Biomolecules from Microalgae and Cyanobacteria: Applications and Market Survey
Abstract
:1. Introduction
2. Microalgae
2.1. What Are Microalgae and Cyanobacteria?
2.2. Properties, Taxonomy, and Habitats
2.3. Compositions and Technologies for Photoautotrophic Production of Microalgae and Cyanobacteria
2.3.1. Amino acids, Peptides, and Proteins
2.3.2. Photosynthetic Pigments
2.3.3. Lipids and Fatty Acids
2.3.4. Carbohydrates
2.3.5. Other Compounds
2.3.6. Technologies for Photoautotrophic Production of Microalgae and Cyanobacterial Biomass
3. Current Uses of Microalgae and Cyanobacteria in Industry
3.1. Microalgae and Cyanobacteria as Food, Dietary Supplements, and Feed
3.2. Use of Microalgae and Cyanobacteria for Cosmetic Applications
3.3. Use of Microalgae and Cyanobacteria for Biofuel Applications
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Jacob-Lopes, E.; Maroneze, M.M.; Queiroz, M.I.; Zepka, L.Q. Handbook of Microalgae-Based Processes and Products: Fundamentals and Advances in Energy, Food, Feed, Fertilizer, and Bioactive Compounds; Academic Press: Cambridge, MA, USA, 2020. [Google Scholar]
- Gonçalves, A.L.; Rodrigues, C.M.; Pires, J.C.M.; Simões, M. The Effect of Increasing CO2 Concentrations on Its Capture, Biomass Production and Wastewater Bioremediation by Microalgae and Cyanobacteria. Algal Res. 2016, 14, 127–136. [Google Scholar] [CrossRef]
- Alvarez, A.L.; Weyers, S.L.; Goemann, H.M.; Peyton, B.M.; Gardner, R.D. Microalgae, Soil and Plants: A Critical Review of Microalgae as Renewable Resources for Agriculture. Algal Res. 2021, 54, 102200. [Google Scholar] [CrossRef]
- Abu-Ghosh, S.; Dubinsky, Z.; Verdelho, V.; Iluz, D. Unconventional High-Value Products from Microalgae: A Review. Bioresour. Technol. 2021, 329, 124895. [Google Scholar] [CrossRef] [PubMed]
- Chapman, V.J.; Chapman, D.J. Classification. In The Algae; Chapman, V.J., Chapman, D.J., Eds.; Macmillan Education: London, UK, 1973; pp. 1–12. [Google Scholar]
- Palinska, K.A.; Surosz, W. Taxonomy of Cyanobacteria: A Contribution to Consensus Approach. Hydrobiologia 2014, 740, 1–11. [Google Scholar] [CrossRef] [Green Version]
- Rockwell, N.C.; Lagarias, J.C.; Bhattacharya, D. Primary Endosymbiosis and the Evolution of Light and Oxygen Sensing in Photosynthetic Eukaryotes. Front. Ecol. Evol. 2014, 2, 66. [Google Scholar] [CrossRef] [Green Version]
- Mostafa, S.S.M. Microalgal Biotechnology: Prospects and Applications; IntechOpen: London, UK, 2012. [Google Scholar]
- Lauersen, K.J. Eukaryotic Microalgae as Hosts for Light-Driven Heterologous Isoprenoid Production. Planta 2019, 249, 155–180. [Google Scholar] [CrossRef]
- Lee, R.E. Phycology; Cambridge University Press: Cambridge, UK, 1989. [Google Scholar]
- Pulz, O.; Gross, W. Valuable Products from Biotechnology of Microalgae. Appl. Microbiol. Biotechnol. 2004, 65, 635–648. [Google Scholar] [CrossRef]
- Suresh, K.S.; Suresh, P.V.; Kudre, T.G. 4—Prospective Ecofuel Feedstocks for Sustainable Production. In Advances in Eco-Fuels for a Sustainable Environment; Azad, K., Ed.; Woodhead Publishing Series in Energy; Woodhead Publishing: Sawston, UK, 2019; pp. 89–117. [Google Scholar]
