Identification and Temporal Characteristics of Earthquake Clusters in Selected Areas in Greece
Abstract
:1. Introduction
2. MAP-DBSCAN Method
2.1. MAP as a Tool for the Detection of Seismicity Rate Changes
2.2. Temporal Constraints
2.3. DBSCAN Algorithm
2.4. Performance Evaluation
2.4.1. ETAS Framework
- the productivity law, , which gives the number of aftershocks triggered by a main shock with magnitude ;
- the modified Omori law, , with , which describes the temporal decay of aftershocks;
- the spatial distribution of aftershocks, with , and , which assumes an isotropic distribution of aftershocks around the main shock.
2.4.2. Simulation Procedure
2.4.3. Evaluation
3. Earthquake Data
4. Results
4.1. Triggered and Background Seismicity Separation
4.2. Cluster Analysis
4.2.1. Corinth Gulf Area
4.2.2. Central Ionian Islands Area
4.2.3. North Aegean Sea Area
4.3. Regional Variability of Clustering Properties
4.4. Sequence-Specific Clustering Properties
4.4.1. Corinth Gulf
4.4.2. Central Ionian Islands
4.4.3. North Aegean Sea
5. Discussion
6. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
Appendix B
Appendix B.1. Gardner and Knopoff Window-Based Method
Appendix B.2. Reasenberg Linked-Based Method
PS | ||||||
---|---|---|---|---|---|---|
RB1 | 1 | 10 | 0.95 | 0.5 | 2.5 | 10 |
RB2 | 1 | 10 | 0.95 | 0.5 | 2.5 | 20 |
RB3 | 0.5 | 20 | 0.95 | 0.5 | 2.5 | 20 |
Appendix B.3. Nearest-Neighbor Method
Appendix B.4. MAP-DBSCAN Method
PS | T | PS | T | ||||
---|---|---|---|---|---|---|---|
[2.5 5 7.5 10 12.5] | 2 | 1–5 | 0 | 0 | 16–20 | 0 | 7 |
6–10 | 7 | 0 | 21–25 | 7 | 7 | ||
11–15 | 14 | 0 | 26–30 | 14 | 7 |
Appendix C
T | T | ||||||
---|---|---|---|---|---|---|---|
[2.5 5 7.5 10] | 4 | 1 | 0 | 0 | 3 | 0 | 5 |
2 | 5 | 0 | 4 | 5 | 5 |
References
- Ross, Z.E.; Trugman, D.T.; Hauksson, E.; Shearer, P.M. Searching for hidden earthquakes in Southern California. Science 2019, 364, 767–771. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Omi, T.; Ogata, Y.; Hirata, Y.; Aihara, K. Intermediate-term forecasting of aftershocks from an early aftershock sequence: Bayesian and ensemble forecasting approaches. J. Geophys. Res. 2015, 120, 2561–2578. [Google Scholar] [CrossRef]
- Page, M.T.; Van Der Elst, N.; Hardebeck, J.; Felzer, K.; Michael, A.J. Three ingredients for improved global aftershock forecasts: Tectonic region, time-dependent catalog incompleteness, and intersequence variability. Bull. Seism. Soc. Am. 2016, 106, 2290–2301. [Google Scholar] [CrossRef]
- Petersen, G.; Niemz, P.; Cesca, S.; Mouslopoulou, V.; Bocchini, G. Clusty, the waveform-based network similarity clustering toolbox: Concept and application to image complex faulting offshore Zakynthos (Greece). Geophys. J. Int. 2021, 224, 2044–2059. [Google Scholar] [CrossRef]
- Kamer, Y.; Ouillon, G.; Sornette, D. Fault network reconstruction using agglomerative clustering: Applications to southern Californian seismicity. Nat. Hazard Earth Syst. 2020, 20, 3611–3625. [Google Scholar] [CrossRef]
