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Abstract: This paper reviews the recent studies and works dealing with probabilistic forecasting
models and their applications in smart grids. According to these studies, this paper tries to introduce
a roadmap towards decision-making under uncertainty in a smart grid environment. In this way,
it firstly discusses the common methods employed to predict the distribution of variables. Then, it
reviews how the recent literature used these forecasting methods and for which uncertain parameters
they wanted to obtain distributions. Unlike the existing reviews, this paper assesses several uncertain
parameters for which probabilistic forecasting models have been developed. In the next stage,
this paper provides an overview related to scenario generation of uncertain parameters using their
distributions and how these scenarios are adopted for optimal decision-making. In this regard, this
paper discusses three types of optimization problems aiming to capture uncertainties and reviews
the related papers. Finally, we propose some future applications of probabilistic forecasting based on
the flexibility challenges of power systems in the near future.

Keywords: probabilistic forecasting; smart grids; decision making under uncertainty; renewable
generation; stochastic programming

1. Introduction
1.1. Motivation and Contribution

Smart grids’ operation and planning deal with different types of forecasts. The recent
advances in information and communication technology (ICT) facilitate the real-time
control of devices and resources based on the real-time system states. However, to establish
an effective control, the mass of data received from smart meters should be processed
and analyzed. These data are utilized to predict future system states. The results of this
prediction are then employed to find the optimal control strategy. For example, in many
studies, electricity consumption and renewable generation are forecasted and the results
are used to determine the optimal commitment of the other conventional generation units
and resources.

In this regard, well-trained data-driven forecasting models often give forecasters
overconfident and point-forecasted values [1]. This means that the data-driven algorithms
giving us point forecasts cannot model the uncertainties and errors of the forecasts. In
addition, the decision-making process may be subjected to an information gap. This
information gap creates a disparity between the information that a decision maker has and
the information that could be known. Thus, the information gap produces possibilities,
and this range of possibilities increases as the information gap grows. In this way, decision
makers may decide to base their decisions upon the best-informed available model and
disregard the uncertainties, which results in insufficient decision-making [2]. To resolve
this issue, probabilistic forecasting is suggested.

A probabilistic forecast produces a predictive distribution of values rather than a
single value. In general, there are two techniques to generate probabilistic forecasts, named
parametric and non-parametric methods. Parametric methods associate a probability
distribution with an uncertain variable and then try to estimate the parameters of this
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probability distribution function (PDF). On the other hand, non-parametric methods use
quantiles and ensemble forecasts to derive different forecasted values.

Different types of variables require different probabilistic forecasting models. The
goodness of a probabilistic forecasting model should be evaluated according to two prop-
erties: “calibration and sharpness” [3]. A calibrated model is able to maintain statistical
consistency between forecasts’ distribution and the corresponding observations. On the
other hand, the sharpness property is more concerned about the concentration of the ob-
tained distribution function [3]. Accordingly, one can conclude that a good probabilistic
forecasting model needs to be optimally sharp, subject to being calibrated.

In a smart grid environment, stakeholders and operators employ probabilistic fore-
casting methods for their uncertain parameter values. Renewable generations, customers’
consumption behavior, and electric vehicles’ charging/discharging behavior are some
examples of uncertain parameters. Thus, a comprehensive review of the applications of
probabilistic forecasting can guide forecasters to focus on important uncertain parameters in
smart grids. For this purpose, a limited number of reviews have been conducted. For exam-
ple, ref. [4,5] focused on the recent probabilistic forecasting models aiming to predict wind
power. The main focus of [4] was on short-term wind power probabilistic forecasting and
compared the forecasting models developed by the previous literature. In contrast, ref. [5]
discussed the probabilistic forecasting models up until 2014, considering three different
representations of wind power. Similarly, ref. [6–8] reviewed the methods and applications
of probabilistic forecasting for PV generation. In this regard, ref. [6] mainly concentrated on
integrating PV probabilistic forecasting models into power system decisions, while ref. [7,8]
mostly reviewed and compared the probabilistic forecasting techniques. Additionally, the
methods applied to predict the distribution of electricity demand were reviewed in [9].
On the other hand, the main contribution of [10] was to review the papers seeking to
probabilistically forecast energy prices. This paper is useful for strategic stakeholders that
need to make decisions with uncertain prices and participate in the market accordingly.
Finally, ref. [11] provided a short review of the parametric and non-parametric probabilistic
forecasting models for electricity loads, wind and solar productions. Table 1 compares the
existing similar review papers with ours. The first column indicates the reference and the
next four columns specify the uncertain parameters for which the probabilistic forecasting
models were reviewed. The last column is devoted to the main contribution of the paper
that will be discussed later.

Table 1. Comparison of this paper with the literature reviewing probabilistic forecasting models and
applications in smart grids and power systems.

Ref. Load Probabilistic
Forecast

Solar Probabilistic
Forecast

Wind Probabilistic
Forecast

Price Probabilistic
Forecast

Pathway towards Decision
Making under Uncertainties

[4] 3

[5] 3

[6] 3

[7] 3

[8] 3 3

[9] 3

[10] 3

[11] 3 3 3

This paper 3 3 3 3 3

To the best of the authors’ knowledge, there is no comprehensive review paper propos-
ing a comprehensive framework for smart grid decision-makers and stakeholders based on
the probabilistic forecasting of all uncertain inputs (wind, PV, price, load, etc.). In addition,
the applications of probabilistic forecasts and the decision-making pathway were not fully
assessed in the previous literature. The decision-making process should have three main
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stages, including forecasting, scenario generation, and developing optimization problems.
Thus, this paper is proposed to resolve this issue as follows:

1. It aims to introduce a roadmap and a pathway towards uncertain decision making
in a smart grid environment. The roadmap includes probabilistic forecasting models
of uncertain parameters, scenario generation based on probabilistic forecasts, and
solving stochastic, robust, and chance-constrained optimization problems according
to the results of the previous steps.

2. It tries to guide upcoming similar works by introducing the smart grid’s needs in
the future. In this regard, probabilistic forecasting models should be developed
for a wide range of uncertain parameters and not be limited to loads, prices, and
renewable generations.

1.2. Paper Framework and Organization

The main goal of this paper is to introduce the roadmap and direction of making
decisions in a smart grid environment, using probabilistic forecasting models. Figure 1
shows the general framework of this paper.
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Figure 1. Decision-making steps in a smart grid environment.

This paper first introduces probabilistic forecasting models and reviews how the dis-
tributions of uncertain parameters are predicted based on previous works. It then presents
the most common methods utilizing the predicted distributions to generate scenarios. After
that, we will discuss how the scenarios generated in the previous stage can help smart grid
management systems to make decisions considering different scenarios of uncertain inputs.
Finally, this paper discusses two state-of-the-art applications of probabilistic forecasting
that can be extended in future works. In the conclusion and discussion section, some future
applications based on the future requirements of power systems are also proposed.
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2. Probabilistic Forecasting Models
2.1. Examples of Parametric Probabilistic Forecasting Models

Each forecast has an error. This error was yielded by subtracting the forecasted value
from the actual value in the post-processing stage. At the time of the forecast, a point
forecast does not give forecasters any information about the error. Consider a linear
regression model as an example. It is a forecasting model that aims to predict the response
variable Yt based on some explanatory variables (xt,1, . . . , xt,m) as follows:

Yt = Ŷt + εt (1)