- Garcia-Pichel, F. Cyanobacteria. In Encyclopedia of Microbiology, 3rd ed.; Schaechter, M., Ed.; Academic Press: Cambridge, MA, USA, 2009; pp. 107–124. [Google Scholar]
- Mata, T.M.; Martins, A.A.; Caetano, N.S. Microalgae for Biodiesel Production and Other Applications: A Review. Renew. Sustain. Energy Rev. 2010, 14, 217–232. [Google Scholar] [CrossRef] [Green Version]
- De Vargas, C.; Audic, S.; Henry, N.; Decelle, J.; Mahé, F.; Logares, R.; Lara, E.; Berney, C.; Le Bescot, N.; Probert, I.; et al. Ocean Plankton. Eukaryotic Plankton Diversity in the Sunlit Ocean. Science 2015, 348, 1261605. [Google Scholar] [CrossRef] [Green Version]
- Sheehan, J.; Dunahay, T.; Benemann, J.; Roessler, P. Look Back at the U.S. Department of Energy’s Aquatic Species Program: Biodiesel from Algae; Close-Out Report; National Renewable Energy Lab.: Golden, CO, USA, 1998. [Google Scholar]
- Norton, T.A.; Melkonian, M.; Andersen, R.A. Algal Biodiversity. Phycologia 1996, 35, 308–326. [Google Scholar] [CrossRef]
- Richmond, A. Handbook of Microalgal Culture: Biotechnology and Applied Phycology; Blackwell Publishing: Hoboken, NJ, USA, 2004. [Google Scholar]
- Guiry, M.D. How Many Species of Algae Are There? J. Phycol. 2012, 48, 1057–1063. [Google Scholar] [CrossRef] [PubMed]
- Metting, F.B. Biodiversity and Application of Microalgae. J. Ind. Microbiol. 1996, 17, 477–489. [Google Scholar] [CrossRef]
- García-Balboa, C.; Baselga-Cervera, B.; García-Sanchez, A.; Igual, J.M.; Lopez-Rodas, V.; Costas, E. Rapid Adaptation of Microalgae to Bodies of Water with Extreme Pollution from Uranium Mining: An Explanation of How Mesophilic Organisms Can Rapidly Colonise Extremely Toxic Environments. Aquat. Toxicol. Amst. Neth. 2013, 144–145, 116–123. [Google Scholar] [CrossRef] [PubMed]
- Yong, W.K.; Tan, Y.H.; Sze-Wan, P.; Lim, P.E. Response of Microalgae in a Changing Climate and Environment. Malays. J. Sci. 2016, 35, 167–187. [Google Scholar] [CrossRef] [Green Version]
- Suparmaniam, U.; Lam, M.K.; Uemura, Y.; Lim, J.W.; Lee, K.T.; Shuit, S.H. Insights into the Microalgae Cultivation Technology and Harvesting Process for Biofuel Production: A Review. Renew. Sustain. Energy Rev. 2019, 115, 109361. [Google Scholar] [CrossRef]
- De Morais, M.G.; da Vaz, B.S.; de Morais, E.G.; Costa, J.A.V. Biologically Active Metabolites Synthesized by Microalgae. BioMed Res. Int. 2015, 2015, 835761. [Google Scholar] [CrossRef] [Green Version]
- Dvořák, P.; Casamatta, D.A.; Hašler, P.; Jahodářová, E.; Norwich, A.R.; Poulíčková, A. Diversity of the Cyanobacteria. In Modern Topics in the Phototrophic Prokaryotes: Environmental and Applied Aspects; Hallenbeck, P.C., Ed.; Springer International Publishing: Cham, Switzerland, 2017; pp. 3–46. [Google Scholar]
- Thajuddin, N.; Subramanian, G. Cyanobacterial Biodiversity and Potential Applications in Biotechnology. Curr. Sci. 2005, 89, 47–57. [Google Scholar]