- Petersen, M.D.; Mueller, C.S.; Moschetti, M.P.; Hoover, S.M.; Rukstales, K.S.; McNamara, D.E.; Williams, R.A.; Shumway, A.M.; Powers, P.M.; Earle, P.S.; et al. 2018 One-Year Seismic Hazard Forecast for the Central and Eastern United States from Induced and Natural Earthquakes. Seismol. Res. Lett. 2018, 89, 1049–1061. [Google Scholar] [CrossRef]
- Mizrahi, L.; Nandan, S.; Wiemer, S. The effect of declustering on the size distribution of mainshocks. Seismol. Res. Lett. 2021. [Google Scholar] [CrossRef]
- Taroni, M.; Akinci, A. Good practices in PSHA: Declustering, b-value estimation, foreshocks and aftershocks inclusion; a case study in Italy. Geophys. J. Int. 2021, 224, 1174–1187. [Google Scholar] [CrossRef]
- Llenos, A.L.; Michael, A.J. Regionally optimized background earthquake rates from ETAS (ROBERE) for probabilistic seismic hazard assessment. Bull. Seism. Soc. Am. 2020, 110, 1172–1190. [Google Scholar] [CrossRef]
- Gardner, J.; Knopoff, L. Is the sequence of earthquakes in Southern California, with aftershocks removed, Poissonian? Bull. Seism. Soc. Am. 1974, 64, 1363–1367. [Google Scholar] [CrossRef]
- Peresan, A.; Gentili, S. Identification and characterisation of earthquake clusters: A comparative analysis for selected sequences in Italy and adjacent regions. Boll. Geofis. Teor. Appl. 2020, 61, 57–80. [Google Scholar]
- Reasenberg, P. Second-order moment of central California seismicity, 1969–1982. J. Geophys. Res. 1985, 90, 5479–5495. [Google Scholar] [CrossRef]
- Zhuang, J.; Ogata, Y.; Vere-Jones, D. Stochastic declustering of space-time earthquake occurrences. J. Am. Stat. Assoc. 2002, 97, 369–380. [Google Scholar] [CrossRef]
- Ogata, Y. Statistical models for earthquake occurrences and residual analysis for point processes. J. Am. Stat. Assoc. 1988, 83, 9–27. [Google Scholar] [CrossRef]
- Ogata, Y. Space-time point-process models for earthquake occurrences. Ann. I. Stat. Math. 1998, 50, 379–402. [Google Scholar] [CrossRef]
- Zhuang, J.; Ogata, Y.; Vere-Jones, D. Analyzing earthquake clustering features by using stochastic reconstruction. J. Geophys. Res. 2004, 109, B05301. [Google Scholar] [CrossRef] [Green Version]
- Zhuang, J.; Murru, M.; Falcone, G.; Guo, Y. An extensive study of clustering features of seismicity in Italy from 2005 to 2016. Geophys. J. Int. 2019, 216, 302–318. [Google Scholar] [CrossRef]
- Zhou, P.; Yang, H.; Wang, B.; Zhuang, J. Seismological investigations of induced earthquakes near the Hutubi underground gas storage facility. J. Geophys. Res. 2019, 124, 8753–8770. [Google Scholar] [CrossRef]
- Marsan, D.; Prono, E.; Helmstetter, A. Monitoring aseismic forcing in fault zones using earthquake time series. Bull. Seismol. Soc. Am. 2013, 103, 169–179. [Google Scholar] [CrossRef]
- Crespo-Martín, C.; Martín-González, F.; Yazdi, P.; Hainzl, S.; Rincón, M. Time-dependent and spatiotemporal statistical analysis of intraplate anomalous seismicity: Sarria-Triacastela-Becerreá (NW Iberian Peninsula, Spain). Geophys. J. Int. 2021, 225, 477–493. [Google Scholar] [CrossRef]
