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Abstract: Characterization of acoustic emission (AE) signals in loaded materials can reveal structural
damage and consequently provide early warnings about product failures. Therefore, extraction of the
most informative features from AE signals is an important part of the characterization process. This
study considers the characterization of AE signals obtained from bending experiments for carbon
fiber epoxy (CFE) and glass fiber epoxy (GFE) composites. The research is focused on the recognition
of material structure (CFE or GFE) based on the analysis of AE signals. We propose the extraction
of deep features using a convolutional autoencoder (CAE). The deep features are compared with
extracted standard AE features. Then, the different feature sets are analyzed through decision trees
and discriminant analysis, combined with feature selection, to estimate the predictive potential of
various feature sets. Results show that the application of deep features increases recognition accuracy.
By using only standard AE-based features, a classification accuracy of around 80% is obtained, and
adding deep features improves the classification accuracy to above 90%. Consequently, the application
of deep feature extraction is encouraged for the characterization of loaded CFE composites.

Keywords: polymer composites; acoustic emission; feature extraction; convolutional autoencoder;
deep features

1. Introduction

Composite materials are increasingly used in lightweight transportation systems and
civil engineering due to increasing weight constraints and installation costs. In the case
of transportation systems such as in the aerospace and automobile industries, the use of
composite materials reduces the weight, which is reflected in increasing the transportable
load and reducing fuel consumption, and therefore the mechanical performance of the
material is a very important and desired attribute.

The use of fiber-reinforced polymer (FRP) composites is somewhat limited due to the
possibility of sudden damage under load. Damage mechanisms in FRP are heterogeneous
in that they often begin in-depth and then propagate at different length scales (micro-,
meso-, or macroscales). In addition, the composite constituents (fiber, matrix, and interfacial
bonding), and the applied mechanical load (stress level of loading sequence, stress ratio)
influence the damage evolution [1]. This aggravates the development of damage-tolerant
design procedures like those used for metallic materials. In polymer composites, this is
mostly related to the development of experimental techniques that can monitor material
behavior and offer real-time information about damage evolution [2].

Acoustic emission (AE) monitoring is one of the most suitable techniques to detect
damage occurrence and its evolution in real-time during loading of FRP. Acquired AE
signals during loading are a consequence of energy release from different damage modes
during loading in the form of elastic waves and can be used for real-time insight into
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the construction part [3]. The sensitivity of AE monitoring can offer detection of different
damage sources like matrix cracking, fiber failure, delamination, debonding between matrix
and fibers, fiber pull-out, interfacial debonding, and friction [4,5]. The most frequently
reported damage modes of fiber composites are transverse matrix cracking, delamination,
and fiber failure [6].

Damage mechanism characterization is based on analysis of acquired AE signals
and prior knowledge of the nature of the damage source developed within the stressed
specimen. Matrix cracking is usually connected with low amplitude signals between 40 and
60 dB, at low energy and frequency, while fiber-matrix debonding occurs between 45 and
70 dB in the medium frequency range [7]. The fiber breakage (failure) is usually associated
with the highest amplitudes of 70–100 dB, at high energy and frequency, and usually occurs
just before the complete failure of the specimen [8,9]. Fiber cracking and pull-out and
fiber-matrix friction have amplitudes between previous mechanisms and are harder to
isolate from others [9,10]. However, several studies have shown that AE signal amplitude
is greatly affected by material properties, the geometry of the structure, and the acquisition
system. More promising results for damage mechanism description were obtained by
frequency content analysis of AE signals [11].

During composite loading, several damage mechanisms occur almost simultaneously,
which creates a scientific challenge to assign a specific set of AE signal features to a particular
damage mechanism. This is now most frequently solved with pattern recognition [12,13].
Tang et al. [8] used a sequential feature selection method based on a k-means clustering
algorithm for the classification of AE signals in wind turbine blades loaded in the flap-wise
direction. The visualization of clusters in peak frequency−frequency centroid features
is used to correlate the clustering results with failure modes. Hamdi et al. [11] used
the Hilbert–Huang transform to extract frequency descriptors based on intrinsic mode
functions for k-means pattern recognition for unidirectional GFRP during three-point
bending. Kumar et al. [14] compared the use of k-means, fuzzy C-means clustering, and
Kohonen’s self-organizing map for discrimination of several failure modes in GFRP. They
suggested Kohonen´s SOM as the most appropriate technique for the classification of AE
signatures. Nair et al. [15] used an unsupervised k-means clustering method with a neural
network based on a multi-layer perceptron (MLP) and support vector machine (SVM)
algorithm for pattern recognition in CFRP retrofitted RC beams.