- Whitton, B.; Potts, M. The Ecology of Cyanobacteria: Their Diversity in Time and Space; Springer: Berlin/Heidelberg, Germany, 2002. [Google Scholar]
- Vermaas, W.F. Photosynthesis and Respiration in Cyanobacteria. In eLS; American Cancer Society: Atlanta, GA, USA, 2001. [Google Scholar]
- Whitton, B. Diversity, Ecology, and Taxonomy of the Cyanobacteria. Photosynth. Prokaryotes 1992, 1–51. [Google Scholar] [CrossRef]
- Vachard, D. Cyanobacteria. In Reference Module in Earth Systems and Environmental Sciences; Elsevier: Amsterdam, The Netherlands, 2019. [Google Scholar]
- Stal, L.J.; Moezelaar, R. Fermentation in Cyanobacteria. FEMS Microbiol. Rev. 1997, 21, 179–211. [Google Scholar] [CrossRef] [Green Version]
- Andersen, R.A. Diversity of Eukaryotic Algae. Biodivers. Conserv. 1992, 1, 267–292. [Google Scholar] [CrossRef]
- Cavalier-Smith, T. Principles of Protein and Lipid Targeting in Secondary Symbiogenesis: Euglenoid, Dinoflagellate, and Sporozoan Plastid Origins and the Eukaryote Family Tree1,2. J. Eukaryot. Microbiol. 1999, 46, 347–366. [Google Scholar] [CrossRef] [PubMed]
- Raven, J.A.; Allen, J.F. Genomics and Chloroplast Evolution: What Did Cyanobacteria Do for Plants? Genome Biol. 2003, 4, 209. [Google Scholar] [CrossRef] [Green Version]
- Jeffrey, S.W.; Wright, S.W.; Zapata, M. Microalgal Classes and Their Signature Pigments. Phytoplankton Pigment. 2011. [Google Scholar] [CrossRef]
- Archibald, J.M. Endosymbiosis and Eukaryotic Cell Evolution. Curr. Biol. 2015, 25, R911–R921. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Baurain, D.; Brinkmann, H.; Petersen, J.; Rodríguez-Ezpeleta, N.; Stechmann, A.; Demoulin, V.; Roger, A.J.; Burger, G.; Lang, B.F.; Philippe, H. Phylogenomic Evidence for Separate Acquisition of Plastids in Cryptophytes, Haptophytes, and Stramenopiles. Mol. Biol. Evol. 2010, 27, 1698–1709. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Person, J. Livre Turquoise—Algues, Filière Du Future; Actes Colloq; Adebiotech: Romainville, France, 2011. [Google Scholar]
- Levasseur, W.; Perré, P.; Pozzobon, V. A Review of High Value-Added Molecules Production by Microalgae in Light of the Classification. Biotechnol. Adv. 2020, 41, 107545. [Google Scholar] [CrossRef] [PubMed]
- De Reviers, B. Biologie et Phylogénie des Algues; Belin Editeur: Paris, France, 2002. [Google Scholar]
- Groendahl, S.; Kahlert, M.; Fink, P. The Best of Both Worlds: A Combined Approach for Analyzing Microalgal Diversity via Metabarcoding and Morphology-Based Methods. PLoS ONE 2017, 12, e0172808. [Google Scholar] [CrossRef]
- Correa, I.; Drews, P.; Botelho, S.; de Souza, M.S.; Tavano, V.M. Deep Learning for Microalgae Classification. In Proceedings of the 2017 16th IEEE International Conference on Machine Learning and Applications (ICMLA), Cancun, Mexico, 18–21 December 2017; pp. 20–25. [Google Scholar]
- Heimann, K.; Huerlimann, R. Microalgal Classification: Major Classes and Genera of Commercial Microalgal Species. In Handbook of Marine Microalgae; Kim, S.-K., Ed.; Academic Press: Cambridge, MA, USA, 2015; Chapter 3; pp. 25–41. [Google Scholar]