- Peng, W.; Marsan, D.; Chen, K.H.; Pathier, E. Earthquake swarms in Taiwan: A composite declustering method for detection and their spatial characteristics. Earth Planet. Sci. Lett. 2021, 574, 117160. [Google Scholar] [CrossRef]
- Baiesi, M.; Paczuski, M. Scale-free networks of earthquakes and aftershocks. Phys. Rev. E 2004, 69, 066106. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zaliapin, I.; Ben-Zion, Y. Earthquake clusters in southern California I: Identification and stability. J. Geophys. Res. 2013, 118, 2847–2864. [Google Scholar] [CrossRef]
- Zaliapin, I.; Ben-Zion, Y. A global classification and characterization of earthquake clusters. Geophys. J. Int. 2016, 207, 608–634. [Google Scholar] [CrossRef]
- Peresan, A.; Gentili, S. Seismic clusters analysis in Northeastern Italy by the nearest-neighbor approach. Phys. Earth Planet Inter. 2018, 274, 87–104. [Google Scholar] [CrossRef]
- Martínez-Garzón, P.; Ben-Zion, Y.; Zaliapin, I.; Bohnhoff, M. Seismic clustering in the Sea of Marmara: Implications for monitoring earthquake processes. Tectonophysics 2019, 768, 228176. [Google Scholar] [CrossRef]
- Bayliss, K.; Naylor, M.; Main, I.G. Probabilistic identification of earthquake clusters using rescaled nearest neighbour distance networks. Geophys. J. Int. 2019, 217, 487–503. [Google Scholar] [CrossRef] [Green Version]
- Bottiglieri, M.; Lippiello, E.; Godano, C.; De Arcangelis, L. Identification and spatiotemporal organization of aftershocks. J. Geophys. Res. 2009, 114, B03303. [Google Scholar] [CrossRef]
- Jacobs, K.M.; Smith, E.G.; Savage, M.K.; Zhuang, J. Cumulative rate analysis (CURATE): A clustering algorithm for swarm dominated catalogs. J. Geophys. Res. 2013, 118, 553–569. [Google Scholar] [CrossRef]
- Neuts, M.F. A Versatile Markovian Point Process. J. Appl. Probab. 1979, 16, 764–779. [Google Scholar] [CrossRef]
- Bountzis, P.; Papadimitriou, E.; Tsaklidis, G. Earthquake clusters identification through a Markovian Arrival Process (MAP): Application in Corinth Gulf (Greece). Physica A 2020, 545, 123655. [Google Scholar] [CrossRef]
- Lu, S. A Bayesian multiple changepoint model for marked poisson processes with applications to deep earthquakes. Stoch. Environ. Res. Risk A 2019, 33, 59–72. [Google Scholar]
- Benali, A.; Peresan, A.; Varini, E.; Talbi, A. Modelling background seismicity components identified by nearest neighbour and stochastic declustering approaches: The case of Northeastern Italy. Stoch. Environ. Res. Risk A 2020, 34, 775–791. [Google Scholar] [CrossRef]
- Bountzis, P.; Kostoglou, A.; Papadimitriou, E.; Karakostas, V. Identification of spatiotemporal seismicity clusters in central Ionian Islands (Greece). Phys. Earth Planet. Inter. 2021, 312, 106675. [Google Scholar] [CrossRef]
- Ester, M.; Kriegel, H.P.; Sander, J.; Xu, X. A density-based algorithm for discovering clusters in large spatial databases with noise. In Proceedings of the Second International Conference on Knowledge Discovery and Data Mining, Portland, OR, USA, 2–4 August 1996; Volume 96, pp. 226–231. [Google Scholar]
- Llenos, A.L.; Michael, A.J. Forecasting the (un) productivity of the 2014 M 6.0 South Napa aftershock sequence. Seismol. Res. Lett. 2017, 88, 1241–1251. [Google Scholar] [CrossRef]