Ŷt = b1xt,1 + . . . + bmxt,m (2)

where Ŷt is the point forecast in the deterministic model and b denotes the weight associated
with each explanatory variable. Unfortunately, as can be seen in (2), the deterministic linear
regression model does not consider the forecast error. Probabilistic forecasts, on the contrary,
will give forecasters different sets of forecasts that follow a known specific probability
distribution function (PDF). They will then forecast the parameters of the distribution
function. For instance, a probabilistic linear regression forecast assumes that the error term
εt is normally distributed with a zero mean and a constant standard deviation, σ2. Thus,
the forecasted value is defined as follows [12]:

Ŷt ∼ N
(

µt, σ2
)

(3)

µt = b1xt,1 + . . . + bmxt,m (4)

where (3) states that the forecasted values are normally distributed in this model. µ
denotes the mean and σ is the variance. The generalized linear models, however, consider
exponential family distributions (Exp) of the response variables and utilize a link function
g(.) to model the mean value in terms of explanatory variables [12]:

Ŷt ∼ Exp(µt, φt) (5)

g(µt) = b1xt,1 + . . . + bmxt,m (6)

where φt denotes the variance associated with the exponential family distributions.
There is a more advanced model, called the Generalized Additive Model for Location

Scale and Shape (GAMLSS), that considers a huge set of distributions and is able to model
all of the scale parameters related to the distributions [12]:

Ŷt ∼ D(µt, σt, υt, τt) (7)

g1(µt) = b1xt,1 + . . . + bmxt,m (8)

g2(σt) = b1
′xt,1 + . . . + bm

′xt,m (9)

g3(υt) = b1
′′ xt,1 + . . . + bm

′′ xt,m (10)

g4(τt) = b1
′′′ xt,1 + . . . + bm

′′′ xt,m (11)

where υ demonstrates the skewness and τ shows the kurtosis of the distribution function.
This means that the GAMLSS model is able to give us the exact shape of the distributions
of our forecast.

2.2. Examples of Non-Parametric Probabilistic Forecasting Models

A wide range of probabilistic forecasting models fall into the non-parametric category.
The non-parametric probabilistic forecasting models do not use the existing known PDFs.
Instead, they build predictive distributions of the response variable based on different
factors or construct quantiles/ensembles considering historical data. Since they do not limit
probability distributions to specifically known distributions, the non-parametric methods
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are more flexible. However, compared to parametric models, they often need larger datasets
to be able to estimate the response variable distributions [13].

Random forecast (RF) and quantile regression forecast (QRF) models are two examples.
RF models aim to forecast the conditional mean of the response variable given the input data
and without associating any known distribution functions with the variables [14]. Similarly,
QRF models predict quantiles of the response variable regardless of any known parametric
distributions. To obtain the quantiles, QRF minimizes the sum of errors of the mean
values, considering some asymmetric weights [15,16]. Kernel density estimation (KDE)
is another non-parametric method estimating the probabilistic density of the response
variables using kernel functions. The kernel density function can be mathematically written
as follows [17,18]:

Fy(h) =
1

Nh ∑n
i−1 K(

y− yi
h

) (12)

where K indicates the kernel function, yi are the sample points, N refers to the total
number of sample points and h is the bandwidth referring to the smoothing parameter.
In the KDE method, a proper kernel function should be selected according to the type of
response variables.

Another way of obtaining ensemble forecasts is considering various initial states or
different boundary conditions for the response variable, such as the lower upper bound
estimate (LUBE) [19]. This method provides forecasters with prediction intervals (PI). LUBE
employs artificial intelligence tools to build the PIs. In addition to LUBE, the bootstrap
method can fall into this category, since it resamples the data and constructs a distribution
of residuals accordingly [20]. Short range ensemble forecast (SREF), as another example of
non-parametric forecasts, takes into account the uncertainties of initial states [21].

A set of different types of machine learning-based and numerical forecasts can build a
non-parametric ensemble forecast. This method uses N different data-driven and numerical
forecasting models to predict the response variable. These forecasts are then considered
as quantiles. The corresponding distribution F(y) can be mathematically modeled as
follows [2]:

F(y) =
1
N ∑N

i=1 l(y− ˆyi,t) (13)

where l(y− ˆyi,t) denotes a Heaviside step function that shifts y to the ith ensemble member.

2.3. Artificial Neural Network-Based Probabilistic Forecasting

Artificial neural network (ANN)-based models can be also used to develop probabilis-
tic forecasting models. NN architectures consist of a network of neurons as processing units.
The neurons connect to each other through synapses, which are weighted connections. In
the training stage, the optimal weights are determined.

In general, an NN has three layers—an input layer, an output layer and one or several
hidden layers. A feedforward ANN passes the data forward from input to output. On the
other hand, a recurrent NN (RNN) can connect some neurons in a backward direction as
well as the forward direction for further processing. In this way, RNNs have the ability
to consider the autocorrelation or time dependencies of data [22]. Figure 2 compares the
architecture of a feedforward NN with that of an RNN. The literature proposed various
architectures and developed probabilistic forecasting models for both feedforward and
recurrent ANN-based models. In the following, some important models are reviewed.
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2.3.1. Examples of Probabilistic Forecasting Models Using Feedforward ANNs

Mixture density networks (MDN) and softmax regression networks (SRN) are two of
the main feedforward ANN-based models aiming to obtain the distribution of uncertain
parameters [23]. Regarding MDN, as a parametric model, the associated probability density
is obtained from a linear combination of kernel functions [24]:

F(y) = ∑i ai(x)Ki(y|x) (14)

where x represents the input vector of the forecasting model, y is the output vector, Ki(y|x)
is the kernel function selected for the model, and ai(x) represents the mixing coefficients
that control the inputs. In MDN models, the output neurons are the parameters of the
distribution functions as well as the mixing coefficients. For example, the outputs can
be the parameters of Gaussian distribution functions, including the mean values and the
standard deviations as well as the mixing coefficients.

In comparison, in an SRN model, which is a non-parametric probabilistic forecasting
model, each output of the neuron associates a probability fraction with a value of y. In
this way, there should be an interval for possible values of y. Hence, the output of an
SRN represents the probability related to each member within the interval. Figure 3
compares the architectures of MDN with SRN, two ANN-based approaches utilized for
probabilistic forecasts.
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2.3.2. Examples of Probabilistic Forecasting Models Using RNN

RNN can also be combined with long short-term memory (LSTM) units. LSTM
consists of some memory blocks that are recurrently connected. Each block consists of
three multiplicative units including input gate, output gate and forget gate. The input gate
memorizes either the new information or the previous states of the network. The forget
gate disregards the irrelevant and unnecessary information obtained from the past. The
output gate extracts the important information from the memory. In this way, unnecessary
information is forgotten and only necessary ones are kept within the network [25].

Reference [25] is an example of research developing two RNN-LSTM-based probabilis-
tic forecasting models. The first model is a parametric model and quite is similar to MDN.
It first tries to exact a PDF of the uncertain parameter. Then, an RNN-LSTM network is
trained to find the optimal values of PDF parameters. The other model is, however, a non-
parametric probabilistic forecasting model that is integrated with RNN-LSTM. It employs
the QR method with the objective to predict the quantiles of the uncertain parameter. The
network is trained to minimize the quantile loss by minimizing their pinball loss.

3. Renewable Generation and Load Probabilistic Forecasting

In general, probabilistic forecasting methods have mainly been adopted to forecast the
probability distributions of renewable-based power generation and/or load in smart grids.
The following sub-sections aim to review important studies that proposed parametric
and non-parametric probabilistic forecasts for energy demand and/or generation in a
smart grid environment. Additionally, Tables 2–4 review some selected papers that tried
to develop probabilistic forecasting models for solar generation, wind generation and
loads, respectively.

