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Abstract: The Intra-Voxel Incoherent Motion (IVIM) model allows to estimate water diffusion and
perfusion-related coefficients in biological tissues using diffusion weighted MR images. Among the
available approaches to fit the IVIM bi-exponential decay, a segmented Bayesian algorithm with
a Conditional Auto-Regressive (CAR) prior spatial regularization has been recently proposed to
produce more reliable coefficient estimation. However, the CAR spatial regularization can generate
inaccurate coefficient estimation, especially at the interfaces between different tissues. To overcome
this problem, the segmented CAR model was coupled in this work with a k-means clustering
approach, to separate different tissues and exclude voxels from other regions in the CAR prior
specification. The proposed approach was compared with the original Bayesian CAR method without
clustering and with a state-of-the-art Bayesian approach without CAR. The approaches were tested
and compared on simulated images by calculating the estimation error and the coefficient of variation
(CV). Furthermore, the proposed method was applied to some illustrative real images of oncologic
patients. On simulated images, the proposed innovation reduced the average error of 47%, 21% and
58% for D, f and D∗, respectively, compared to the state-of-the-art Bayesian approach, and of 48%
and 34% for D and f , respectively, compared to the original CAR, while it achieved the same error
for D∗. The clustering approach was also able to consistently reduce the CV for each coefficient. On
real images, the novel approach did not alter the IVIM maps obtained by the original CAR method,
with the advantage of reducing their typical blotchy appearance at the boundaries. The proposed
approach represents a valuable improvement over the state-of-the-art Bayesian CAR method and
provides more reliable IVIM coefficient estimation, and is less sensitive to bias and inconsistency at
tissue/tissue and tissue/background interfaces.

Keywords: DW-MRI; IVIM; Bayesian conditional auto-regressive; k-means clustering

1. Introduction

Intravoxel Incoherent Motion (IVIM) Magnetic Resonance Imaging (MRI) is a type
of Diffusion-Weighted MRI (DW-MRI) acquisition, firstly proposed by Le Bihan et al. [1],
for estimating diffusion and perfusion tissue properties. In the IVIM mathematical rep-
resentation, a bi-exponential function of the diffusion signal decay at different b-values
is used to simultaneously characterize tissue diffusivity and perfusion within capillaries.
Specifically, the IVIM model allows us to estimate the diffusion (D) and pseudo-diffusion
coefficients (D∗), along with the perfusion volume fraction ( f ) within the tissue.

IVIM has gained particular interest in oncologic applications, especially in the last
decade, thanks to the advancements in MRI hardware, pulse design and post-processing
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methods [2]. In fact, recent works have proposed the adoption of the IVIM model to
improve tumor diagnosis [3], prognosis [4] and response to treatment [5]. Furthermore,
IVIM has also been used to characterize radiation-induced modifications in normal tissues
after radiotherapy [6]. Nevertheless, the use of the IVIM technique is not confined to oncol-
ogy, but it has significant potential in clinical and preclinical applications for neurological
diseases [7] and other physio-pathological conditions [8,9].

However, IVIM coefficient estimation presents several issues related to the presence
of noise over the image, the correct model identification and the amount of tissue perfu-
sion [10]. Currently, the most popular techniques to fit IVIM data are (i) the non-linear
least-square (LSQ) fitting, based on the Levenberg–Marquardt algorithm [11], and (ii) the
Bayesian approach, which provides the posterior probability densities of the coefficients
based on prior knowledge [12].

The Bayesian method showed superior performance in reducing errors and variabil-
ity [12], and also allowed the inclusion of a spatial dependence between voxels, to obtain
more regular maps. This is the case of the spatial homogeneity prior [13] and the Condi-
tional Auto-Regressive (CAR) prior specification, which takes into account information
from the neighbor voxels [14,15]. In particular, it was reported that the CAR specification
on a segmented Bayesian method improved the estimation accuracy compared to both
LSQ and traditional Bayes approaches, especially for D∗ [15]; however, a limitation of the
CAR method lies in the choice of the neighborhood, as it attributes the same weight to all
surrounding voxels without considering the continuity of the structure. This leads to a
slight decrease in the quality of the IVIM coefficient maps, especially at the tissue/tissue
and tissue/background interfaces, characterized by a blotchy appearance.