- Hardebeck, J.L.; Llenos, A.L.; Michael, A.J.; Page, M.T.; Van Der Elst, N. Updated California aftershock parameters. Seismol. Res. Lett. 2019, 90, 262–270. [Google Scholar] [CrossRef]
- Utsu, T.; Ogata, Y. The centenary of the Omori formula for a decay law of aftershock activity. J. Phys. Earth 1995, 43, 1–33. [Google Scholar] [CrossRef]
- Hainzl, S.; Ogata, Y. Detecting fluid signals in seismicity data through statistical earthquake modeling. J. Geophys. Res. 2005, 110, B05S07. [Google Scholar] [CrossRef] [Green Version]
- Marsan, D.; Reverso, T.; Helmstetter, A.; Enescu, B. Slow slip and aseismic deformation episodes associated with the subducting Pacific plate offshore Japan, revealed by changes in seismicity. J. Geophys. Res. 2013, 118, 4900–4909. [Google Scholar] [CrossRef]
- Crespo Martín, C.; Martín-González, F. Statistical Analysis of Intraplate Seismic Clusters: The Case of the NW Iberian Peninsula. Pure Appl. Gephys. 2021, 178, 3355–3374. [Google Scholar] [CrossRef]
- Lippiello, E.; Godano, C.; de Arcangelis, L. The Relevance of Foreshocks in Earthquake Triggering: A Statistical Study. Entropy 2019, 21, 173. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cesca, S. Seiscloud, a tool for density-based seismicity clustering and visualization. J. Seismol. 2020, 24, 443–457. [Google Scholar] [CrossRef]
- Cesca, S.; Grigoli, F.; Heimann, S.; Dahm, T.; Kriegerowski, M.; Sobiesiak, M.; Tassara, C.; Olcay, M. The Mw 8.1 2014 Iquique, Chile, seismic sequence: A tale of foreshocks and aftershocks. Geophys. J. Int. 2016, 204, 1766–1780. [Google Scholar] [CrossRef] [Green Version]
- Sheikhhosseini, Z.; Mirzaei, N.; Heidari, R.; Monkaresi, H. Delineation of potential seismic sources using weighted K-means cluster analysis and particle swarm optimization (PSO). Acta Geophys. 2021, 69, 2161–2172. [Google Scholar] [CrossRef]
- Fortunato, S.; Hric, D. Community detection in networks: A user guide. Phys. Rep. 2016, 659, 1–44. [Google Scholar] [CrossRef] [Green Version]
- Lippiello, E.; Bountzis, P. An objective criterion for cluster detection in stochastic epidemic models. arXiv 2021, arXiv:2104.04138. [Google Scholar]
- Hatzfeld, D.; Karakostas, V.; Ziazia, M.; Kassaras, I.; Papadimitriou, E.; Makropoulos, K.; Voulgaris, N.; Papaioannou, C. Microseismicity and faulting geometry in the Gulf of Corinth (Greece). Geophys. J. Int. 2000, 141, 438–456. [Google Scholar] [CrossRef] [Green Version]
- Scordilis, E.; Karakaisis, G.; Karacostas, B.; Panagiotopoulos, D.; Comninakis, P.; Papazachos, B. Evidence for transform faulting in the Ionian Sea: The Cephalonia island earthquake sequence of 1983. Pure Appl. Gephys. 1985, 123, 388–397. [Google Scholar] [CrossRef]
- Louvari, E.; Kiratzi, A.; Papazachos, B. The Cephalonia transform fault and its extension to western Lefkada Island (Greece). Tectonophysics 1999, 308, 223–236. [Google Scholar] [CrossRef]
- Papazachos, B.; Papadimitriou, E.; Kiratzi, A.; Papazachos, C.; Louvari, E. Fault plane solutions in the Aegean Sea and the surrounding area and their tectonic implication. Boll. Geof. Teor. Appl. 1998, 39, 199–218. [Google Scholar]
- McKenzie, D. Active tectonics of the Mediterranean region. Geophys. J. Int. 1972, 30, 109–185. [Google Scholar] [CrossRef] [Green Version]
- Le Pichon, X.; Angelier, J. The Hellenic arc and trench system: A key to the neotectonic evolution of the eastern Mediterranean area. Tectonophysics 1979, 60, 1–42. [Google Scholar] [CrossRef]
- Permanent Regional Seismological Network. (Operated by the Aristotle University of Thessaloniki). International Federation of Digital Seismograph Networks. 1981. Available online: http://dx.doi.org/10.7914/SN/HT (accessed on 15 January 2021).
- Wiemer, S.; Wyss, M. Minimum magnitude of completeness in earthquake catalogs: Examples from Alaska, the western United States, and Japan. Bull. Seismol. Soc. Am. 2000, 90, 859–869. [Google Scholar] [CrossRef]
- Aki, K. Maximum likelihood estimate of b in the formula logN= a-bM and its confidence limits. Bull. Earthq. Res. Inst. Tokyo Univ. 1965, 43, 237–239. [Google Scholar]
- Kapetanidis, V.; Michas, G.; Kaviris, G.; Vallianatos, F. Spatiotemporal Properties of Seismicity and Variations of Shear-Wave Splitting Parameters in the Western Gulf of Corinth (Greece). Appl. Sci. 2021, 11, 6573. [Google Scholar] [CrossRef]
- Karakostas, V.; Papadimitriou, E.; Mesimeri, M.; Gkarlaouni, C.; Paradisopoulou, P. The 2014 Kefalonia doublet (Mw 6.1 and Mw 6.0), central Ionian Islands, Greece: Seismotectonic implications along the Kefalonia transform fault zone. Acta Geophys. 2015, 63, 1–16. [Google Scholar] [CrossRef] [Green Version]
- Papadimitriou, E.; Karakostas, V.; Mesimeri, M.; Chouliaras, G.; Kourouklas, C. The Mw6. 5 17 November 2015 Lefkada (Greece) earthquake: Structural interpretation by means of the aftershock analysis. Pure Appl. Gephys. 2017, 174, 3869–3888. [Google Scholar] [CrossRef]
- Karakostas, V.; Papadimitriou, E.; Gospodinov, D. Modelling the 2013 North Aegean (Greece) seismic sequence: Geometrical and frictional constraints, and aftershock probabilities. Geophys. J. Int. 2014, 197, 525–541. [Google Scholar] [CrossRef] [Green Version]
- Saltogianni, V.; Gianniou, M.; Taymaz, T.; Yolsal-Çevikbilen, S.; Stiros, S. Fault slip source models for the 2014 Mw 6.9 Samothraki-Gökçeada earthquake (North Aegean trough) combining geodetic and seismological observations. J. Geophys. Res. 2015, 120, 8610–8622. [Google Scholar] [CrossRef]
- Papadimitriou, P.; Kassaras, I.; Kaviris, G.; Tselentis, G.A.; Voulgaris, N.; Lekkas, E.; Chouliaras, G.; Evangelidis, C.; Pavlou, K.; Kapetanidis, V.; et al. The 12th June 2017 Mw = 6.3 Lesvos earthquake from detailed seismological observations. J. Geodyn. 2018, 115, 23–42. [Google Scholar] [CrossRef]
- Kapetanidis, V.; Deschamps, A.; Papadimitriou, P.; Matrullo, E.; Karakonstantis, A.; Bozionelos, G.; Kaviris, G.; Serpetsidaki, A.; Lyon-Caen, H.; Voulgaris, N.; et al. The 2013 earthquake swarm in Helike, Greece: Seismic activity at the root of old normal faults. Geophys. J. Int. 2015, 202, 2044–2073. [Google Scholar] [CrossRef] [Green Version]
- Mesimeri, M.; Karakostas, V.; Papadimitriou, E.; Schaff, D.; Tsaklidis, G. Spatio-temporal properties and evolution of the 2013 Aigion earthquake swarm (Corinth Gulf, Greece). J. Seismol. 2016, 20, 595–614. [Google Scholar] [CrossRef]
- Michas, G.; Kapetanidis, V.; Kaviris, G.; Vallianatos, F. Earthquake Diffusion Variations in the Western Gulf of Corinth (Greece). Pure Appl. Gephys. 2021, 178, 2855–2870. [Google Scholar] [CrossRef]
- Kapetanidis, V. Spatiotemporal Patterns of Microseismicity for the Identification of Active Fault Structures Using Seismic Waveform Cross-Correlation and Double-Difference Relocation. Ph.D. Thesis, Department of Geophysics-Geothermics, Faculty of Geology and Geoenvironment, University of Athens, Athens, Greece, 2017. [Google Scholar]
- Mesimeri, M.; Kourouklas, C.; Papadimitriou, E.; Karakostas, V.; Kementzetzidou, D. Analysis of microseismicity associated with the 2017 seismic swarm near the Aegean coast of NW Turkey. Acta Geophys. 2018, 66, 479–495. [Google Scholar] [CrossRef]
- Mesimeri, M.; Karakostas, V.; Papadimitriou, E.; Tsaklidis, G. Characteristics of earthquake clusters: Application to western Corinth Gulf (Greece). Tectonophysics 2019, 767, 228160. [Google Scholar] [CrossRef]
- Hainzl, S.; Zakharova, O.; Marsan, D. Impact of aseismic transients on the estimation of aftershock productivity parameters. Bull. Seism. Soc. Am. 2013, 103, 1723–1732. [Google Scholar] [CrossRef]
- Llenos, A.L.; McGuire, J.J.; Ogata, Y. Modeling seismic swarms triggered by aseismic transients. Earth Planet. Sci. Lett. 2009, 281, 59–69. [Google Scholar] [CrossRef]
- Mesimeri, M.; Karakostas, V. Repeating earthquakes in western Corinth Gulf (Greece): Implications for aseismic slip near locked faults. Geophys. J. Int. 2018, 215, 659–676. [Google Scholar] [CrossRef]
- Wessel, P.; Smith, W.H.; Scharroo, R.; Luis, J.; Wobbe, F. Generic mapping tools: Improved version released. Eos Trans. Am. Geophys. Union 2013, 94, 409–410. [Google Scholar] [CrossRef] [Green Version]
- Dempster, A.P.; Laird, N.M.; Rubin, D.B. Maximum likelihood from incomplete data via the EM algorithm. J. R. Stat. Soc. Ser. B Stat. Methodol. 1977, 39, 1–38. [Google Scholar]
- Schwarz, G. Estimating the dimension of a model. Ann. Stat. 1978, 6, 461–464. [Google Scholar] [CrossRef]
- van Stiphout, T.; Zhuang, J.; Marsan, D. Seismicity declustering. Community Online Resour. Stat. Seism. Anal. 2012, 10, 1. [Google Scholar]
- Wiemer, S. A software package to analyze seismicity: ZMAP. Seismol. Res. Lett. 2001, 72, 373–382. [Google Scholar] [CrossRef]
- Duverger, C.; Lambotte, S.; Bernard, P.; Lyon-Caen, H.; Deschamps, A.; Nercessian, A. Dynamics of microseismicity and its relationship with the active structures in the western Corinth Rift (Greece). Geophys. J. Int. 2018, 215, 196–221. [Google Scholar] [CrossRef]
Parameter | Parameter | ||
---|---|---|---|
K | 0.1 | d | 2.41 |
a | 2.19 | q | 1.805 |
p | 1.13 | 0.59 | |
c | 0.024 (days) | (events/day) | 4.50 |
PS | RB1 | RB2 | RB3 | GK1 | GK2 | GK3 | MAP-DBSCAN (PS27) | NN |