Automatic extraction of the intrinsic characteristics of signals based on deep learning
is becoming increasingly popular. Extraction from the time-frequency domain enables the
model to learn features, which more comprehensively reflect the intrinsic characteristics in
the signal compared to features extracted from the time and/or frequency domain [16]. The
clarity of high-fidelity characterization would enable an understanding of the local struc-
tural drivers on the damage response of composites [17]. In addition, a single methodology
framework, which can be extended not only to various applications, conditions (i.e., in-
dustries), and configurations (test materials, data acquisition setups), but even broadly in
different engineering domains, can be even more readily adopted [18]. For example, for
milling tool wear condition monitoring, a stacked spare autoencoder has been utilized as a
feature learning method [19]. The feature value extracted by the traditional method is ob-
tained by manual construction and requires certain professional knowledge [20,21], while
deep learning is used to establish a network model, allowing the network to automatically
learn features, avoiding the loss of signals in the time and frequency domains during the
manual feature extraction [22].

There are three main types of deep learning network models for sequential pattern
recognition: deep belief network (DBN) [23], autoencoder (AE) [24], and convolutional
neural network (CNN). A joint neural network model, combining CNN and AE, namely
convolutional autoencoder (CAE), enables the extraction of useful higher-level representa-
tions from images, bridging the performance gap with DBN and in several cases surpassing
it [25]. In CNNs, translation-invariant features enable the model to learn useful descriptors,
independent of their location in the image. This property is not entirely desirable for image
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data where pattern location may carry a significant meaning, such as in time-frequency
scalograms. For that reason, fully-connected layers, which induce spatial variance, are
employed in the CAE structure at different levels.

In this paper, the AE monitoring of damage development with different damage
mechanisms in pultruded materials with carbon fiber and glass fiber reinforcement is
presented. The aim was to evaluate the performance of a deep convolutional autoencoder
(CAE) in providing informative features for the classification and characterization of AE
signals obtained from loading fiber epoxy composites. The features, extracted by the CAE
model, are denoted as “deep features”, which means that these features are extracted
automatically during the CAE training phase. Therefore, in comparison with “standard
features” such as peak amplitude, burst signal duration, frequency centroid, etc., deep
features do not have physical meaning but are designed to maximize informativeness.

The research was designed to investigate various CAE configurations as feature
extractors and evaluate the performance by classifying the source material as either carbon
fiber epoxy (CFE) or glass fiber epoxy (GFE) composites. Carbon and glass fibers are the
most frequently used reinforcements in composites but the description of the classification
capabilities with the use of different unsupervised techniques in the literature is scarce, and
the application of deep features for this purpose has not been yet reported in the literature.
Based on the acquired AE waveforms, deep features were extracted from continuous
wavelet transform (CWT) scalograms using a convolutional autoencoder (CAE). Matrix-
wise standardization was used in the pre-processing stage. To classify extracted AE features
two principal methods were used: decision trees (DTs) and discriminant analysis (DA).

The presented research addresses the challenge of automated AE-based characteriza-
tion of loaded CFE or GFE materials and introduces a novel application of deep learning
using a convolutional autoencoder (CAE) for deep feature extraction from AE signals. The
contributions of this research are in providing the methodology for automated feature
extraction for characterization of loaded FRP materials by using the CAE method, and in
demonstrating the benefits of the proposed approach on a dataset of CFE and GFE samples,
where improved characterization accuracy was shown as significantly higher compared
with the classical approach (using standard AE features).

2. Materials and Methods

Two epoxy-based polymer composites that differed in the type and size of the inlay
fibers were used in the experiments. To evaluate the informativeness of time-frequency-
based deep features, extracted by the means of a novel CAE, the analysis was formulated
as a classification problem, for which another set of features (“standard features”) was used
as a benchmark.

2.1. Experimental Setup

CFE and GFE samples (10 mm width, 4 mm thickness, and 200 mm length), manu-
factured with pultrusion, were used in a 3-point bending test on a reconfigurable Minitec
loading machine. The loading cell has a capacity of 25 kN, the loading speed was set to
0.02 mm/s, and the loading supports were 80 mm apart. The fiber volume fraction of the
composites corresponded to 65% of the overall volume. The average fiber diameters of CFE
and GFE were measured to be 25 µm and 5 µm, respectively. A broadband piezoelectric
AE sensor Steveco KRNBB-PCP12042 (University of California, Steven D. Glaser) with
a frequency bandwidth of 20 kHz to 1000 kHz and resonance piezoelectric AE sensor
VS150-M (Vallen Systeme) were attached, the first with a magnetic holder and the second
with a plastic clamp on each end of the sample, 120 mm apart. A standard coupling agent
(silicon grease) was added to the mounting surfaces. For this research, only the signals
from the broadband sensor were ultimately used. The experimental setup is presented
in Figure 1.
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Figure 1. Experimental setup.

The detected AE signals were amplified in AEP5 preamplifiers with 34 dB gain and
sampled at 5 MHz by storing 4096 points for every hit, using the AMSY-5 AE data acquisi-
tion system. The threshold for signal acquisition of 37 dB was determined using a series
of preliminary Hsu–Nielsen standard tests. A total of 44,688 AE signals, measured by the
broadband sensor, were acquired from bending tests of CFE and GFE and were used for
feature extraction.

2.2. Feature Extraction

Features used in the analysis were extracted from time and frequency domains, which
are often used to classify damage mechanisms in polymer composites. These features are
henceforth referred to as “standard features”, whereas features extracted using CAE are
referred to as “deep features”.

2.2.1. Standard Features

Standard features for the characterization of AE signals were extracted and denoted
as follows:

c1: Peak amplitude (µV) denotes burst signal linear peak amplitude,
c2: Burst signal duration (µs) represents the elapsed time after the first and until the last

threshold crossing of a burst signal,
c3: Burst signal energy (µV2s) according to EN 1330-9 is the integral of the squared

AE-signal over time,
c4: Burst signal rise-time (µs) represents the elapsed time after the first threshold crossing

and until the burst signal maximum amplitude,
c5: Frequency centroid (Hz) denotes the frequency at which the spectrum has its center

of gravity (including only the frequencies and corresponding amplitudes in the range
between 0 and 1000 kHz),

c6: Frequency of the max. amplitude of the spectrum (Hz),
c7: Frequency of the max. amplitude of continuous wavelet transformation (using the

complex Morlet wavelet) (Hz),
c8: Partial power of frequency spectrum between 0 and 200 kHz (/),
c9: Partial power of frequency spectrum between 200 and 400 kHz (/),
c10: Partial power of frequency spectrum between 400 and 1000 kHz (/).

2.2.2. Convolutional Autoencoder and Deep Features

The convolutional autoencoder (CAE) presented in this section is designed to extract
“deep features”. These features are extracted automatically during the CAE training phase.
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Deep features do not have physical meaning but are designed to minimize information
loss of the input-output mapping of the CAE. Deep features (denoted as d1, d2, . . . , d6)
were extracted from continuous wavelet transform (complex Morlet wavelets) scalograms
using a convolutional autoencoder (CAE). Matrix-wise standardization was used in the
pre-processing stage. Training data consisted of 44,598 AE signals, transformed into the
aforementioned scalograms.

The structure of the convolutional autoencoder for deep feature extraction is depicted
in Figure 2. Model input is a 2-D matrix of size 48 × 432, which is, before any compu-
tations, split into four stripes of 12 × 432 matrices. The subsequent layer operations
are performed separately and independently (without parameter sharing) on each of the
stripes. Two convolutional layers (filter dimension 3 × 5, ReLU activation and strides 1,
3) and 2 × 2 max-pooling layers (C+P layers) with a stride of 2 were used. Then, all of the
resulting output feature maps were concatenated back into one merged feature map. A
single convolutional layer (filter dimension 3 × 3, ReLU activation and strides 1, 1) and a
2 × 2 max-pooling layer with a stride of 2 follow. The resulting 2-D feature map is flattened
to 1-D and connected to three fully connected layers—FCL 1, FCL 2, and FCL 3. These
layers complete the CAE’s encoder used to extract deep features after the whole model
(with decoder) has been trained. The number of neurons set in FCL 3 translates to the
dimensionality of the feature vector, which encodes each scalogram as a specific series of
numbers—deep features.
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The second part of the autoencoder (decoder) consists of layers that perform inverse
operations and are also stacked in reverse order compared to those in the encoder. The
carefully chosen input dimensions (scalograms) enable the layer hyperparameters of the
encoder and decoder to be the same, while also fulfilling the model’s input and output
dimension matching requirement. The decoder consists of two fully connected layers
(FCL 4 and FCL 5), a transposed convolution and upsampling layer (TC+U layers), a
feature map splitting layer, two consecutive TC+U layers (in each of the resulting feature
maps), and a final feature map concatenation layer.

Various convolutional autoencoder architectures were designated by selecting the
following configuration parameters:

s1: Number of filters used in layers C+P (1) and TC+U (3),
s2: Number of filters used in layers C+P (2) and TC+U (2),
s3: Number of filters used in layers C+P (3) and TC+U (1),
s4: Number of neurons in fully connected layer FCL 2,
s5: Number of neurons in fully connected layer FCL 3,
s6: Number of training epochs,
s7: Batch size of training samples.

Different CAE configurations are denoted as “s1-s2-s3-s4-s5-s6-s7” and the results
for selected configurations are summarized in the Results section. Model training was
performed on an NVIDIA GPU GeForce GTX 750 Ti, and lasted for each configuration up to
2 h. Configuration parameter s4 has, by far, the greatest impact on the model’s complexity.
The loss function used was squared error and for the optimization algorithm, ADAM [26]
was chosen.

2.3. Classification Methods

Two principal methods were used in this research to classify extracted AE features,
namely decision trees (DTs) and discriminant analysis (DA). DTs already include tools
to evaluate the informativeness of the extracted features. DA represents a simple yet
highly efficient classifier that supports decision boundaries such as linear or quadratic.
The DA method was combined with forward feature selection to provide insight into the
informativeness of various combinations of selected features. The methods are briefly
introduced in the following sections.

2.3.1. Decision Trees

Decision trees (DTs) are commonly used in data mining and classification [27]. DTs are
built by splitting the source data set, constituting the tree’s root node, into subsets, which
comprise the successor children. In these tree structures, leaves represent class labels, and
branches represent conjunctions of features that lead to those class labels. The splitting is
based on a set of splitting rules based on classification features. This process is repeated for
each derived subset recursively until splitting no longer improves the classifications.

2.3.2. Discriminant Analysis

Discriminant analysis (DA) is a classification method used to determine the discrimina-
tion boundaries separating two or more categories of objects [28]. DA assumes that different
categories generate data based on different Gaussian distributions. DA has been shown to
rank among the top classifiers, which is most probably due to the bias−variance trade-off
where the data can only support simple decision boundaries such as linear or quadratic,
and estimates obtained by Gaussian models are stable [29]. In this study, quadratic DA
was applied.

2.4. Research Framework
2.4.1. Objectives

This research aims to evaluate the performance of a deep convolutional autoencoder
(CAE) in providing informative features for the classification and characterization of AE
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signals obtained from fiber epoxy composites. The research was designed to investigate var-
ious CAE configurations as feature extractors and evaluate the performance by classifying
the source material as either carbon fiber epoxy (CFE) or glass fiber epoxy (GFE) composite.

2.4.2. Evaluation Procedure

The classification performance was evaluated by the classification accuracy, which
denotes the percentage of correctly classified samples. The evaluation procedure was
explicitly designed to maintain the robustness of the comparative analysis and compatibility
between applied classifiers. To avoid overfitting, the following strategy was used:

• A maximum of 6 selected features was allowed as inputs for the classifiers.
• Deep feature extraction was performed in various CAE configurations consisting of 4 or

6 neurons in the 3rd fully connected layer (FCL 3), thus providing 4 or 6 deep features.
• For the DT classifier, the number of splits was limited to 15. Without this limita-

tion, even higher accuracy (such as 95%) can be obtained, but the results are subject
to overfitting.

2.4.3. Feature Selection

The DT classifier provides an inherent method for selecting the most informative
features. The DA classifier was combined with a forward feature selection algorithm
which progressively adds relevant features based on their contribution to the classification
accuracy. Thus, the classification results with both methods, DTs and DA, indicate the
relevance of included features and therefore provide a basis for the comparative evaluation
of standard vs. deep features.

3. Results

Figure 3 presents the load-deflection curve with c1 and c3 AE signal features for CFE
and GFE samples. CFE samples achieved, on average, a 15% higher maximum flexural
load with significantly higher sample deflection than GFE samples. The load dropped
sharply after the CFE specimen broke, while in the case of glass fibers that are 5 times
smaller in diameter than carbon fibers, the load after sample breakage gradually decreased
with accompanying fiber breakage. A clear trend of increasing amplitude and energy of AE
signals with increasing load for both types of samples is observed. When the CFE sample
breaks, the highest amplitudes and energies of AE signals are measured, while in the case
of GFE samples, after sample breaking the values of the amplitude and energy remain high.
In the tests, AE signals up to a 10% drop in load after fracture were analyzed.

Deep features were extracted from continuous wavelet transform (complex Morlet
wavelets) scalograms using a convolutional autoencoder (CAE). Different CAE configura-
tions influence deep feature extraction and consequently classification accuracy for DT and
DA classifiers. The results of the investigation of various CAE configurations as feature
extractors and evaluation of the performance of classification for CFE and GFE composites
are summarized in Tables 1–3. The tables are structured as follows:

• The first column presents the architecture of the deep autoencoder that was applied to
generate the corresponding deep features.

• The second and the third column present the selected features, listed in order of
importance, as chosen by DT and DA classifiers.

• The last two columns denote the classification accuracy obtained by DT and DA methods.
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Table 1. Selected standard features in order of importance and corresponding classification accuracy
for DT and DA classifiers.

Deep Autoencoder Selected Features Accuracy (%)

Architecture DT DA DT DA

Not relevant c1, c6, c4, c7, c9, c10 c9, c10, c5, c8 82.4 79.1

Table 2. Selected deep features in order of importance and corresponding classification accuracy for
DT and DA classifiers.

Deep Autoencoder Selected Features Accuracy (%)

Architecture DT DA DT DA

12-24-10-256-6-150-256 d6, d3, d1, d5, d2, d4 d6, d3, d1, d2 88.5 89.3
16-32-14-256-4-150-256 d3, d1, d2, d4 d3, d1, d1, d2 83.2 79.8
16-32-14-256-6-150-256 d2, d1, d4, d5 d2, d1, d4, d5, d6, d3 91.3 91.3

3-6-11-96-4-75-256 d3, d2, d4, d1 d3, d2, d4, d5, d6, d3 84.8 80.3
3-6-12-128-4-75-256 d4, d1, d2, d3 d4, d1, d2, d3, d6, d3 81.7 81.6
6-10-10-96-4-75-256 d4, d1, d3, d2 d1, d4, d3, d3, d6, d3 84.4 82.1

6-12-12-128-4-150-512 d4, d1, d2, d3 d4, d1, d2, d3, d6, d3 89.6 89.7
8-16-10-96-4-75-256 d1, d3, d4, d2 d1, d4, d3, d3, d6, d3 82.7 80.3

8-16-12-128-4-150-512 d1, d2, d3, d4 d1, d2, d3, d4, d6, d3 86.4 87.2

Table 3. Selected combined standard and deep features in order of importance and corresponding
classification accuracy for DT and DA classifiers.

Deep Autoencoder Selected Features Accuracy (%)

Architecture DT DA DT DA

12-24-10-256-6-150-256 d6, d3, c4, c1, c6, c3 d6, d3, d1, c5, c10, c8 89.0 91.0
16-32-14-256-4-150-256 d3, c5, c4, c1, c10, d1 d3, c10, c5, d1, c9, c8 86.4 85.3
16-32-14-256-6-150-256 d2, d1, d4, c4, c1, c3 d2, d1, d4, c10, c5, c8 91.4 91.8

3-6-11-96-4-75-256 d3, c5, c4, c6, c1, d4 d3, c5, c10, c9, c8, d1 85.9 87.6
3-6-12-128-4-75-256 d4, c6, c5, d2, c4, d1 d4, c5, c10, d2, c8, d1 85.5 87.9
6-10-10-96-4-75-256 d4, d1, c5, c1, d3, c4 c9, d3, c8, c10, c5, d4 84.4 86.4

6-12-12-128-4-150-512 d4, d1, c6, c5, c4, c1 d4, d1, c5, c10, d2, c8 89.5 91.5
8-16-10-96-4-75-256 d1, c4, c1, d3, c6, c3 d1, d4, c10, c5, d3, c8 85.0 87.4

8-16-12-128-4-150-512 d1, c6, c4, c1, c10, c5 d1, c5, c10, d4, d3, c8 88.1 88.3

Table 1 shows the results of applying only standard features. In this case, the accuracy
measures around 80% were obtained by both classifiers. Table 1 reveals differences in the
selection of relevant features, which are due to different partitioning strategies of DT and
DA classifiers, and it also indicates the absence of highly relevant features that would be
simultaneously selected by both classifiers.

Table 2 shows results obtained using only deep features. These results are signifi-
cantly better compared to those shown in Table 1. Comparative analysis also indicates
good consistency of feature selection by both classifiers, which denotes good predictive
power of selected deep features. In this case, the best accuracy of 91.3% was obtained by
both classifiers.

Table 3 presents results where both feature sets (standard and deep features) were
available as classifier inputs. This case reveals only slight improvement compared to Table 2,
which means that deep features already accurately represent the information relevant for
the defined classification task.

Figure 4 shows the classification accuracies for all three feature sets and both classifiers.
Deep and combined features provide a similar result that significantly outperforms the
result obtained using only standard features.
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Figure 5 presents feature importance estimates as provided by the DT classifier in the
case of combined features (Table 3, the third autoencoder architecture: 16-32-14-256-6-150-
256). It can be observed that the first three features (the most important ones) belong to the
deep features set.
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Figure 5. Importance estimates for combined features, as provided by the DT classifier.

Figure 6 illustrates the representation of CFG and GFC samples in the space of the two
most relevant features, namely d1 and d2. This result is only illustrative, as the classification
in this study was performed in the space of more features (6 features, or 4 features in the
case of restricted autoencoders with only 4 middle layer units).
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Discussion

The presented results indicate the good potential of introducing deep learning methods
into the AE-based characterization of loaded materials. The proposed approach addresses
the need for automated AE-based feature extraction, where the informative features are
automatically extracted through the learning procedure of a convolutional autoencoder.

Although this step adequately fulfills the automation of feature extraction, it also
opens new challenges of properly designing the CAE to consistently obtain good and
repeatable feature extraction results. As shown in Tables 2 and 3, different CAE architectures
and corresponding selection of hyperparameters influence the results. Therefore, further
research will be needed to establish guidelines for efficient and robust extraction of deep
features that maximize the information content of the input information (e.g., wavelet
transform scalograms) that is relevant for material deformation characterization.

4. Conclusions

The research was focused on the evaluation of the performance of a deep convolutional
autoencoder (CAE) in providing informative features for the classification and characteriza-
tion of AE signals obtained from stressing CFE and GFE fiber epoxy composites. Important
conclusions can be summarized as follows:

1. The analysis of the acquired AE signals based on standard features with decision trees
(DTs) and discriminant analysis (DA) classification methods offers accuracy measures
of around 80% to classify the signals according to the source specimen, whether it is
CFE or GFE.

2. The classification accuracy can be significantly increased if deep features, extracted
from the proposed convolutional autoencoder, are used instead of standard features.
In this case, the classification accuracy of 91.3% has been obtained by both classifiers.
Comparative analysis also indicates good consistency of deep feature selection by
both classifiers.

3. The use of both feature sets (standard and deep features) reveals only a slight im-
provement in accuracy measures compared to the use of deep features only. This
proves that deep features already accurately represent the information relevant for
the defined classification task.
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The results of the proposed structural health monitoring approach show that the
introduction of deep learning features has a significantly higher potential for the effective
characterization of damage mechanisms in fiber-reinforced polymer (FRP) composites in
comparison with the use of standard AE features broadly used in the AE testing practice.

The potential practical applications of the proposed approach are foreseen in the field
of AE-based characterization of loaded materials, where improved characterization of
structural health monitoring and detection of damage mechanisms are expected due to
the application of deep features. Another practical benefit is expected also in possible
automation of the feature extraction and feature selection procedures because the CAE
method automatically provides the condensed feature set (i.e., deep features) that can be
directly applied for the material characterization without additional signal processing.

Future research directions will focus on the examination of various modified CAE
architectures and their hyperparameters, and also on the optimization of the CAE training
procedures with respect to robustness, stability, efficiency, and informativeness of the
extracted features. Further research is foreseen also in the experimental characterization
of different materials and mixed structures to examine the efficiency and applicability of
deep features for structural health monitoring of damage modes and early detection of
product failures.
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