The goal of this work was to overcome this limitation by coupling the CAR prior
with a k-means clustering approach, which distinguishes the different structures based
on the diffusion signal decay along the b-values, and uses this information to set dif-
ferent weights to the contributions of the different neighbor voxels. This technological
improvement was aimed to obtain more regular and reliable IVIM parametric maps. The
voxel-based estimation of IVIM coefficients can be used in the clinical practice for the char-
acterization of microstructural properties of diffusion and perfusion within subregions of
organs/structures. This information can be useful, for example, to define prediction models
for treatment response in oncology or to assess changes occurring in physiological and
pathological conditions in different applications; therefore, the availability of high quality
and accurate maps represents a paramount condition in clinical practice and improved
quality maps may have, prospectively, an impact on the quality of care

The proposed method was compared to the original CAR approach and a state-of-the-
art Bayesian algorithm in terms of accuracy and map homogeneity. First, it was applied to
a set of simulated phantoms for which the true value of the IVIM coefficients was known.
Then, it was applied to some illustrative real images of oncologic patients, to evaluate the
estimated maps in a real clinical scenario.

2. Materials and Methods
2.1. IVIM Fitting Procedure

The decay of the signal intensity SI(i, j, b) in function of b is described in any voxel
(i, j) by a bi-exponential function, according to the IVIM model [16]:

SI(i, j, b) = SI(i, j, 0)
{

f (i, j)e−b [D(i,j)+D∗(i,j)] + [1− f (i, j)]e−b D(i,j)
}

(1)

where D(i, j), D∗(i, j) and f (i, j) are the diffusion coefficient, the pseudo-diffusion coeffi-
cient and the perfusion volume fraction in voxel (i, j), respectively. The goal of the fitting is
to estimate these three coefficients in each voxel (i, j) of a region of interest, based on a set
of signal intensity observations SIobs

ijb in an image domain I at different b-values.
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2.1.1. Clustering Approach

In the proposed approach, a clustering technique is employed to determine the cluster
Cij associated with each voxel (i, j) ∈ I . Then, a Bayesian CAR fitting is performed, where
the CAR prior specification depends on the clustering solution

{
Cij, (i, j) ∈ I

}
.

The k-means clustering approach is chosen for its simplicity and low computational
cost, and because it is one of the most widely adopted clustering methods for medical
image segmentation. It is employed by assuming as the distance between any pair of
voxels the L1 distance between the vectors of their signal intensities over b ∈ B. Moreover,
the number of clusters NC is set equal to 9, which is reasonable from a theoretical viewpoint,
as it represents the combinations of two levels (low or high) for the three coefficients to
be estimated plus an additional case for the background (23 + 1 = 9); therefore, it gives
enough flexibility to recognize these macroscopically different behaviors.

The results of the clustering procedure is the cluster Cij ∈ [1, NC ] of each voxel (i, j) ∈ I ,
where all voxels belonging to the same cluster have the same Cij value.

The clustering was implemented in MATLAB (R2020a, The MathWorks Inc., Natick,
MA, USA), with the function “kmeans”, imposing 50 replicates with alternative initial
cluster centroid positions.

2.1.2. Bayesian CAR Fitting

This fitting procedure is taken from [15], where a segmented approach was considered
by dividing the estimation procedure in two steps.

In the first step, the coefficients D(i, j) and f̃ (i, j), where f̃ denotes an intermediate
estimation of f , are estimated with the observations at b = 0 and b ∈ B : b ≥ b̂, with
b̂ = 200 s/mm2. A simplified version of the IVIM model is used, which only includes the
second exponential decay:

SI(i, j, b) = SI(i, j, 0)
[
1− f̃ (i, j)

]
e−b D(i,j) ∀ (i, j) ∈ I , b ∈ B : b ≥ b̂ (2)

In the second step, the coefficients D∗(i, j) and f (i, j) are estimated using all observa-
tions b ∈ B. The complete IVIM model (1) is used while fixing coefficients D(i, j) to the
values estimated in the first step (the expected value of the marginal posterior density).

To perform the Bayesian fitting, (2) and (1) are processed to derive the likelihood
function for the first and second step, respectively, as reported in the Supplementary
Materials. This likelihood also depends on an additional parameter to be estimated, i.e., the
standard deviation σlik of the conditioned densities that determine it.