3.1. Solar Probabilistic Forecasting

Network operators, generation agents as well as premises need PV generation to be
forecasted at various horizons, including very short-term, hourly and intra-hour, intra-day,
as well as day-ahead forecasts [2]. In this regard, future PV generation is forecasted either
based on solar irradiance or PV generations of previous times. If the forecast reference is
based on solar irradiance, it builds a model according to the past meteorological data or
present observations. To construct the model, it utilizes the data from weather stations,
satellites, and local sensors and images as inputs [6]. It then develops a model by mapping
the inputs to the solar generation.

Table 2. An overview of selected papers developing probabilistic forecasting models for
solar generation.

Ref. Forecast Horizon_Forecast
Resolution Forecasting Methods Advantages of the Work

[26] Day-ahead_1 h NWP-based solar
irradiance forecast

The proposed probabilistic forecasting model could reflect the
effects of atmospheric conditions on forecast errors

[27] Two-day-ahead_30 min NWP-based solar
irradiance forecast

The paper used a post processing method that was able to
improve the performance of the forecasting algorithm

[28] Day-ahead_1 h NWP-based solar
irradiance forecast It determined several confidence intervals for each region

[29] Day-ahead and hour-ahead_10 min Different parametric and
non-parametric models

It assessed the effects of reconciliation on the improvement
of forecasts

[30] Long-term_1 h Three parametric models The model could describe the stochastic characteristics and
features of solar irradiance

[31] Intra-day (1–6 h)_1 s Two models developed using
quantile regression

It conducted graphical analysis of reliability to compare the
performance of the forecasts

[32] Three-day-ahead_1 h ANN-based combined with
Analog Ensemble

The combination of these two methods yielded best results
compared to the individual models

[33] day-ahead_1 h LSTM-based
The proposed model performed better compared to the simpler

models but got the same results as the fully connected
ANN-based model
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In order to probabilistically forecast PV generation, some works proposed using
numerical weather prediction (NWP) models under various scenarios. References [26–28]
are some examples that employed NWP to obtain ensemble forecasts for solar irradiance
and build an uncertainty model for PV generation. An NWP adopts some measured
meteorological inputs, such as temperature, humidity and pressure. It then solves a set
of partial differential equations to simulate the process through which solar irradiance
is obtained [34]. To obtain a probabilistic forecast, an NWP method uses a training set
consisting of the NWP ensemble members at timeslot t. After that, each member is weighted
equally and utilized to make an empirical cumulative distribution function. NWP methods
are usually very straightforward to implement. However, it was argued that NWP models
are computationally expensive to implement, and thus it would be better to run them only
a few times a day [35].

In the short-run, such as real-time and near real-time forecast horizons, probabilistic
forecasters mainly utilize data-driven models including statistical and machine-learning
ones [36]. For example, ref. [29] aimed to make short-horizon forecasts based on multi-
step-ahead (e.g., six forecasts with 10-min time slots), considering 11 data-driven machine-
learning and parametric methods, including least angle regression, least angle regression
with elastic-net regularization, lasso regression, generalized linear models, generalized
linear model with elastic-net regularization, Bayesian generalized linear model, gradi-
ent boosting machines, linear regression, boosted generalized linear model, multivariate
adaptive regression splines, and projection pursuit regression. These models tried to
probabilistically predict solar generation. The paper also discussed how the so-called
“reconciliation techniques” proposed by [37] can improve the probabilistic forecasts. Ad-
ditionally, ref. [30] compared three parametric probabilistic forecasting models for solar
irradiance. The first model considers the use of Beta distribution with several shape factors,
the second model utilizes a generalized triangular distribution and the third one combines
multiple probabilistic forecasting models to construct the probability distribution of solar
irradiance. Regarding non-parametric approaches, ref. [31] compared two 1-to-6-h-ahead
probabilistic models for predicting global horizontal irradiance. The first model directly
produces a set of quantiles for each time slot using regression methods “linear model in
quantile regression (LMQR)”, “quantile regression forest (QRF)”, or “gradient boosting
machine (GBM)”. The second model, however, consists of two stages. The first stage
deploys the recursive least square autoregressive and moving average (ARMArls) method
to make a point forecast for the irradiance. The outputs are used in the next step to estimate
quantiles for each time horizon using the same methods. As mentioned earlier, the re-
viewed model tried to first forecast irradiance and then predict PV generation accordingly,
using a physical model and relationships. These models are often called white-box models.

By contrast, non-physical or so-called “black-box” forecasting approaches that predict
PV generation are purely based on historical data and do not deal with the physical
process and the meteorological data. For instance, ref. [32] developed a probabilistic
forecasting model using ANN and an analog ensemble to produce 72-h forecasts of PV
power. Additionally, ref. [33] utilized a more complicated approach, long short-term
memory (LSTM), to probabilistically predict solar power and compared it with simpler
models. Similar to NWP models, although physical models may be more accurate in day-
ahead and long-term horizons, data-driven black-box models work better over short-term
horizons such as intra-hour ones [38,39]. Figure 4 summarizes the probabilistic forecasting
models for PV generation considering the forecasting horizon.
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3.2. Wind Probabilistic Forecasting

There are studies trying to relate a known PDF to wind generation. They mainly
adopted Gaussian and beta distributions to probabilistically forecast wind power using
parametric methods [40]. Some research also tried other types of distribution functions.
For example, ref. [41] proposed a modified version to generalize logit-normal distribution
for wind power. Reference [42] considered the same distribution for wind generation. The
authors of [43] took wind power as a double-bound variable and obtained the appropriate
distribution based on this assumption. In another study, ref. [44] solved an economic
dispatch problem using a versatile probability distribution for wind generation. However,
it was also discussed that relating specific distributions to the distribution of wind power
cannot be applied since in some cases, the predictive error of wind power distribution is
changing over the prediction horizons [45].

A huge number of papers have been proposed that utilized non-parametric prob-
abilistic forecasting models for wind generation. For instance, considering QRF-based
methods, ref. [46] proposed a novel direct quantile regression (DQR) method to proba-
bilistically predict wind power, generating quantiles without using statistical inference.
The prediction was based on multi-step 10-min forecasts that combined the extreme learn-
ing machine (ELM) and QRF models to make the non-parametric probabilistic forecast
and use it in a linear programming problem. Their proposed novel approach was finally
compared to four different forecasting techniques, including the bootstrap-based ELM
(BELM)-normal distribution, the BELM-beta distribution, the persistence model, and the
radial basis function-neural network (RBF-NN) model. The final results demonstrate that
the model proposed by [46] performs better in terms of the sharpness criteria. In this
regard, the proposed DQR model performed 25% better compared to the persistence model
and its performance was 20% better than the RBF-NN probabilistic forecasting model. In
addition to the sharpness criteria, DQR model presented a more acceptable computational
time equaling 63.89 s, according to the result section of [46]. As another example, ref. [47]
presented a joint quantile regression (JQR) model that reproduces kernel Hilbert spaces for
wind power probabilistic forecast utilizing the primal-dual coordinate descent technique.
The work then employed the multi-objective salp swarm algorithm (MSSA) to optimize the
final results. It then tested the forecasting model and compared it with other models on a
one-step-ahead and a multi-step-ahead basis.
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Table 3. An overview of selected papers developing probabilistic forecasting models for wind generation.