- Malcata, F.X.; Pinto, I.S.; Guedes, A.C. (Eds.) Marine Macro-and Microalgae: An Overview; CRC Press: Boca Raton, FL, USA, 2018. [Google Scholar]
- Fritsch, F.E. The Structure and Reproduction of The Algae, 1st ed.; Cambridge University Press: Cambridge, UK, 1922; Volume 1. [Google Scholar]
- Fritsch, F.E. The Structure and Reproduction of The Algae, 1st ed.; Cambridge University Press: Cambridge, UK, 1922; Volume 2. [Google Scholar]
- Ruggiero, M.A.; Gordon, D.P.; Orrell, T.M.; Bailly, N.; Bourgoin, T.; Brusca, R.C.; Cavalier-Smith, T.; Guiry, M.D.; Kirk, P.M. A Higher Level Classification of All Living Organisms. PLoS ONE 2015, 10, e0119248. [Google Scholar] [CrossRef] [Green Version]
- Sialve, B.; Steyer, J.-P. Les microalgues, promesses et défis. Innov. Agron. 2013, 26, 25–39. [Google Scholar]
- Rochet, M.; Legendre, L.; Demers, S. Photosynthetic and Pigment Responses of Sea-Ice Microalgae to Changes in Light Intensity and Quality. J. Exp. Mar. Biol. Ecol. 1986, 101, 211–226. [Google Scholar] [CrossRef]
- Pazderník, B.M. Light Harvesting Complexes and Chromatic Adaptation of Eustigmatophyte Alga Trachydiscus Minutus. Ph.D. Thesis, Faculty of Science, University of South Bohemia, České Budějovice, Czech Republic, 2015. [Google Scholar]
- Dutton, H.J.; Juday, C. Chromatic Adaptation in Relation to Color and Depth Distribution of Freshwater Phytoplankton and Large Aquatic Plants. Ecology 1944, 25, 273–282. [Google Scholar] [CrossRef]
- Hentati, F.; Tounsi, L.; Djomdi, D.; Pierre, G.; Delattre, C.; Ursu, A.V.; Fendri, I.; Abdelkafi, S.; Michaud, P. Bioactive Polysaccharides from Seaweeds. Molecules 2020, 25, 3152. [Google Scholar] [CrossRef] [PubMed]
- Ben Hlima, H.; Bohli, T.; Kraiem, M.; Ouederni, A.; Mellouli, L.; Michaud, P.; Abdelkafi, S.; Smaoui, S. Combined Effect of Spirulina Platensis and Punica Granatum Peel Extacts: Phytochemical Content and Antiphytophatogenic Activity. Appl. Sci. 2019, 9, 5475. [Google Scholar] [CrossRef] [Green Version]
- Elleuch, F.; Hlima, H.B.; Barkallah, M.; Baril, P.; Abdelkafi, S.; Pichon, C.; Fendri, I. Carotenoids Overproduction in Dunaliella Sp.: Transcriptional Changes and New Insights through Lycopene β Cyclase Regulation. Appl. Sci. 2019, 9, 5389. [Google Scholar] [CrossRef] [Green Version]
- Elleuch, F.; Baril, P.; Barkallah, M.; Perche, F.; Abdelkafi, S.; Fendri, I.; Pichon, C. Deciphering the Biological Activities of Dunaliella Sp. Aqueous Extract from Stressed Conditions on Breast Cancer: From in Vitro to in Vivo Investigations. Int. J. Mol. Sci. 2020, 21, 1719. [Google Scholar] [CrossRef] [Green Version]
- Ibañez, E.; Cifuentes, A. Benefits of Using Algae as Natural Sources of Functional Ingredients. J. Sci. Food Agric. 2013, 93, 703–709. [Google Scholar] [CrossRef] [Green Version]
- Becker, E.W. Micro-Algae as a Source of Protein. Biotechnol. Adv. 2007, 25, 207–210. [Google Scholar] [CrossRef]
- Sousa, I.; Gouveia, L.; Batista, A.P.; Raymundo, A.; Bandarra, N.M. Microalgae in Novel Food Products; Nova Science Publishers: New York, NY, USA, 2008; pp. 75–112. [Google Scholar]