Then, a prior density for the unknown parameter is assumed. A priori independence
between σlik, each D(i, j) and each f̃ (i, j) is assumed for the first step, and between σlik,
each D∗(i, j) and each f (i, j) for the second step.

Separately for each λ (where λ generically denotes each coefficient D, D∗, f or f̃ ),
a CAR specification is included in the prior by considering the intrinsic CAR formulation
of Leroux et al. [17]. More specifically, the following distribution for a coefficient in a voxel
given the values in the other voxels is taken:

λ(i, j)|λc
i,j ∼ N


∑

(α,β)∈I
wα,β

i,j λ(α, β)

∑
(α,β)∈I

wα,β
i,j

,
σ2

λ

∑
(α,β)∈I

wα,β
i,j

 (3)

where λc
i,j = λ \ {λ(i, j)}, and wα,β

i,j denotes the spatial neighborhood matrix.

We assume a dependency (wα,β
i,j 6= 0) only for the voxels (α, β) bordering on (i, j). Their

values are assigned based on the clustering solution
{
Cij, (i, j) ∈ I

}
. In particular, wα,β

i,j = 1
if the bordering voxel (α, β) belongs to the same cluster of voxel (i, j) (i.e., Cαβ = Cij),
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or wα,β
i,j = 0.1 if the bordering voxel (α, β) does not belong to the same cluster of voxel (i, j)

(i.e., Cαβ 6= Cij); therefore:

wα,β
i,j =



1 (α, β) = {(i− 1, j− 1), (i− 1, j), (i− 1, j + 1),
(i, j− 1), (i, j + 1), (i + 1, j− 1),
(i + 1, j), (i + 1, j + 1)}

and Cαβ = Cij

0.1 (α, β) = {(i− 1, j− 1), (i− 1, j), (i− 1, j + 1),
(i, j− 1), (i, j + 1), (i + 1, j− 1),
(i + 1, j), (i + 1, j + 1)}

and Cαβ 6= Cij

0 otherwise

(4)

In addition, to smooth the autoregressive component, the actual prior density of each
λ consists of a mixture model with two components: the above conditional autoregressive
specification (3) and a truncated Gaussian marginal density N(λmin ,λmax)

(
µλ, σ2

0λ

)
, where

λmin and λmax denote the minimum and maximum admissible values, respectively. There-
fore, the overall prior for each coefficient λ is a mixture between (3) and the Gaussian
component, with weight 0.75 for the CAR specification (3) and weight 0.25 for the Gaussian
component. The hyperparameters are detailed in Section 1 of the Supplementary Materials.

Finally, the prior of the standard deviation parameter σlik is an independent Gamma

density to respect its positivity, i.e., σlik ∼ Gamma
(

∑(i,j)∈I SIobs
ij0

2 |I| , 1
)

. The scale parameter is

set equal to 1 to give a large density, while the mean value is set to half of the average SIobs
ij0

over (α, β) ∈ I .
The approach was coded in R with package STAN [18], which directly provides the

posterior marginal densities of each parameter.
The whole procedure is sketched in Figure 1. The clustering processes the signal

intensity SI(i, j) to determine the clusters Cij, which are used in the next steps to estimate
the weights in the CAR prior specification. The input of both steps of the Bayesian CAR
fitting are thus the output of the clustering, together with the signal intensity SI(i, j) itself.
The first step produces the coefficients D(i, j) and f̃ (i, j), which are passed as input to the
second step. The second step produces the coefficients D∗(i, j) and f (i, j).

Figure 1. Block diagram of the IVIM fitting procedure with clustering.

2.2. Evaluation
2.2.1. Simulated Data

We applied our method on simulated DW-MRI signals with different noise levels to
test the performance of the proposed approach. To increase the complexity of the simu-
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lated dataset, a Shepp–Logan phantom (matrix size 64× 64) with three regions of interest
(ROIs) along with background noise was used as a template for our simulations. Each
ROI was characterized by an IVIM coefficient triplet randomly generated from uniform
distributions and a specific intensity at b = 0. More specifically, D was sampled in the inter-
val

[
0.0005 mm2

s , 0.002 mm2

s

]
, D∗ in the interval

[
0.005 mm2

s , 0.1 mm2

s

]
and f in the interval

[0.025, 0.4], which include typical values of tumor and normal tissues. Images were gener-
ated using (1) for two different b-values sets, i.e.,

{
0, 25, 50, 75, 100, 150, 300, 500, 800 s

mm2

}
and

{
0, 25, 50, 75, 100, 300, 600, 1000 s

mm2

}
.