Ref. Forecast Horizon_Forecast
Resolution Forecasting Methods Advantages of the Work

[41] 10-min-ahead_1 min
Parametric (mixtures of
generalized version of

logit–normal distributions)

The work considered the non-linear nature and
double-bounded characteristics of wind power forecast

[42] 8-h-ahead_15 min Parametric (censored
normal distribution)

The work considered the effects of spatio-temporal on wind
power forecast

[43] Two-day-ahead_1 h Several parametric
probabilistic forecasts

It tested several distribution functions and found Beta
distribution function as the most appropriate distribution for

wind power

[44] Day-ahead and week-ahead_1 min Parametric (versatile
distribution)

The model was integrated with the economic dispatch
problems which could simplify uncertainties of wind power

[46] Hour-ahead_10 min
Direct quantile regression
combined with mashing

learning methods

The model was proved to be high efficient, reliable, and flexible
to probabilistically forecast wind power

[47] One-hour-ahead and
several-hour-ahead_15 min and 1 h Joint quantile regression The forecasting model was improved by

meta-heuristics algorithm

[17] Different horizons from days to
hours_30 and 60 min

A tri-level adaptation
function integrated with a

fuzzy inference system

The model outperformed other similar approaches in terms of
computational efficiency and practicality since it avoided any

pre-assumptions about forecast errors and data noises, and
considered cost-based optimization problems in the model

[48] 1–6-h ahead and
day-ahead_different time steps

Multi-distribution ensemble
(MDE) forecasting model

integrated with competitive
and cooperative strategies

The work tried to explore the best probabilistic forecasting
accuracies by considering different forecasting horizons

[49] Not specified Three neural
network-based models

Reinforcement learning was also utilized to combine and
improve three kinds of deep learning networks

[50] Different horizons from 1–24 h_1 h
Kernel density estimation

with regular vine copulas and
ensemble learning

The work proved that multi-distribution mega-trend-diffusion
can improve the forecast when there are insufficient data

[51] Hour-ahead_1 h
Data processing techniques

integrated with
ensemble NWPs

The work proved that data processing techniques can improve
the probabilistic forecast of wind power considerably

Another method for obtaining the non-parametric distribution of wind power is the
use of KDE. However, the model is highly impacted by using different kernel functions.
In other words, the appropriate kernel function should be selected based on the type of
the random variable so to avoid the boundary effects on the PDF of wind generation [52].
To resolve this issue, ref. [17] proposed applying a tri-level adaptation function integrated
with a fuzzy inference system.

As examples of ensemble forecasting models, authors of [48] suggested a multi-
distribution ensemble (MDE) forecasting model that is integrated with competitive and
cooperative strategies. In this way, the work tried three different distributions as the ensem-
ble members. Based on the comparison results presented by the paper, the MDE integrated
with the cooperative model performed better in an hour-ahead forecast. However, the
MDE integrated with the competitive model had a better performance in longer horizons
including two-to-six-hours- and 24 h-ahead. Three different neural network-based proba-
bilistic forecasting models were also presented by [49]. The work combined the ensemble
deep learning method with empirical wavelet transform decomposition (EWT), which
outperformed the other models considered in the paper. ref. [50] also combined improved
kernel density estimation with regular vine copulas and ensemble learning to obtain an
advanced probabilistic forecasting model.

Similar to solar forecast, there are some studies proposing NWP models. For instance,
ref. [51] suggested wind power probabilistic forecasting using data processing techniques
and ensemble NWPs. This methodology comprises data preprocessing techniques, the
model of adaptive-network-based fuzzy inference system (ANFIS) integrated with fuzzy
c-means (FCM) clustering model, as well as LUBE for prediction of forecast intervals.
The work tried to prove that data preprocessing and post-processing processes are very
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important to improving the forecast models. For this purpose, it compared the model with
the ANFIS model, disregarding data preprocessing. The paper concluded that the model
utilizing preprocessing outperformed the other models not deploying this technique.

3.3. Load Probabilistic Forecasting

Similar to renewable generations, probabilistic forecasting of loads has a wide range
of variety based on the type of forecasts and the forecasting horizons [8]. In terms of the
variety of forecasting models, different methods have been adopted, such as hybrid Kalman
filters [53], Gaussian and lognormal processes [54,55], artificial neural networks [56,57]
QR [58,59], RF [60], and stochastic time-series combined with Bayesian inference (BI) [61].

Table 4. An overview of selected papers developing probabilistic forecasting models for electric-
ity load.

Ref. Forecast Horizon_Forecast
Resolution Forecasting Methods Advantages of the Work

[51] Hour-ahead_5 min Hybrid Kalman Filters

The work proved the effectiveness of hybrid Kalman
filters to capture different characteristics of load

components from Independent System
Operator’s viewpoint

[56] Day-ahead_30 min Boosting Additive
Quantile Regression

The model was designed to probabilistically predict
loads at the disaggregated level

[53] 30-min-ahead_30 min Gaussian Processes The work analyzed the effects of several covariance
functions on load forecasts

[52] Multi-step-ahead_30 min Gaussian and log-normal
processes

The work proved that the log-normal model can
generate a varying sharpness for load forecast

[60] 30-min-ahead_30 min Markov-chain mixture
distribution model

The proposed model was proved not to be
computationally expensive and can be insensitive to the

settings of parameters

[61] Day-ahead_1 h
Load probabilistic forecast

based on weather
ensemble prediction

The work proved that using weather ensemble
predictions can improve the accuracy and uncertainty

analysis of load forecasts

[62] Day-ahead_1 h

Estimation of load’s
confidence intervals based

on the quantiles of past
forecast errors

The method can be adopted for security analysis of
power systems since it was able to generate demand

scenarios at a specified risk level

[63] Day-ahead_1 h Partially linear additive
quantile regression

The work combined the forecasting model with the unit
commitment problem

[64]
Different horizons including

30-min-, one-hour-, two-hours-,
and four-hours-ahead_30 min

LSTM-based The model was designed to probabilistically forecast the
individual consumer’s load

[65] Day-ahead_1 h Probabilistic methods

The novel work focused on determining the reserves
based on forecasting net loads. The work demonstrated

that the method can decrease the amount of reserves
bought for the system

In terms of very short-term (real-time or near-real-time) probabilistic load forecasting,
reference [53] is one of the early works proposing hybrid Kalman Filters to probabilistically
forecast demand considering the 5 min temporal resolution. The authors of [58] performed
half-hour resolution probabilistic forecasting of electricity consumption using QR that is
integrated with gradient boosting. In [55], the authors used Gaussian processes to develop
a probabilistic forecasting model for residential load considering half-hour resolutions.
In [54], the authors performed half-hour-resolution forecasts of residential loads utilizing
a lognormal process. In one of the recent study, proposed by [62], the Markov-chain
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mixture distribution model (MCM) was employed for the purpose of very short-term load
forecasting considering residential households in Australia. The model forecasts on a
half-hour-ahead resolution basis. The authors then proved the high computational speed
as well as the acceptable competitive performance of their proposed model.

Regarding interval forecasting on a day-ahead basis, the probabilistic forecasting NWP
models can be adopted. For instance, the forecasting model can be constructed according
to the weather ensemble prediction taking into account the consumption under different
weather scenarios [63] or be built according to the quantiles of forecasting errors of the
historical data [64]. In addition, a partially linear additive quantile regression model was
proposed by [65] to develop a probabilistic forecast of day-ahead hourly electricity loads
with a focus on the demand of peak hours in South Africa. As an example of data-driven
models, the long short-term memory (LSTM) model was used to forecast the quantiles of
electricity loads aiming to minimize the quantile pinball loss function [66].