---|---|---|---|---|---|---|---|---|
0.530 | 0.593 | 0.648 | 0.382 | 0.397 | 0.585 | 0.627 | 0.756 | |
0.612 | 0.630 | 0.617 | 0.418 | 0.192 | 0.676 | 0.647 | 0.727 |
Region | Notation | N | a | b | ||
---|---|---|---|---|---|---|
CG | D1 | 25,595 | 1.5 | 13,043 | 5.57 | 0.97 |
CII | D2 | 24,085 | 2.2 | 6981 | 5.80 | 0.88 |
NAS | D3 | 21,139 | 2.1 | 8328 | 5.79 | 0.89 |
Dataset | # Clusters | |||||
---|---|---|---|---|---|---|
D1 | 4662 (36%) | 8381 (64%) | 255 | 12.50 | 18.28 | |
D2 | 5221 (75%) | 1770 (25%) | 45 | 54.60 | 118.43 | |
D3 | 3688 (44%) | 4640 (56%) | 187 | 15.08 | 19.72 |
Area | p | c | a | K | |||
---|---|---|---|---|---|---|---|
CG | 1.23 | 0.0171 | 0.82 | 0.74 | 0.43 | 2.13 | 26 |
CII | 1.31 | 0.11 | 1.29 | 0.44 | 0.15 | 2.21 | 9 |
NAS | 1.26 | 0.0324 | 1.04 | 0.51 | 0.28 | 2.03 | 17 |
ID | N | p | c | b | a | K | ||||
---|---|---|---|---|---|---|---|---|---|---|
C1 | 12/1/12 | 23/1/12 | 33 | 1.23 | 0.017 | 1.20 | 0.49 | 0.79 | 1.03 | 3.1 |
C2 | 13/1/12 | 27/1/12 | 33 | 1.23 | 0.017 | 0.83 | 1.69 | 0.23 | 1.25 | 3.1 |
C3 | 4/3/12 | 6/4/12 | 65 | 1.23 | 0.017 | 1.03 | 1.53 | 0.26 | 1.05 | 3.0 |
C4 | 22/9/12 | 3/10/12 | 69 | 1.23 | 0.017 | 0.99 | 0.36 | 0.94 | 1.44 | 5.0 |
C5 | 27/12/12 | 1/1/13 | 34 | 1.23 | 0.017 | 0.82 | 1.84 | 0.21 | 1.32 | 3.8 |
C6 | 22/5/13 | 28/6/13 | 310 | 1.45 | 0.012 | 0.96 | 0.20 | 0.90 | 0.47 | 3.7 |
C7 | 8/6/13 | 28/6/13 | 144 | 1.11 | 0.007 | 1.22 | 0.60 | 1.30 | 1.00 | 3.0 |
C8 | 7/7/13 | 27/7/13 | 128 | 1.04 | 0.001 | 0.77 | 0.34 | 2.48 | 0.59 | 3.7 |
C9 | 8/9/13 | 13/9/13 | 65 | 1.23 | 0.017 | 1.19 | 1.28 | 0.79 | 2.74 | 2.8 |
C10 | 29/10/13 | 6/11/13 | 68 | 1.23 | 0.017 | 1.27 | 0.10 | 0.91 | 2.87 | 3.1 |
C11 | 19/1/14 | 16/1/14 | 33 | 1.23 | 0.017 | 0.92 | 1.26 | 0.50 | 1.37 | 3.8 |
C12 | 29/1/14 | 10/2/14 | 70 | 1.23 | 0.017 | 0.81 | 1.39 | 0.29 | 1.92 | 3.9 |
C13 | 21/3/14 | 1/4/14 | 52 | 1.23 | 0.017 | 0.83 | 2.97 | 0.009 | 3.41 | 4.0 |
C14 | 8/6/14 | 11/6/14 | 74 | 1.23 | 0.017 | 0.81 | 0.92 | 0.64 | 4.86 | 4.3 |
C15 | 21/7/14 | 31/10/14 | 506 | 1.37 | 0.051 | 1.04 | 1.38 | 0.34 | 1.32 | 4.6 |
C16 | 22/7/14 | 1/11/14 | 95 | 1.26 | 0.014 | 1.15 | 0.72 | 0.45 | 0.44 | 2.8 |
C17 | 24/7/14 | 26/10/14 | 61 | 1.23 | 0.017 | 0.94 | 1.72 | 0.16 | 0.35 | 3.4 |
C18 | 23/7/14 | 31/10/14 | 121 | 1.25 | 0.131 | 0.95 | 1.77 | 0.24 | 0.05 | 4.7 |
C19 | 7/11/14 | 18/12/14 | 228 | 1.07 | 0.071 | 0.92 | 1.80 | 0.55 | 0.76 | 4.8 |
C20 | 7/11/14 | 14/12/14 | 36 | 1.23 | 0.017 | 1.05 | 1.27 | 0.41 | 0.42 | 3.1 |
C21 | 1/10/15 | 6/10/15 | 44 | 1.23 | 0.017 | 1.16 | 1.97 | 0.49 | 1.61 | 2.8 |
C22 | 27/7/16 | 5/8/16 | 32 | 1.23 | 0.017 | 0.75 | 3.50 | 0.09 | 0.45 | 2.7 |
C23 | 1/8/16 | 8/8/16 | 147 | 2.79 | 0.160 | 0.98 | 0.10 | 0.85 | 2.98 | 3.4 |
C24 | 9/1/17 | 23/1/17 | 104 | 2.79 | 0.702 | 0.82 | 1.70 | 0.15 | 1.05 | 4.5 |
C25 | 14/7/17 | 17/7/17 | 39 | 1.23 | 0.017 | 0.43 | 0.73 | 0.40 | 5.95 | 4.2 |
C27 | 30/10/17 | 2/11/17 | 31 | 1.23 | 0.017 | 0.50 | 1.68 | 0.10 | 6.19 | 3.5 |
ID | N | p | c | b | a | K | ||||
---|---|---|---|---|---|---|---|---|---|---|
I1 | 19/1/14 | 16/9/14 | 2829 | 1.42 | 0.24 | 0.79 | 1.31 | 0.40 | 0.17 | 6.1 |
I2 | 23/1/14 | 14/9/14 | 55 | 1.31 | 0.11 | 1.23 | 1.38 | 0.30 | 0.12 | 3.7 |
I3 | 5/11/14 | 11/12/14 | 134 | 1.36 | 0.06 | 0.99 | 1.44 | 0.29 | 0.99 | 5.1 |
I4 | 13/11/14 | 12/12/14 | 66 | 1.31 | 0.11 | 0.93 | 1.43 | 0.38 | 0.37 | 4.9 |
I5 | 5/1/15 | 27/4/15 | 164 | 1.05 | 0.01 | 0.93 | 2.82 | 0.10 | 0.76 | 4.4 |
I6 | 18/1/15 | 24/4/15 | 71 | 1.31 | 0.11 | 1.08 | 1.91 | 0.36 | 0.15 | 3.8 |
I7 | 13/11/15 | 26/6/16 | 1396 | 1.45 | 0.30 | 0.86 | 1.51 | 0.29 | 0.45 | 6.5 |
I8 | 20/11/15 | 25/6/16 | 65 | 1.31 | 0.11 | 0.84 | 0.94 | 0.53 | 0.07 | 4.3 |
I9 | 4/4/17 | 4/5/17 | 67 | 1.31 | 0.11 | 0.95 | 2.26 | 0.18 | 0.70 | 3.9 |
ID | N | p | c | b | a | K | ||||
---|---|---|---|---|---|---|---|---|---|---|
N1 | 14/2/12 | 4/4/12 | 136 | 1.41 | 0.03 | 0.96 | 1.10 | 0.40 | 0.54 | 5.3 |
N2 | 27/4/12 | 3/5/12 | 30 | 1.26 | 0.03 | 0.53 | 1.64 | 0.16 | 1.07 | 4.8 |
N3 | 8/1/13 | 6/3/13 | 285 | 1.07 | 0.06 | 0.88 | 2.39 | 0.06 | 0.55 | 5.8 |
N4 | 24/5/14 | 9/7/14 | 94 | 1.41 | 0.78 | 0.74 | 1.82 | 0.01 | 0.16 | 6.9 |
N5 | 24/5/14 | 11/7/14 | 153 | 1.60 | 0.16 | 0.69 | 1.76 | 0.16 | 0.60 | 4.5 |
N6 | 24/5/14 | 22/6/14 | 83 | 1.49 | 0.04 | 0.64 | 1.25 | 0.30 | 0.29 | 4.4 |
N7 | 6/12/14 | 29/12/14 | 41 | 1.26 | 0.03 | 0.67 | 1.60 | 0.15 | 0.31 | 4.9 |
N8 | 26/3/15 | 2/4/15 | 30 | 1.26 | 0.03 | 0.97 | 1.45 | 0.36 | 1.76 | 4.1 |
N9 | 29/10/16 | 31/10/16 | 49 | 1.26 | 0.03 | 0.89 | 2.44 | 0.28 | 2.88 | 3.4 |
N10 | 26/1/17 | 28/3/17 | 568 | 1.29 | 0.04 | 0.73 | 1.31 | 0.36 | 1.00 | 5.1 |
N11 | 7/4/17 | 12/5/17 | 38 | 1.26 | 0.03 | 1.05 | 1.29 | 0.11 | 0.91 | 3.4 |
N12 | 12/6/17 | 8/8/17 | 614 | 1.48 | 0.12 | 0.79 | 1.46 | 0.25 | 0.86 | 6.4 |
N13 | 13/6/17 | 29/7/17 | 48 | 1.26 | 0.03 | 1.03 | 2.42 | 0.17 | 0.35 | 3.7 |
N14 | 15/8/17 | 23/10/17 | 38 | 1.26 | 0.03 | 1.06 | 1.13 | 0.39 | 0.26 | 3.5 |
N15 | 16/8/17 | 11/11/17 | 34 | 1.26 | 0.03 | 1.08 | 1.46 | 0.36 | 0.15 | 3.5 |
N16 | 17/8/17 | 8/11/17 | 39 | 1.26 | 0.03 | 1.24 | 2.39 | 0.14 | 0.31 | 3.2 |
N17 | 24/8/17 | 11/11/17 | 35 | 1.26 | 0.03 | 1.01 | 2.23 | 0.13 | 0.27 | 3.6 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bountzis, P.; Papadimitriou, E.; Tsaklidis, G. Identification and Temporal Characteristics of Earthquake Clusters in Selected Areas in Greece. Appl. Sci. 2022, 12, 1908. https://doi.org/10.3390/app12041908
Bountzis P, Papadimitriou E, Tsaklidis G. Identification and Temporal Characteristics of Earthquake Clusters in Selected Areas in Greece. Applied Sciences. 2022; 12(4):1908. https://doi.org/10.3390/app12041908
Chicago/Turabian StyleBountzis, Polyzois, Eleftheria Papadimitriou, and George Tsaklidis. 2022. "Identification and Temporal Characteristics of Earthquake Clusters in Selected Areas in Greece" Applied Sciences 12, no. 4: 1908. https://doi.org/10.3390/app12041908
APA StyleBountzis, P., Papadimitriou, E., & Tsaklidis, G. (2022). Identification and Temporal Characteristics of Earthquake Clusters in Selected Areas in Greece. Applied Sciences, 12(4), 1908. https://doi.org/10.3390/app12041908