Rician noise was finally added to create the final DW-MRI images with different Signal-
to-Noise Ratios (SNRs), equal to 10, 25, 50, 100, 150 and 200. Five numerical phantoms for
each combination of b-value set and SNR were generated, for a total of 60 simulated cases.

Numerical phantoms were generated using a MATLAB custom-made script.

2.2.2. Real Data

DW-MRI images of five Head-and-Neck (HN) patients affected by oropharyngeal
tumor (three males and two females) and four pelvic patients affected by rectal tumor
(two males and two females) were considered as examples of IVIM acquisitions for tumor
diagnosis. They were collected from retrospective studies approved by the local ethics
committee and already published in previous works [14,15,19].

DW-MRI images were acquired using a 1.5 T system (Optima MR 450w, GE Healthcare,
Milwaukee, WI, USA) and obtained by single-shot spin-echo echo-planar imaging with:
acquisition matrix equal to 128× 128; in-plane resolution equal to 1.094 × 1.094 mm2;
TR/TE equal to 4500 ms/72 ms for HN and 3500 ms/77 ms for pelvis; slice thickness equal
to 4 mm for HN and 5 mm for pelvis; same b-values as in the simulated images. The
estimated average SNR of the acquired images was equal to 80 and 50 for the HN and
pelvis, respectively; in this way, we were able to test the performance of the methods at
different SNR values also in the real setting.

Three different tissues were considered in the two datasets: masticatory muscle,
parotid gland and tumor for HN; internal obturator muscle, prostate and rectal tumor for
pelvis. An average of 4–5 slices containing the three structures of interest were selected for
each patient, excluding basal and apical slices to avoid partial volume effects, for a total of
39 two-dimensional images (21 for HN and 18 for pelvis). In the two female pelvic patients,
one structure (the prostate) was not considered.

2.2.3. Comparison with State-of-the-Art Methods

Maps estimated with the proposed approach were compared to the CAR approach
without clustering, already published in [15], and to a state-of-the-art Bayesian approach
without spatial regularization [20]. As for the CAR without clustering, it follows the descrip-
tion reported in Section 2.1.2 but neglecting the clustering solution. Indeed, the weights
wα,β

i,j of the CAR prior specification are set equal to 1 for all voxels (α, β) bordering on (i, j),
and 0 for the others:

wα,β
i,j =



1 (α, β) = {(i− 1, j− 1), (i− 1, j), (i− 1, j + 1),
(i, j− 1), (i, j + 1), (i + 1, j− 1),
(i + 1, j), (i + 1, j + 1)}

0 otherwise

(5)

As for the standard Bayesian approach, we adopted the implementation provided by
Gustafsson et al. [20], considering the default priors and the hyperparameters proposed
by the authors. The IVIM signal was fitted using the bi-exponential decay in (1) and
considering the whole set of b-values. The three IVIM coefficients and each signal SI(i, j, 0)
at b = 0 were estimated under the following priors [20]: a uniform prior for f and each
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SI(i, j, 0); a lognormal prior for D and D∗. Moreover, all prior distributions were truncated
to the following intervals:

[
0, 3 · 10−3 mm2

s

]
for D;

[
0, 0.15 mm2

s

]
for D∗; [0, 1] for f ; [0, 1]

for SI(i, j, 0) being the simulated images in this range. The parameter estimates were given
in terms of the mean value from the respective marginalized posterior distribution.

Following the procedures already adopted in previous works [10,14,15], the accuracy
of each method on simulated images was evaluated in a voxel in terms of the error with
respect to the true value:

ε =
λest − λtrue

λtrue
(6)

where λest is the estimated value of the coefficient and λtrue the corresponding true value.
The median of the errors over the voxels of a ROI was finally calculated for each coefficient.