- Niccolai, A.; Chini Zittelli, G.; Rodolfi, L.; Biondi, N.; Tredici, M.R. Microalgae of Interest as Food Source: Biochemical Composition and Digestibility. Algal Res. 2019, 42, 101617. [Google Scholar] [CrossRef]
- Da Vaz, B.S.; Moreira, J.B.; de Morais, M.G.; Costa, J.A.V. Microalgae as a New Source of Bioactive Compounds in Food Supplements. Curr. Opin. Food Sci. 2016, 7, 73–77. [Google Scholar] [CrossRef]
- Kose, A.; Ozen, M.O.; Elibol, M.; Oncel, S.S. Investigation of in vitro Digestibility of Dietary Microalga Chlorella Vulgaris and Cyanobacterium Spirulina Platensis as a Nutritional Supplement. 3 Biotech 2017, 7, 170. [Google Scholar] [CrossRef]
- Siqueira, S.F.; Queiroz, M.I.; Jacob-Lopes, L.Q.Z.E. Introductory Chapter: Microalgae Biotechnology—A Brief Introduction. Microalgal Biotechnol. 2018. [Google Scholar] [CrossRef] [Green Version]
- Borowitzka, M.A. Microalgae as Sources of Pharmaceuticals and Other Biologically Active Compounds. J. Appl. Phycol. 1995, 7, 3–15. [Google Scholar] [CrossRef]
- Pedrós, R.; Moya, I.; Goulas, Y.; Jacquemoud, S. Chlorophyll Fluorescence Emission Spectrum inside a Leaf. Photochem. Photobiol. Sci. 2008, 7, 498–502. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gaignard, C.; Gargouch, N.; Dubessay, P.; Delattre, C.; Pierre, G.; Laroche, C.; Fendri, I.; Abdelkafi, S.; Michaud, P. New Horizons in Culture and Valorization of Red Microalgae. Biotechnol. Adv. 2019, 37, 193–222. [Google Scholar] [CrossRef]
- Vílchez, C.; Forján, E.; Cuaresma, M.; Bédmar, F.; Garbayo, I.; Vega, J.M. Marine Carotenoids: Biological Functions and Commercial Applications. Mar. Drugs 2011, 9, 319–333. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Molino, A.; Rimauro, J.; Casella, P.; Cerbone, A.; Larocca, V.; Chianese, S.; Karatza, D.; Mehariya, S.; Ferraro, A.; Hristoforou, E.; et al. Extraction of Astaxanthin from Microalga Haematococcus Pluvialis in Red Phase by Using Generally Recognized as Safe Solvents and Accelerated Extraction. J. Biotechnol. 2018, 283, 51–61. [Google Scholar] [CrossRef] [PubMed]
- Rammuni, M.N.; Ariyadasa, T.U.; Nimarshana, P.H.V.; Attalage, R.A. Comparative Assessment on the Extraction of Carotenoids from Microalgal Sources: Astaxanthin from H. Pluvialis and β-Carotene from D. Salina. Food Chem. 2019, 277, 128–134. [Google Scholar] [CrossRef]
- De Raposo, M.F.J.; de Morais, A.M.M.B.; de Morais, R.M.S.C. Carotenoids from Marine Microalgae: A Valuable Natural Source for the Prevention of Chronic Diseases. Mar. Drugs 2015, 13, 5128–5155. [Google Scholar] [CrossRef]
- Cuellar-Bermudez, S.P.; Aguilar-Hernandez, I.; Cardenas-Chavez, D.L.; Ornelas-Soto, N.; Romero-Ogawa, M.A.; Parra-Saldivar, R. Extraction and Purification of High-Value Metabolites from Microalgae: Essential Lipids, Astaxanthin and Phycobiliproteins. Microb. Biotechnol. 2015, 8, 190–209. [Google Scholar] [CrossRef]
- Thomas, J.-C. L’antenne Collectrice d’énergie Lumineuse à Phycobiliprotéines Chez Les Cyanobactéries. Bull. Société Bot. Fr. Actual. Bot. 1989, 136, 31–49. [Google Scholar] [CrossRef] [Green Version]