Finally, ref. [67] assessed the benefits of using probabilistic methods to estimate the
required day-ahead reserves. In this regard, the authors developed two probabilistic
methods to forecast the system net loads. The results of probabilistic forecasts are then
utilized to quantify reserves that are required to compensate for the intermittency and
uncertainties of renewable generation.

4. Electricity Price Probabilistic Forecasting

In electricity markets, electricity prices are affected by the total system’s supply and
demand. However, each participant playing in these markets needs to schedule their
resources according to the predicted values of the market prices, in short-term horizons.
Regarding future power systems, renewable-based generation will be the main source of
electricity. Their intermittent nature and real-time fluctuations increase the electricity price
fluctuations [68]. Accordingly, electricity price forecasting models need to be improved
to actively follow the prices’ fluctuations. In addition, it can be argued that probabilistic
forecasting models are attracting increasing attention since they are able to consider various
uncertainties and possibilities [10].

Regarding studies that proposed parametric models, the authors of [69] proposed a
first-order vector autoregressive (VAR) model considering exogenous effects and using
skew t distribution in a Bayesian framework. The model was then sent to the Markov
chain Monte Carlo for uncertainty analysis. Reference [70] adopted the GAMLSS method
and also estimated the PIs to be time-varying quantiles of the acquired density forecasts.
In [71], the authors developed generalized autoregressive conditional heteroskedasticity
(GARCH)-based time-varying models to estimate the density function of the variable. As
a semi-parametric model, ref. [72] introduced a semiparametric model that is combined
with a time-adaptive quantile regression [34] in order to predict day-ahead market price
densities. The proposed model was then compared to four well-known GARCH models
considering a three-year time span. They finally proved that their proposed model is more
reliable in terms of generating quantile estimates.

Recently, non-parametric data-driven probabilistic forecasting models are more often
employed due to their flexibility. For instance, ref. [73] introduced a deep neural network
model-based method for the probabilistic prediction of electricity prices. In this model,
they first made the price distributions using its historical data. Afterward, they employed
a deep convolutional neural network (DCNN) for extracting high-level features. The
obtained high-level features were sent to label distribution learning forests (LDLF) in order
to construct price probabilistic forecasts. In another work, ref. [74] developed a two-step
model to probabilistically forecast German-Austrian day-ahead prices. It first proposed
estimating the mean of correlated time series prices using ordinary least squares and the
elastic net method. In the second step, they estimated the residuals using the maximum
likelihood method.
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5. Uncertainty Modeling

Uncertainty modeling itself needs comprehensive study. In general, uncertainty
modeling aims to capture the dynamics of the uncertain input data and generate scenarios
based on their probability distributions [75]. The results are then used as the input of
stochastic programming. Figure 5 overviews some uncertainty modelling techniques
utilized for stochastic programming. In addition, Table 5 states some selected works using
these techniques.
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Table 5. An overview of selected papers using scenario generation techniques in a smart
grid environment.

Ref. Uncertain Parameters
Uncertainty
Generation
Technique

General Objective of the Work

[76] Wind generation, generators’ reliability Sequential MCS Minimizing the total energy generation costs

[77]

Wind generation, PV generation,
battery storage charging/discharging output,
biomass combined with heat generation, and

thermal energy storage output

Sequential MCS
Minimizing the total energy costs

+
minimizing economic risks

[78]
Renewable generation, electricity demand,

household hot water, and space heating and
cooling parameters

Pseudo-sequential
MCS

Minimizing energy generation environmental impacts
+

Minimizing energy costs

[79] Renewable generations, electricity demand, and
water inflow

Pseudo-sequential
MCS

Maximizing financial profits
+

Minimizing economic risks

[80] risks Non sequential Optimizing net present value and analyzing geothermal
energy life-cycle for power and transportation sectors

[81] Renewable generations GAN Generate samples for renewable generations based on
historical data

Monte Carlo simulation (MCS) is one of the most popular methods for scenario
generation purposes. The PDFs of the random variables, forecasting errors of the data,
and market variability, in general, are employed by the Monte Carlo simulation method in
order to learn the uncertain data and generate their associated scenarios, accordingly [82].
Figure 6 illustrates the steps of achieving output from uncertain inputs, using the Monte
Carlo simulation method.
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The advantages of the Monte Carlo simulation method can be described as follows [83]:

• The method is able to sample from random processes and supports all of the distribu-
tion functions.

• A transfer function is not required.
• It does not need a mathematical formulation since it can model a problem in the form

of a black box system and can obtain output considering samples of inputs.
• The method is relatively easy to implement.
• It is able to model both non-differentiable and non-convex problems.

Recently, Monte Carlo simulation algorithms have evolved and improved. For exam-
ple, sequential MCS is able to model uncertainties of inputs in chronological order. With
the help of the sequential method, uncertainties of time-series inputs (such as variable gen-
eration of renewable energy resources and electricity demand) are implemented in a better
way [75]. Pseudo-sequential is another extension of the MCS method which has the ability
to converge faster compared to the sequential version. The pseudo-sequential method can
sample states through its non-sequential capability and uses chronological simulation for
the failed states [75]. Finally, the non-sequential MCS method is another family member of
the Monte Carlo method which cannot model uncertainties chronologically and requires
high computational costs [75].

Recently, a model-free and data-driven method, called the “Generative Adversarial
Network (GAN)”, has attracted more attention for scenario generation purposes. The model
employs artificial neural networks (ANNs) and aims to synthesize some understanding
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from the training of real data. The notable advantage of GAN scenario generation is that
this model does not need distribution functions of uncertain variables [81].

6. Decision Making under Uncertainties

The future power system is heading towards being smart and decentralized. In a new
smart grid system, there will be a number of agents and stakeholders that face uncertainties
in their decision-making problems. Here are some examples:

• A generation company that has renewable resources needs to submit offers to energy
markets before knowing the resources’ exact generation and market prices.

• Every management system in smart grids (such as microgrid energy management
system and energy community management systems) needs to deal with its intermit-
tent renewable energy resources’ output as well as the uncertain resources’ behavior
(such as the EV charging behavior) to come up with the optimal scheduling and
management of resources.

• Strategic agents try to deal with uncertain market prices and their competitors’ strate-
gies beforehand when they construct their optimal bidding strategies.

• Retailers should buy electricity based on their customers’ uncertain demand.
• Balancing responsible parties require to schedule their flexible energy resources, such

as their energy storage systems, based on the uncertain generation in a way to maintain
the balance between their generation and their demand.

• Transmission system operators (TSO) and distribution system operators (DSO) must
decide on the amount of reserves and flexibility as well as the methods to operate
their network and keep the security of supply and reliability of the system within the
specified limit, in spite of different uncertainties and the intermittency of renewables.

Hence, the lack of perfect information affects optimal decision making. In this regard,
stochastic programming, robust programming, and chance-constrained models offer to
solve optimization problems with uncertain input data.

6.1. Stochastic Programming

A stochastic optimization problem models uncertainties of input data by weighting
the decision-making solutions. The weights are selected based on the probabilities of
occurrence, considering that each set of input data leads to a single solution. In this way,
one will achieve the effects of uncertain input data on the decision-making solution [84]. A
simple stochastic programming can be formulated as [6]:

min
x

E( f (x, ω))

Subject to :
g(x, ω) = 0
h(x, ω) ≤ 0

(15)

where x is the decision variable and ω denotes the scenario. As the formulation states,
uncertainties should be modeled in terms of different scenarios. The most common and
simple techniques for generating scenarios need to use the inverse of the cumulative
distribution function (CDF) or PDFs of the uncertain parameters. Hence, the probabilistic
forecasts of the inputs are necessary to develop stochastic programming. However, it would
be easier if the random input data have specifically known parametric distribution [6].
This means that parametric probabilistic forecasts are more favored in this sense. Here,
if one knows the probability distributions of the inputs, they can achieve the probability
distributions of the output data.