Moreover, the noisiness of the map was evaluated in terms of the coefficient of variation
(CV), calculated as the ratio between the standard deviation StD(λest) and the mean value
Mean(λest) of the estimated coefficients in a ROI with constant λtrue:

CV =
StD(λest)

Mean(λest)
(7)

The average value of the CV over the ROIs was then considered.
A statistical analysis was performed to evaluate the differences among the three ap-

proaches. A Kruskal–Wallis test was applied to ε and CV estimated with the three methods
for each SNR value, in order to identify significant differences among groups. For those
groups presenting significant differences, a Tuckey post hoc test was next performed to
determine which couples were significant. Significance was set to p < 0.05, and Bonferroni
correction for multiple comparisons was applied.

IVIM maps estimated on real cases were qualitatively evaluated and mean values of
IVIM coefficients were calculated within each structure.

3. Results
3.1. Simulated Data

The qualitative comparison of the estimated maps among the three different methods
revealed that the CAR clustering approach was able to improve their quality with respect
to the Bayesian CAR method without clustering and the state-of-the-art Bayesian approach
without CAR (Figure 2).

The Bayesian estimation without CAR generated maps with high contrast between
different structures, but maintained a certain level of noise throughout the image, especially
at low SNR values. On the contrary, the CAR approach without clustering was able to
generate homogeneous values within the ROIs, but at the same time it lost the boundaries
between the regions and introduced blurring and blotchy artifacts, especially at low SNR
values and for D∗. Instead, the proposed approach with clustering better highlighted the
contrast between structures at the interfaces, and preserved a high homogeneity within the
regions; therefore, it retained the advantages of both other methods.

The error ε maps reported in Figure 3 make it evident that the high errors at the
boundaries of the structures in the CAR maps were almost completely eliminated with the
clustering approach, especially for high SNR values. In addition, it can be seen from the
maps that, in both CAR approaches, ε values were highly dependent on the IVIM coefficient
values (i.e., some specific triplets were more difficult to be estimated), whilst the Bayesian
method without CAR seemed less dependent. In particular, it showed for D the same error
level throughout the whole image.
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Figure 2. Parametric maps of D (a), f (b) and D∗ (c), estimated from a simulated image using the
three methods (columns) at different SNR values (rows). The true maps are also reported in the top
left corner.

Figure 4 shows for each SNR the barplots of ε and CV averaged on the simulated
images with the corresponding significance, while the detailed results for each specific
simulation are reported in the Supplementary Materials Tables S1–S4. Similar trends of ε
and CV can be observed for the three methods, with higher values at low SNR that decrease
at high SNR, as expected. The accuracy was generally higher under the proposed approach
with clustering as regards the estimation of D and f : ε on D presented an averaged
reduction of 46% compared to the other approaches, which was significant for SNR = 10,
SNR = 100 and SNR = 200; ε on f reduced of 21% compared to the Bayesian approach
without CAR and of 34% compared to the CAR without clustering, although this was not
statistically significant. As for D∗, similar errors were obtained for both CAR approaches,
lower than for Bayesian approach without CAR (non-significant reduction of about 58%).
CV was always the lowest for the proposed approach with the clustering, for each IVIM
coefficient and SNR value. Specifically, the introduction of clustering reduced the CV of
about 25–55% compared to traditional Bayes, and of about 30% compared to the original
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CAR approach. Furthermore, for D∗ maps at low SNR, the two CAR approaches presented
similar CVs, and a significant reduction was found only between the original Bayesian
approach without CAR and the CAR with clustering. On the contrary, for high SNR
the original CAR without clustering and the traditional Bayesian approach were almost
comparable, whilst the introduction of clustering significantly reduced the CV compared to
both of them; therefore, the CAR with clustering was able to improve not only the quality
of the maps, especially on the boundaries of the structures, but also the estimation of the
IVIM coefficients with respect to the other methods.

Figure 3. Error ε maps of D (a), f (b), D∗ (c), computed from a simulated image using the three
methods (columns) at different SNR values (rows).

3.2. Real Data

The IVIM maps estimated on an illustrative slice of a HN and a pelvic patient using
the three different methods are shown in Figure 5 and Figure 6, respectively. The maps
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estimated with the clustering were almost similar to those estimated with the CAR method
without clustering. The most relevant differences lie in the more defined boundaries of
contrasted structures (e.g., the external boundary in the HN case, and the bladder wall and
cortical bone of the femoral head in the pelvic case) and in the reduced blurred effects.

Figure 4. Error ε (first row) and CV (second row) for the simulated images: values for D (first col-
umn), f (second column) and D∗ (third column). Significant differences are indicated by * (p < 0.05)
and ** (p < 0.001).

D, f and D∗ values estimated by the three methods and averaged over the HN and
the pelvic patients are reported in Table 1. As expected, the variations between the original
CAR and that with clustering were limited, whilst the Bayesian approach without clustering
showed different values, especially for D∗.

Figure 5. Parametric maps of D (first row), f (second row) and D∗ (third row), estimated from a
selected slice of a HN patient using the three methods (columns). The tumor, the parotid gland
and the masticatory muscle are delineated in red, green and blue, respectively. Red arrows indicate
improvement in boundary definition, yellow arrows indicate reduced blurred effects.
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Figure 6. Parametric maps of D (first row), f (second row) and D∗ (third row), estimated from a
selected slice of a pelvic patient using the three methods (columns). The tumor, the prostate and the
internal obturator muscle are delineated in red, green and blue, respectively. Red arrows indicate
improvement in boundary definition, yellow arrows indicate reduced blurred effects.

Table 1. Values of D, f and D∗ estimated from the real images in each structure of interest by the
three methods, reported in terms of mean and standard deviation over the subjects.

HN Patients D [mm2/s] f D* [mm2/s]
Mean StD Mean StD Mean StD

BAYES 0.0010 0.0003 0.1975 0.1275 0.0318 0.0168
CAR-cluster 0.0011 0.0004 0.1974 0.1127 0.0378 0.0298Parotid
CAR-orig 0.0011 0.0004 0.1957 0.1084 0.0379 0.0286
BAYES 0.0009 0.0002 0.1600 0.0856 0.0292 0.0126
CAR-cluster 0.0009 0.0003 0.1679 0.0843 0.0424 0.0305Tumor
CAR-orig 0.0009 0.0003 0.1666 0.0824 0.0421 0.0309
BAYES 0.0013 0.0003 0.2094 0.1054 0.0259 0.0113
CAR-cluster 0.0014 0.0004 0.1771 0.0930 0.0332 0.0184Muscle
CAR-orig 0.0015 0.0004 0.1747 0.0871 0.0347 0.0189

PELVIC patients
BAYES 0.0012 0.0002 0.1614 0.0740 0.0192 0.0090
CAR-cluster 0.0013 0.0002 0.1456 0.0481 0.0136 0.0081Prostate
CAR-orig 0.0013 0.0002 0.1498 0.0445 0.0116 0.0046
BAYES 0.0010 0.0003 0.1711 0.0969 0.0242 0.0118
CAR-cluster 0.0010 0.0004 0.1856 0.1114 0.0189 0.0161Tumor
CAR-orig 0.0010 0.0004 0.1838 0.1092 0.0189 0.0159
BAYES 0.0011 0.0002 0.1606 0.0754 0.0231 0.0091
CAR-cluster 0.0012 0.0002 0.1488 0.0474 0.0155 0.0046Muscle
CAR-orig 0.0012 0.0002 0.1473 0.0407 0.0160 0.0043

4. Discussion and Conclusions

In this work, we have proposed an improvement to the Bayesian CAR fitting of the
IVIM model [15] by embedding a k-means clustering procedure to specify the weights in
the CAR prior specification. The aim was to improve the estimation of the parametric maps
for the IVIM coefficients. In fact, in the previous work [15], it was highlighted that the main
limitation of the CAR approach was in the way the neighbor voxels were considered in
the fitting procedure, since all the eight surrounding voxels were included with the same
weight, thus neglecting the heterogeneity of the surrounding tissues.

The simplest solution to this issue from a theoretical point of view is to also estimate
all weights of all voxels by means of the Bayesian approach; however, this approach
proved to be ineffective due to the huge number of parameters to be estimated and the
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too high computational effort. In fact, this is not pursued in the literature, while only
examples are available in other applications in which the weight of the CAR component is
tuned as a whole without distinguishing the contributions of the specific elements in the
neighborhood [21].

To overcome this issue, the weights have been provided by embedding a k-means
clustering approach in the procedure, based on a distance function that considers the
whole set of images at different b-values. This allows us to group the voxels with similar
exponential decay and to give them higher weights. It is worth noticing that a simpler
clustering approach based only on the anatomical information brought by the image at
b = 0 was not sufficient to reduce the blurring effects, since it is not able to capture tissue-
specific differences in the diffusion signal decay. This also shows that a manual clustering
is rather impossible for this problem, as it should require to analyze “as a whole” the entire
set of images at different b-values, which is a very difficult task for a human operator. In
fact, no work in the literature considers this manual procedure on diffusion signal dynamic.

As the k-means requires to enter the number NC of clusters as input, we performed
a preliminary sensitivity analysis on a subset of data. We found that the clusters usually
remain quite invariant within the region of interest, while additional clusters are identified
in the background. In the real images, we also found that for NC > 9 different clusters Cij
are assigned to voxels in regions disjoint from each other, which belong to the same cluster
for NC = 9, while the shape of the connected regions in the clusters does not change. Since
the CAR prior is not affected by this difference, we have chosen to limit the number of
clusters to 9. On the contrary, on real images, a lower number of clusters may not be able to
satisfactorily reduce the blotchy effect produced by the original CAR approach.

Results on simulated data have confirmed that the improved approached based on the
clustering is able to face the CAR limitations, showing less noisy IVIM maps and sharper
boundaries definition at the interfaces between structures, associated with reduced errors at
the boundaries. In addition, comparable results were obtained from simulations generated
at different b-values, considering both HN and pelvic setups.

The application to some illustrative real oncologic cases has highlighted that the
introduction of the clustering did not alter the IVIM maps estimation obtained by the
original CAR method, with the advantage of reducing the typical blotchy appearance at
the boundaries, which usually affects the CAR approach, especially at low SNRs and for
the estimation of D∗.

The proposed method was able to generate IVIM maps with lower errors and higher
quality compared to the original CAR and also to the standard Bayesian approach. Com-
pared to other approaches that adopted a spatial homogeneity prior [13], the results with
the CAR approach were similar in terms of map quality and accuracy, as already discussed
in [15]. Even if a fair direct quantitative comparison between these works is not possible, it
seems that the introduction of clusters in the CAR prior may give more regularized maps
than those presented in [13], at least for simulated images.

Recently, approaches based on deep neural networks (DNNs) have been introduced to
estimate IVIM parametric maps [22–24]. In these works, it was reported a higher quality
of the maps compared to those estimated using traditional least squared and Bayesian
methods. Specifically, Kaandorp et al. [23] stated that an optimized DNN can improve
IVIM estimation for tissues with low perfusion and on images with low SNR, and generate
less noisy maps with more robust estimation over neighbor voxels. In our work, we have
not compared our method with DNN-based approaches; however, we are confident that
our results are in line with those reported in [22–24]. In fact, thanks to the introduction of a
spatial dependency through the CAR prior specification, the continuity between adjacent
voxels that share the same diffusion and perfusion properties was guaranteed. Furthermore,
our estimation accuracy was high even at very low SNR, probably comparable with that
obtained by DNNs (a direct comparison is not possible, as different setups and simulations
were adopted).
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The major limitation of the proposed method is that, although the clustering approach
is computationally efficient, the overall approach suffers from high computational load and
time because of the Bayesian estimation. Compared to the previously proposed CAR [15],
the computational time is not increased by the presence of different weights, but it is
anyway high. A further limitation lies in the reduced number of b-values samplings that
were considered in the tests. Though, in our results, the performance improvement seemed
independent of the b-values, a future work might be focused on evaluating the impact
of b-values choice on the performance. Finally, the proposed method was evaluated on a
limited number of real cases, looking only at two body districts and at a reduced number
of structures; therefore, its application to a larger dataset would allow a better evaluation
of its impact from a clinical perspective.

In conclusion, this paper described a novel IVIM fitting approach, based on embedding
the k-means clustering approach in the Bayesian CAR method. The proposed method
provided more accurate and robust parametric maps with respect to traditional voxelwise
approaches, even at the tissue/tissue and tissue/background interfaces. The tool was
proven to be effective in both simulated and real cases, and represents a valuable alternative
to fit the bi-exponential IVIM model in biomedical applications.
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Table S3: CV for each simulated image at SNR10, SNR25 and SNR50 using the three different methods.
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