- Hamed, I. The Evolution and Versatility of Microalgal Biotechnology: A Review. Compr. Rev. Food Sci. Food Saf. 2016, 15, 1104–1123. [Google Scholar] [CrossRef] [PubMed]
- Dammak, M.; Haase, S.M.; Miladi, R.; Ben Amor, F.; Barkallah, M.; Gosset, D.; Pichon, C.; Huchzermeyer, B.; Fendri, I.; Denis, M.; et al. Enhanced Lipid and Biomass Production by a Newly Isolated and Identified Marine Microalga. Lipids Health Dis. 2016, 15, 209. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dammak, M.; Hadrich, B.; Barkallah, M.; Hentati, F.; Ben Hlima, H.; Pichon, C.; Denis, M.; Fendri, I.; Michaud, P.; Abdelkafi, S. Modelling Tetraselmis Sp. Growth-Kinetics and Optimizing Bioactive-Compound Production through Environmental Conditions. Bioresour. Technol. 2018, 249, 510–518. [Google Scholar] [CrossRef] [PubMed]
- Singh, S.; Kate, B.N.; Banerjee, U.C. Bioactive Compounds from Cyanobacteria and Microalgae: An Overview. Crit. Rev. Biotechnol. 2005, 25, 73–95. [Google Scholar] [CrossRef]
- Kumar, J.; Singh, D.; Tyagi, M.B.; Kumar, A. Cyanobacteria: Applications in Biotechnology. In Cyanobacteria; Mishra, A.K., Tiwari, D.N., Rai, A.N., Eds.; Academic Press: Cambridge, MA, USA, 2019; Chapter 16; pp. 327–346. [Google Scholar]
- Lau, N.-S.; Matsui, M.; Abdullah, A.A.-A. Cyanobacteria: Photoautotrophic Microbial Factories for the Sustainable Synthesis of Industrial Products. BioMed Res. Int. 2015, 2015, 754934. [Google Scholar] [CrossRef]
- Markou, G.; Angelidaki, I.; Georgakakis, D. Microalgal Carbohydrates: An Overview of the Factors Influencing Carbohydrates Production, and of Main Bioconversion Technologies for Production of Biofuels. Appl. Microbiol. Biotechnol. 2012, 96, 631–645. [Google Scholar] [CrossRef]
- Mourelle, M.L.; Gómez, C.P.; Legido, J.L. The Potential Use of Marine Microalgae and Cyanobacteria in Cosmetics and Thalassotherapy. Cosmetics 2017, 4, 46. [Google Scholar] [CrossRef] [Green Version]
- De Raposo, M.F.J.; de Morais, R.M.S.C.; de Morais, A.M.M.B. Bioactivity and Applications of Sulphated Polysaccharides from Marine Microalgae. Mar. Drugs 2013, 11, 233–252. [Google Scholar] [CrossRef] [Green Version]
- Christaki, E.; Florou-Paneri, P.; Bonos, E. Microalgae: A Novel Ingredient in Nutrition. Int. J. Food Sci. Nutr. 2011, 62, 794–799. [Google Scholar] [CrossRef]
- Galasso, C.; Gentile, A.; Orefice, I.; Ianora, A.; Bruno, A.; Noonan, D.M.; Sansone, C.; Albini, A.; Brunet, C. Microalgal Derivatives as Potential Nutraceutical and Food Supplements for Human Health: A Focus on Cancer Prevention and Interception. Nutrients 2019, 11, 1226. [Google Scholar] [CrossRef] [Green Version]
- Škrovánková, S. Seaweed Vitamins as Nutraceuticals. Adv. Food Nutr. Res. 2011, 64, 357–369. [Google Scholar] [CrossRef] [PubMed]
- Brasil, B.; Siqueira, F.; Salum, T.; Zanette, C.; Spier, M. Microalgae and Cyanobacteria as Enzyme Biofactories. Algal Res. 2017, 25, 76–89. [Google Scholar] [CrossRef]
- Lu, Y.; Xu, J. Phytohormones in Microalgae: A New Opportunity for Microalgal Biotechnology? Trends Plant Sci. 2015, 20, 273–282. [Google Scholar] [CrossRef] [PubMed]
- Bajguz, A. Brassinosteroids in Microalgae: Application for Growth Improvement and Protection Against Abiotic Stresses. In Brassinosteroids: Plant Growth and Development; Hayat, S., Yusuf, M., Bhardwaj, R., Bajguz, A., Eds.; Springer: Berlin/Heidelberg, Germany, 2019; pp. 45–58. [Google Scholar]
- Amorim, M.L.; Soares, J.; dos Coimbra, J.S.R.; de Leite, M.O.; Albino, L.F.T.; Martins, M.A. Microalgae Proteins: Production, Separation, Isolation, Quantification, and Application in Food and Feed. Crit. Rev. Food Sci. Nutr. 2020, 61, 1976–2002. [Google Scholar] [CrossRef]
- Pruvost, J.; Cornet, J.-F.; Pilon, L. Large-Scale Production of Algal Biomass: Photobioreactors. In Algae Biotechnology: Products and Processes; Bux, F., Chisti, Y., Eds.; Green Energy and Technology Springer: Cham, Switzerland, 2016; pp. 41–66. [Google Scholar]
- Costa, J.A.V.; de Morais, M.G. An Open Pond System for Microalgal Cultivation. In Biofuels from Algae; Pandey, A., Lee, D.-J., Chisti, Y., Soccol, C.R., Eds.; Elsevier: Amsterdam, The Netherlands, 2014; Chapter 1; pp. 1–22. [Google Scholar]
- Costa, J.A.V.; Freitas, B.C.B.; Santos, T.D.; Mitchell, B.G.; Morais, M.G. Open Pond Systems for Microalgal Culture. In Biofuels from Algae, 2nd ed.; Pandey, A., Chang, J.-S., Soccol, C.R., Lee, D.-J., Chisti, Y., Eds.; Biomass, Biofuels, Biochemicals; Elsevier: Amsterdam, The Netherlands, 2019; Chapter 9; pp. 199–223. [Google Scholar]
- Jerney, J.; Spilling, K. Large Scale Cultivation of Microalgae: Open and Closed Systems. In Biofuels from Algae: Methods and Protocols; Spilling, K., Ed.; Methods in Molecular Biology; Springer: New York, NY, USA, 2020; pp. 1–8. [Google Scholar]
- Singh, G.; Patidar, S.K. Microalgae Harvesting Techniques: A Review. J. Environ. Manag. 2018, 217, 499–508. [Google Scholar] [CrossRef]
- Chacón-Lee, T.L.; González-Mariño, G.E. Microalgae for “Healthy” Foods—Possibilities and Challenges. Compr. Rev. Food Sci. Food Saf. 2010, 9, 655–675. [Google Scholar] [CrossRef]
- Mobin, S.; Alam, F. Some Promising Microalgal Species for Commercial Applications: A Review. Energy Procedia 2017, 110, 510–517. [Google Scholar] [CrossRef]
- An, B.-K.; Kim, K.-E.; Jeon, J.-Y.; Lee, K.W. Effect of Dried Chlorella Vulgaris and Chlorella Growth Factor on Growth Performance, Meat Qualities and Humoral Immune Responses in Broiler Chickens. SpringerPlus 2016, 5, 718. [Google Scholar] [CrossRef] [Green Version]
- Milledge, J.J. Microalgae—Commercial Potential for Fuel, Food and Feed. Food Sci. Amp Technol. 2012, 26, 28–30. [Google Scholar]
- Koutsoumanis, K.; Allende, A.; Alvarez-Ordóñez, A.; Bolton, D.; Bover-Cid, S.; Chemaly, M.; Davies, R.; Cesare, A.D.; Hilbert, F.; Lindqvist, R.; et al. Scientific Opinion on the Update of the List of QPS-Recommended Biological Agents Intentionally Added to Food or Feed as Notified to EFSA (2017–2019). EFSA J. 2020, 18, e05966. [Google Scholar] [CrossRef] [Green Version]
- U.S.A. Food & