with flavonoid biosynthesis in plants. Several intervention studies about the biological
activities of flavonoids are summarized in Tables 2 and 3.

2.1.1. Flavonols, Flavones, Flavanols, and Flavanones

A flavonol is a flavonoid metabolite that is hydroxylated at the C-3 position of the het-
erocyclic ring [50]. Flavonols are widely present in vegetables, fruits, and grains. They are
generally present as an aglycon-based glycoside such as kaempferol, quercetin, myricetin,
isorhamnetin, and rhamnetin [51]. Common flavonols and aglycones have a minimum of
279 and 347 different glycosidic combinations, respectively [52]. Among them, quercetin
3-O-glycosides such as isoquercitrin, quercitrin, and rutin are categorized as representatives
of the flavonol family, one of the subclasses of flavonoid compounds, and are the most
abundant flavonols [53]. In particular, they are frequently found in cranberry, strawberry,
apple, kale, and red pepper [51].

Compared with flavonols, flavone-containing plants are limited. The main flavones
in edible plants are glycosides of apigenin, luteolin, and diosmetin [51]. Flavones are
structurally very similar to flavonols, and there are few hydroxyl groups at the C-3 position.
Flavones have three functional groups: hydroxy, carbonyl, and conjugated double bonds.
Thus, flavones show a characteristic reaction of the three functional groups [54].

Flavanols have no double bond between C-2 and C-3 and no carbonyl at C-4 in the
heterocyclic ring. Therefore, there are two chiral centers (C-2 and C-3) that result in four
isomeric structures for each flavan-3-ol molecule. Common examples of flavanols are
catechin (trans) and epicatechin (cis), which exist in two isomeric forms. (+)-catechin and
(−)-epicatechin are often found in food plants [55]. Skins of grapes, apples, and blueberries
are also rich in flavanols [56,57]. Unlike other flavonoids, flavanols are not glycosylated
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in food [58]. Catechin and epicatechin can easily condense into oligomeric procyanidins,
which produce anthocyanidins under aqueous acidic conditions with heating [59,60].

Flavanones are widely distributed in approximately 42 larger plants. In particular, they
are found in the Compositae, Leguminosae, and Rutaceae. Heterocyclic flavanones also
contain a ketone group, but there is no unsaturated carbon-carbon bond [61]. Flavanones,
called dihydroflavones, lack the double bond between C-2 and C-3 in the heterocyclic ring
of the flavonoid skeleton, which is present in flavones and flavonols, and flavanone is
found in high concentrations in citrus fruits. They are also found in tomatoes and aromatic
plants, but their main sources are citrus fruits, especially grapefruit. Flavanones naturally
exist in the form of aglycon and glycoside, while the major aglycones are naringenin in
grapefruit and hesperetin in oranges [62].

In many studies, the therapeutic effects of red beetroot have been shown under a
variety of conditions, including complications associated with metabolic syndrome [63].
One of the main mechanisms by which flavonols can reduce cardiovascular risk is their va-
sodilatory and antihypertensive effects [64]. The data suggest improvements in endothelial
function, an effect that would also be expected to reduce the risk of hypertension and the
development of atherosclerosis. One study examined the blood pressure-lowering effects
of 0, 100, or 200 mg red raspberry extracts/(kg·d) in normal and spontaneously hyper-
tensive rats. After 5 weeks, the red raspberry extracts demonstrated a dose-dependent
antihypertensive effect in spontaneously hypertensive rats, effects that coincided with an
increase in nitrogen oxide (NO) activation, a decrease in vasoconstrictive endothelin-1,
dose-specific antioxidative actions, and improved vascular endothelial dysfunction [65]. It
is well-known that in endothelial cells, NO plays an important role in regulating vascular
relaxation and blood pressure [66].

In general, apple flavonoids may have beneficial effects on blood pressure, vascular
function, and blood lipid levels. Moreover, plum juice consumption modulates a cluster
of pathways that are deregulated in obesity and prevents obesity-associated metabolic
disorders and the increased risk for cardiovascular disease. Koutsos, Athanasios, et al. [20]
showed the beneficial hypocholesterolemic and vascular effects of the daily consumption of
apples by mildly hypercholesterolemic individuals. Flavonoid-rich beetroot was effective
in improving blood pressure, endothelial function, and systemic inflammation, and raw
beetroot juice had greater antihypertensive effects than cooked beet [22]. In a study by
Moazzen, Hossein, and Mohammad Alizadeh [23], pomegranate juice supplementation was
shown to lower the levels of systolic and diastolic blood pressure in patients with metabolic
syndrome as well as blood levels of hs-CRP. Consumption of raw red onion, which is rich
in quercetin, significantly decreased total cholesterol levels in women with polycystic ovary
syndrome [24]. The many beneficial effects of flavonoids include the ability to interfere
with lipid metabolism, reduce platelet adhesion, and enhance endothelial function.

2.1.2. Anthocyanins

Anthocyanins are one of the most commonly used water-soluble phenolic compounds
and principally represent natural pigments from red to purple. Anthocyanin is found in
various tissues of plants, such as flowers, fruits, stems, and roots, and has proven to be
protective against many cardiovascular risk factors [67,68].

Most types of anthocyanins are based on cyanidin, delphinidin, and pelargonidin
along with methylation, methoxylation, hydroxylation, and glycosylation. The most im-
portant physical parameter of anthocyanins is color, which depends on pH. They turn red
under acidic conditions and blue under basic conditions. The degree of hydroxylation,
methylation and glycosylation also affects color [69,70].

In particular, berries such as cranberry, strawberry, and red raspberry are good sources
of anthocyanins, and red apple, red currant, cherry, and plum are also rich in anthocyani-
dins [71]. Cranberry flavonoids may have several distinct effects on the development of
atherosclerosis. Monomers and oligomer flavonoids, for example, can be absorbed and
metabolized and have postabsorptive effects on the development of atherosclerosis and
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cardiovascular diseases such as LDL protection against oxidation by arterial endothelial
cells, arterial smooth muscle cells, and intimal macrophages; inhibition of the inflammatory
response of these cells to modified LDL and direct effects on immune cells involved in the
inflammatory process; vasodilation and improved blood flow; and inhibition of platelet
aggregation and thrombosis [72].

Additionally, Basu, Arpita, et al. [26] revealed that cranberry reduces lipid oxida-
tion and increases plasma antioxidant capacity in women with metabolic syndrome, and
Novotny, Janet A., et al. [27] showed that cranberry improved several risk factors for
cardiovascular disease in adults, including circulating triglycerides, CRP, glucose, insulin
resistance, and diastolic blood pressure.

Numerous in vitro and in vivo studies have suggested that strawberry supplemen-
tation reduces the risk of CVDs. In other animal models (obese and lean C57BL/6 mice),
strawberry supplementation decreased overall blood glucose concentrations independent
of the content of dietary fat and reduced plasma CRP, supporting a potential protective
effect against cardiovascular risk.

Intervention studies have reported many cardiometabolic disease outcomes affected
by cherry. Aboo Bakkar, Zainie, et al. [29], Johnson, Sarah A., et al. [30], Kent, Katherine,
et al. [31], and Keane, Karen M., et al. [32] showed significantly lower levels of blood
pressure, lipid-related markers, and adhesion molecules and evidence of cardiovascular-
related outcomes (FMD, nitrate and nitrite, PRX1) after consumption of cherry. Short-term
strawberry supplements improved the risk factors for selected atherosclerosis, including
dyslipidemia and adhesion molecules in subjects with metabolic syndrome [34].

2.1.3. Isoflavones

Isoflavones are mainly distributed in legume plants, with phenol rings attached to
the C-3 and C-4 positions of the heterocyclic ring [51,52]. Genistein, daidzein, glycitein,
biochanin A, and formononetin are different isoflavones found in soy, red clover, and cherry.
They generally exist as glycosides in plants. Chalcones have different structures than other
flavonoids. C-3 is an open ring and is mainly found in apples and hops [56].

Betavulgarin in beet and genistein in cherry are classified as isoflavonoids. The car-
dioprotective effects of beetroot are from the combination of nitrate/nitrite and bioactive
compounds that limit the production of free radicals and regulate gene expression. In vitro
and in vivo studies and clinical trials have shown that beets and their bioactive phytochemi-
cals are promising in the development of new adjuvant therapies to improve cardiovascular
diseases [73,74].

2.2. Biological Activities of Carotenoids

Carotenoids are a natural pigment found in plants and microorganisms, but they are
not synthesized in animals [75,76]. These are micro components of fruits and vegetables
which contribute to the inverse relationship between fruit and vegetable consumption
and the risk of cardiovascular disease, cancer, and other metabolic diseases [77,78]. As
substantial dietary sources of vitamin A, they have excellent antioxidant properties [77].
In plants, carotenoids, along with chlorophyll, are essential pigments for photosynthetic
organs and are responsible for the yellow, orange, red and purple colors of fruits and
vegetables [79].

More than 600 carotenoids have been identified in nature, of which approximately 40
are present in a typical human diet, and approximately 20 have been identified in blood and
tissues. ß-Carotene, α-carotene, lycopene, β-cryptoxanthin, and lutein account for more
than 90% of the carotenoids in humans [80]. All carotenoids have certain common chemical
features, such as a polyisoprenoid structure, the long conjugated chain of double bonds
at the center of the molecules, and almost bilateral symmetry around the central double
bond [81]. Carotenoids are rich in conjugated double bonds and may undergo cis-trans
isomerization. The variant is more stable and is the most common form in food [78].
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Tomatoes, in particular, contain many carotenoids. Watermelon contains the carotenoids
lycopene and lutein. Additionally, beet, Italian sweet red pepper, red radish, cranberry,
red raspberry, red sweet potato, strawberry, apple, and fig contain carotenoids. Several
studies have elucidated the cardiovascular effect of tomatoes, as shown in Table 4. In
studies by Colmán-Martínez, Mariel, et al. [36] and Ferro, Yvelise, et al. [37], participants at
cardiovascular risk were treated with tomato, which contains lycopene and carotene, in a
crossover design. Systolic blood pressure and adhesion molecules were significantly lower
in the treatment group than in the placebo group. Another double-blind, randomized,
placebo-controlled study [38] found that the tomato nutrient complex is effective in main-
taining normal blood pressure in untreated hypertensive individuals. Daily tomato paste
consumption exerts a beneficial effect on endothelial function [39] and reduces the risk of
inflammatory diseases such as CVDs and diabetes, which are associated with obesity [40].

Carotenoid is a regulator of free radicals and NOS, so antioxidant and anti-inflammatory
activity can help cardiovascular risk factors such as inflammation, high lipid levels, high
blood pressure, insulin resistance, and obesity. As a result, the reduction in blood pressure
levels and inflammation, as well as the improvement of lipid profiles, can lead to cardiovas-
cular health benefits [82]. Since carotenoids have hydrophobic characteristics, interactions
with carotenoids and free radicals occur in cell membranes and lipoprotein components in
a lipophilic environment [83].

2.3. Biological Activities of Other Compounds (Organosulfur Compounds, Phenolic Acids)

Phenolic acids are widely distributed in almost all fruits [84]. There are two types of
phenolic acids as derivatives of benzoic acid and derivatives of cinnamic acid. Benzoic
acid derivatives have a C1-C6 skeleton, while cinnamic acid derivatives have a C3-C6
backbone [85,86]. The most common hydroxybenzoic acids are p-hydroxybenzoic acid,
vanillic acid, and syringic acid, whereas p-coumaric, caffeic, ferulic, and sinapic acids
are the common hydroxycinnamic acids in fruit [87]. For example, they exist in complex
structures such as hydrolyzable tannin, gallotannins of mango, and ellagitannins of red
fruits such as strawberries, raspberries, and blackberries [88].

In fruits, vegetables, and grains, phenolic acids are distributed throughout the plant,
including the seeds, roots, and stems. Most of these compounds are linked and hydrolyzed
with structural components of plants (cellulose, proteins, and lignin), larger polyphenols
(flavonoids), smaller organic molecules (glucose, quinic, maleic, or tartaric acid), or other
natural products (terpenes) through acetal bonds and can be hydrolyzed upon acid or
alkaline hydrolysis or by enzymes [52].

Folic acid, which is abundant in hibiscus, belongs to the class of organic compounds
known as methoxyphenols. Methoxyphenols are compounds containing a methoxy group
attached to the benzene ring of a phenol moiety. Additionally, gallic acid, 3-O-methylgallic
acid, 4-O-methylgallic acid, and hippuric acid are the main phenolic metabolites detected in
hibiscus. Hibiscus extract improves postprandial vascular function and reduces endothelial
dysfunction and cardiovascular risk [44].

3. Conclusions and Future Perspectives

Modern nutritional science explains the diversity of ingredients and mechanisms in
which foods affect health. Regarding the chemical composition of food, many bioactive
compounds present in plants, fruits, and vegetables are currently known. Biologically ac-
tive compounds from food play a substantial role in preventing diseases. Such compounds
are related to the essential aspects of the health benefits of food, and potentially valuable
compounds such as isoflavone, and phytochemicals are used as effective preventive strate-
gies for the occurrence of various human cardiovascular diseases, diabetes, and metabolic
disorders [89].

Red fruits and vegetables have positive beneficial effects on the human body. Various
fruits, such as berries, cherries, apples, watermelons, and tomatoes, are related to heart
health improvement. Various ingredients in red foods can help reduce basic irritation
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and strengthen health status by reducing disease. These factors not only help to fight
inflammation but also improve body function [19].

Numerous in vitro, in vivo, and clinical studies support the multifarious beneficial
effects of red-colored food on several risk factors and pathways associated with car-
diometabolic diseases. In several animal experiments and intervention studies, the admin-
istration of bioactive compounds of red food exhibited vasorelaxation effects and reduced
blood pressure with the regulation of lipid levels with evidence for both direct and indirect
mechanisms. Overall, increasing evidence supports the significant cardiometabolic benefits
of red-colored foods rich in flavonoids, carotenoids, and other phenolics. Since nutritional
intake is important for cardiovascular and metabolic health, these results support the need
for further active research on the relevant ingredients, biological mechanisms, and clinical
effects of food [90].

In conclusion, there are numerous benefits to eating plant-based foods, especially red
fruits and vegetables. Ensuring the consumption of red foods will enable the individual to
reduce the development of cardiovascular diseases and metabolic diseases. Phytochemicals
in red foods may help to offset an increased risk of chronic disease.
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