In power system concepts, an independent system operator or a generation company
are proposed to conduct stochastic unit commitment by using stochastic programming [85].
In unit commitment applications, stochastic programming is divided into two-stage and
multi-stage problems. Two-stage models consider both day-ahead (hear and now) and
real-time (wait and see) commitment decisions. In the day-ahead stage, the conventional
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generators are dispatched and their commitment decisions are determined while in real-
time, uncertain renewable resources and flexible energy resources are dispatched. Regard-
ing the second (real-time) stage, to develop the two-stage problem, one needs the PDFs of
renewable generation as well as those of flexible energy resources to build a large number
of relevant scenarios for the PDFs of the outputs. Table 6 summarizes some of the most
recent studies that considered stochastic programming to find the optimal commitment
decisions for their resources.

Table 6. An overview of recent papers using stochastic programming for decision making in a smart
grid environment.

Ref. Uncertain Parameters Methods to Capture
Uncertainties Objective

[86]
Prices (day-ahead market and balancing market),

renewable generations, loads, driving requirement
and the availability of electric vehicles (EV)

Two-stage stochastic
programming

(day-ahead and
real-time scheduling)

Proposing a system for microgrid support by maximizing
the expected profit of a microgrid aggregator

[87]
EVs’ arrival, and departure time, as well as EVs’

daily traveled miles and types,
solar irradiation and wind speed, loads

Two-stage stochastic
programming

Maximizing the retailer’s profit
(first stage: fuel cell scheduling

second stage: distributed generation scheduling)

[88] Electricity demand, wind speed Two-stage stochastic
programming

Minimizing day-ahead dispatch costs of the
wind-thermal-hydropower-pumped storage system along

with the system’s expected balancing costs

[89] Renewable generations and loads Two-stage stochastic
programming

Minimizing the costs of reserving flexibility services in
day-ahead forecasting and their real-time activation

[90] Wind generation, demand and market prices Two-stage stochastic
programming

Maximizing microgrid’s profits participating in day-ahead
and real-time markets taking into account the microgrid’s

reconfiguration

[91] Wind generation, demand and market prices

Simple
scenario-based

stochastic
programming

Obtaining coordinated network expansion planning by
minimizing the operation cost of generation

+
Minimizing the annual investment cost of expanding the

transmission networks
+

Minimizing the renewable resources’ annual investment costs
+

Minimizing the annual investment and operation costs of
energy storage systems

+
Maximizing the flexibility index of the system

[92] Renewable generations

Simple
scenario-based

stochastic
programming

Procuring ancillary services from flexible distributed
energy resources in a day-ahead operational planning by

minimizing network’s costs

[93] Electricity demand, renewable generations,
market prices

Two-stage stochastic
programming

Supplying the aggregated demand through their
participation in the day-ahead market and maximizing

their total expected profits

[94] Electricity demand and PV generation Multi-stage stochastic
programming

Operating an energy community with PV-storage system
by minimizing the electricity purchased from the grid

[95] Wind generation Two-stage stochastic
programming

Economic dispatch for a hybrid distribution system based
on active-reactive power coordination by minimizing the

cost of gas-fired operation, power purchasing from the
upstream grid, penalty costs related to substations’ power

fluctuations, network losses, and the costs of wind
curtailment and load shedding

[96] Renewable generations, electric vehicles, loads,
and market prices

Simple
scenario-based

stochastic
programming

Optimal energy management of microgrids by minimizing
operational costs of distributed energy resources, the costs
of purchasing power from the upstream network, the costs
incurred from the energy not served, and those related to

EV batteries’ degradation costs

Once we make a decision for the day-ahead stage, decomposition methods are then
employed to treat the real-time stage scenarios independently. This approach leads to
considerably fewer scenarios, compared to the non-decomposed method [75].

Multi-stage stochastic programming models construct a scenario tree and accordingly
try to capture uncertainties in a dynamical way. In multi-stage models, the uncertainties
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are treated chronologically, meaning that the uncertainties at time t affect those at t + 1, . . . ,
t + m. However, the method comes at huge computational costs.

6.2. Robust Programming

The robust optimization approach aims to obtain a problem solution that is always
feasible under different realizations of the uncertain inputs. In other words, the robust
approach seeks optimal solutions in the worst-case realizations or worst-case scenarios [97].
Robust optimization deals with the uncertainty sets, and in the first stage aims to optimize
the problem considering the scenarios under which the worst solutions are obtained. A
simple robust optimization is formulated as follows:

min
x

max
w

f (x, ω)

subject to :
gi(x, ω) = 0

hi(x, ω) ≤ 0 ∀i
ω ∈W

(16)

In (15), all possible sets of ω (scenarios) are included in the uncertainty set, i.e., W. In
this way, the uncertainty sets of the uncertain parameters need to be defined adequately.
The uncertainty sets are also required to cover the uncertain phenomena that can happen for
the uncertain parameters. Naive and inappropriate definitions of the uncertainty sets may
result in either too conservative or very risky solutions. This means that the appropriate
uncertainty sets should comprise risky and conservative decisions [7]. There are other
extensions of the robust optimization such as robust stochastic optimization, adaptive
robust optimization and distributionally robust optimization. Although they all have the
same concept, they try to keep the balance between the risky and conservative solutions in
different ways and under various assumptions on uncertain parameters.

The applications of robust optimizations in smart grids and power systems can fall
into one of these categories:

• Robust network and generation planning and expansion (e.g., [98,99])
• Robust capacity sizing of flexible energy resources (e.g., [100,101])
• Robust and resilient network operation under extreme and emergency conditions or

climate-aware operation of resources (e.g., [102,103])
• Robust energy management and the operation of resources (e.g., [104,105])
• Robust bidding strategy for participating in energy and flexibility markets ([106,107])

A number of studies and papers utilized robust optimization or its extensions in order
to solve their decision-making problems. Table 7 summarizes these papers.

Table 7. An overview of recent papers using robust programming for decision making in a smart
grid environment.

Ref. Uncertain Parameters Methods to Capture
Uncertainties Objective

[108] Inflow and PV generation Robust optimization

Maximizing the minimum power generated within the
operation interval

+
Maximizing the operational interval

+
Maximizing the feasible solutions obtained by the

operation interval

[109]
Electricity demand, generation capacity, as
well as uncertain economic, environmental,

and social parameters for customers

Robust fuzzy
multi-objective
optimization

programming

Maximize the total profits of the whole system
+

Maximizing the social benefits of the system consumers
+

Minimizing the total negative environmental impacts

[110] Energy price Robust optimization Minimizing the net costs of a smart home

[104] Wind and PV generations Adaptive robust
optimization Minimizing the operating costs of an isolated microgrid
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Table 7. Cont.

Ref. Uncertain Parameters Methods to Capture
Uncertainties Objective

[111] Wind speed, demand, and solar irradiance
Conditional value at risk
(CVaR) combined with

robust optimization

Minimizing the costs of an energy hub participating in
energy and reserve markets

+
Minimizing the emissions of pollution

[105] Wind and photovoltaic generations Two-stage adjustable
robust optimization

Minimizing the costs of multi-energy system that supplies
both electricity and heat loads

[102] Load and energy price Hybrid stochastic/robust
optimization

Minimizing planning, operation and resilience costs of the
distribution networks considering earthquake and

flood situations

[112] Energy price and PV generations Hybrid stochastic/robust
optimization Maximizing the profits of a household customer

[113] Wind and PV generations, loads, and
market-clearing prices

P-robust (a combination
of robust and stochastic

programming)

Minimizing the operating costs of diesel engine, micro
turbine, procurement costs, costs of pollutant treatment,

and costs of reimbursing incentive-based demand
response programs

[114]
Availability of microgrid equipment, active

and reactive loads, parameters of EVs, energy
price, wind and PV generations

Hybrid stochastic/robust
Minimizing the microgrid’s costs including the cost of

buying energy, the operation cost of non-renewable energy
sources, the reliability costs in terms of non-supplied loads

[115] Renewable distributed generations Robust model combined
with prediction control

Maximizing the amount of load restoration that is
controlled by the output of the power units and

remote-controlled switches

[116] Electricity demand and facility
installation costs Robust optimization

Minimizing the installation costs of power plants,
high-voltage/low-voltage substations, and feeders, feeders’

power transmission costs
+

Minimizing the storage power cost, power losses’ costs in
feeders, feeder failures’ costs

[98] PV and wind generations, Robust optimization Minimizing the annual costs of the regional
distribution networks

[103]

Wind generation, outages, La Niña and El
Niño events (a long-term warming happening

for the central and eastern Pacific and
vice versa)

Robust optimization Minimizing investments’ and operations’ costs of
the system

[99] Unbalanced power percentage Robust optimization

Minimizing the annual investment costs of transmission
network lines as well as the costs related to battery

superconducting magnetic hybrid energy storage system
under maximum the load-shedding conditions

+
Reducing the insufficient supply if N-k faults happen

[117] Random N-K contingency, wind and
PV generation Robust optimization

Minimizing the investment costs of building candidate
lines, the generation costs of conventional generators, the

costs related to scheduling downward and upward
spinning-reserves, costs of renewable generation

curtailment and load-shedding

[106] Market participants’ offers and bids as well as
real-time market prices Robust optimization Maximizing profits of a virtual bidder (optimal

bidding strategy)

[107] Wind generation and electricity prices Robust MPC-based
optimization

Maximizing the profits and minimize the operating costs of
a wind-storage system (optimal bidding strategy)

[118] Renewable generations and electric vehicle
charging behavior Robust optimization

Optimal location and sizing of renewable distributed
generation and the charging stations based on

maximization the station’s total payoff

[119] Loads and renewable generations Robust optimization
Designing generation resources for a microgrid to meet its

demand by minimizing the total generation costs of
the resources

[100] Loads, wind and PV generations Robust optimization
Positioning and sizing of the energy storage system by
minimizing the operation costs of the flexible energy

resources as well as those of the network

[101] PV generation Robust optimization
Planning of distributed battery energy storage from a DSO
viewpoints by minimizing the batteries’ degradation and

operation costs
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6.3. Chance-Constrained Programming

Chance-constrained optimization problems aim to give an optimization constraint the
possibility to be satisfied up to a specified level. It can be formulated as follows:

min
x

E( f (x, ω))

Subject to :
g(x, ω) = 0

Pr [h(x, ω) ≤ 0] ≥ η

(17)

where Pr refers to probability and η indicates the confidence level [120]. In this regard,
η should be selected between 0 and 1. According to (16), constraint h(x, ω) ≤ 0 needs
to be satisfied up to η level. In other words, operators or designers that use the chance-
constrained method ensure that h(x, ω) ≤ 0 will be satisfied in (η × 100)% of scenarios.

Chance-constrained programming has a wide range of applications in smart grids.
Here are some examples:

1. Operations of renewable-based systems to guarantee a certain level of reliability/
security/flexibility

2. Planning of distribution/transmission networks in a way to guarantee a certain level
of reliability/security/flexibility

3. Determining system reserves to guarantee a certain level of reliability/security/flexibility

Table 8 summarizes some recent works that adopt chance-constrained programming
methods to capture uncertainties.

Table 8. An overview of recent papers using chance-constrained programming for decision making
in a smart grid environment.

Ref. Uncertain Parameters Methods to Capture
Uncertainties Objective

[121] Electricity prices and
PV generation

Chance-constrained
programming

Minimizing the costs of energy trading between the power grid and
microgrids

+
Minimizing the fuel costs of fuel-based power generation and boiler units

[122] PV generation Chance-constrained
programming

The study aims to integrate renewable energy as much as possible by
minimizing the hybrid system’s power curtailment

+
Maximizing the renewable power generation injected into the system

[123] Loads, market prices,
renewable generation

Chance-constrained
programming

Minimizing the total operation costs of a combined, power-based, cooling,
and heating microgrid:

Minimizing the costs of power and gas purchased
+

Minimizing the operation costs of microgrid’s CHP units and micro turbine
+

Minimizing batteries’ degradation costs
+

Maximizing the revenues obtained from selling electricity and heat to the
upstream grids

[124] Loads, wind generation Chance-constrained
programming

Minimizing the costs of buying power from thermal units
+

Minimizing the costs of buying spinning reserves from generators as well as
demand-response resources

[125] Renewable generations Chance-constrained
programming

Microgrid management by minimizing the operation costs of its units
+

Minimizing the costs of buying power from the upstream grid
+

Maximizing the revenue obtained from selling electricity to the
upstream grid

[126] Operational modes of
the microgrids

Chance-constrained
stochastic conic
programming

Solving multi-site microgrids’ investment problem and microgrid
dual-mode network operations by minimizing microgrid operation and

maintenance costs, microgrid electricity transaction costs, its network loss
costs, and microgrid load curtailment costs
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Table 8. Cont.

Ref. Uncertain Parameters Methods to Capture
Uncertainties Objective

[127] PV generation and ambient
temperatures

Chance-constrained
programming

Active distribution network management incorporating office buildings by
tracking building consumption and PV generation

+
Minimizing network losses

[128] Renewable generation
and loads

Chance-constrained
programming

Finding potential self-sufficient sub-networks within the existing electrical
distribution grid

by maximizing average load served in each sub-network

[129] PV generation Chance-constrained
programming

Designing solar-based microgrid and solving related dispatch problem by
minimizing the capital costs of PV panels and the capacity costs and

installation costs of energy storage system, the expected costs of multi-year
operation of the microgrid which include load shedding penalty costs and

wind micro-turbine generation costs

[130] Renewable generation Chance-constrained
programming Minimizing the total cost of generating power and gas

[131] Loads and system frequency Chance-constrained
programming

Optimal scheduling of grid-connected batteries providing frequency-related
services by minimizing the cost of purchasing energy from the grid as well

as the system costs

[132] Renewable generation

Mixed integer second
order cone

chance-constrained
programming

Controlled islanding strategy

7. Further Probabilistic Forecasting and Applications

As can be seen in the tables (Tables 6–8) that review studies using stochastic, robust,
and chance-constrained programming, smart grids need more probabilistic forecasts [124]
which are made for other uncertain parameters rather than loads, renewable generation and
prices. EV charging-related behaviors, battery state-of-charge (SOC), dynamic line rating
(DLR), and network states are some examples. In this regard, a few papers conducted
studies to develop probabilistic forecasting of other uncertain parameters that are important
for decision-making in smart grids. In this section, we will review these papers that employ
probabilistic forecasting models for uncertain parameters, rather than the introduced
popular uncertain parameters.

7.1. Probabilistic Forecast of BESS SOC

Authors of [133] developed a probabilistic forecasting model that analyzes the uncer-
tainties of the battery energy storage system’s state of the charge (BESS SOC) in providing
the primary frequency control. The results were then used as inputs of the predictive
optimization of BESS which schedules BESS for providing multiple flexibility services. In
order to develop the probabilistic forecasts, the authors applied a multi-attention recurrent
neural network (MARNN) to extract the most important contextual information in time-
series forecasting. Afterward, they proposed a robust forecast, utilizing the combination of
mixture density networks (MDNs) and Monte Carlo dropout (MCD). Finally, the proposed
model was tested for different regulatory frameworks of primary frequency control services,
using the frequency datasets of real-world power grids.

7.2. Probabilistic Forecast of Time and Flexibility of EV Charging

In [134], the authors employed a quantile forecast to probabilistically predict EVs’
parking duration as well as their upcoming trip distance using the forecast framework
introduced by [135]. To develop the model, German datasets regarding travel logs were
adopted. In this regard, the authors first determined the requirements that are used as
inputs of smart charging systems. In the second stage, they extracted features from the
travel logs. Then, the paper compared the charging stations’ current information with
those of historical parking events. If the EV users grant the permission, the travel data are
extracted from the smartphone applications. As a result, the authors proposed a forecasting
model based on cross-validation performance. In the final stage, the results demonstrate
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that the charging station operator using the proposed forecasting model can profit by
selling flexibility services. The model was also proven to resolve the congestion issue
within the station.

7.3. Probabilistic Forecast of Other Uncertain Parameters

In [136], the authors developed a probabilistic forecasting model for the current rating
of transmission lines using QRF in order to solve the dynamic line rating problem with
a focus on the reliability of the distribution network’s lower part. In the second stage,
the results were employed to conduct a cost benefit analysis using a bi-level stochastic
problem. The problem considered two aspects of costs: (1) the reduced generation costs
due to the higher power transfer capacity and (2) the increased reserves’ adoption resulted
from forecast errors.

As another application, ref. [137] investigated the probabilistic forecast of low-voltage
states (voltages as well as active and reactive power) for effective operation of distribu-
tion networks. In this regard, it tested two quantile forecasting methods considering
different levels of distributed renewable generation injection. The probabilistic forecasting
results were then integrated with an optimization problem to avoid over voltages within
the networks.

8. Conclusions and Future Direction

This paper discussed the roadmap towards making decisions under uncertainty in
a smart grid environment. This roadmap started with introducing different types of
probabilistic forecasting and continued with discussing for which uncertain variables the
literature uses probabilistic forecasting. In this regard, the main focus of the literature was
on obtaining the probabilistic forecasting models for renewable generation (both wind and
PV generation), electricity loads, and electricity prices.

Afterward, the paper described how probabilistic forecasting models were applied
in the literature. For this purpose, it reviewed some papers adopting scenario generation
techniques in smart grids. Two important methods of scenario generation, i.e., Monte Carlo
simulation and generative adversarial Network, were introduced, and the paper explained
in what way they are related to decision making. In addition, a limited number of papers
utilizing introduced scenario generation methods in smart grids have been reviewed.

In the next step, decision-making under uncertainty was discussed. It was stated
that energy management systems of smart grids need to solve optimization problems in
order to operate and plan their resources. In fact, uncertainties should be taken into ac-
count in the optimization problem. Accordingly, stochastic, robust, and chance-constrained
programming that consider uncertainties in the optimization problem were briefly intro-
duced. It was discussed how these problems can be used in smart grid decision makings
by reviewing the most recent papers.

Furthermore, two more applications of probabilistic forecasting were reviewed. Al-
though there exist a wide range of uncertain parameters in smart grids, the probabilistic
forecasting models were only developed for a limited number of these variables. For
example, there are very few papers that proposed to develop probabilistic forecasting
models for uncertain parameters of BESS and EVs (such as their SOC, charging power,
etc.). However, decision-makers need the distributions of these variables along with those
of loads and renewable output. Thus, future studies need to be conducted to obtain and
develop distributions of EV’s and BESS’s parameters.

Finally, it should be mentioned that future power systems are heading toward hosting
a high share of renewable generation. However, at the moment, power grids are not flexible
enough to tolerate this situation and need more flexibility from different flexible energy
resources and flexibility solutions (e.g., related to active network management). As a result,
operators need to know:

• What are the available flexible energy resources in the current system?
• What are the potential flexible energy resources that should be activated?
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• How much flexibility is needed for the future power system?

To answer these questions, the system operators need to forecast:

• The flexibility required to deal with a high share of renewables in the future such as
the reserves

• The available flexibility (related to active power P and reactive power Q) of the system
at different levels of the systems (flexibility at TSO, DSO, and customer levels)

• Potential congestions (voltage and/or thermal limit violations) of lines and other
passive power system key components

Point forecasts of flexibility do not give operators a comprehensive insight in order
to deal with the uncertainties of the future. However, with the help of probabilistic fore-
casts, decision-makers can assess different operational and planning decisions considering
different renewable injection scenarios.
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Abbreviations

ANFIS Adaptive Network-based Fuzzy Inference System
ANN Artificial Neural Network
ARMArls recursive least square Autoregressive and Moving Average
BELM Bootstrap-based ELM
BESS Battery Energy Storage System
CDF Cumulative Distribution Function
DCNN Deep Convolutional Neural Network
DQR Direct Quantile Regression
DSO Distribution System Operator
ELM Extreme Learning Machine
EV Electric Vehicle
EWT Empirical Wavelet Transform
FCM Fuzzy C-Means
GAMLSS Generalized Additive Models for Location Scale and Shape
GAN Generative Adversarial Network
GARCH Generalized Autoregressive Conditional Heteroskedasticity
GBM Gradient Boosting Machine
ICT Information and Communication Technology
JQR Joint Quantile Regression
KDE Kernel Density Estimation
LDLF Label Distribution Learning Forest
LMQR Linear Model in Quantile regression
LSTM Long Short-Term Memory
LUBE Lower Upper Bound Estimate
MARNN Multi-attention Recurrent Neural Network
MCD Monte Carlo Dropout
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MCM Markov-chain Mixture distribution model
MCS Monte Carlo Simulation
MDE Multi-distribution Ensemble
MDN Mixture Density Network
MSSA Multi-objective Salp Swarm Algorithm
NWP Numerical Weather Prediction
PDF Probability Distribution Function
PI Prediction Interval
PV Photovoltaic
QRF Quantile Regression Forecast
RBF-NN Radial Basis Function-Neural Network
RF Random forecast
RNN Recurrent Neural Network
SOC State of Charge
SREF Short Range Ensemble Forecast
SRN Soft-max Regression Networks
TSO Transmission System Operator
VAR Vector Autoregressive

Nomenclature

t time
xt,1, . . . , xt,m explanatory variables at t
b1, . . . , bm weights associated with explanatory variables
F(y) PDF
εt forecast error at t
µt mean value of the distribution function at t
σt standard deviation of the distribution function at t
υt skewness of the distribution function at t
τt kurtosis of the distribution function at t
g(.) link function for modeling the mean value in terms of explanatory variables
K Kernel function
l Heaviside step function
N total number of sample points
h bandwidth referring to the smoothing parameter
Yt, yt response variable at t
Ŷt, ŷt point forecast at t
P active power
Q reactive power
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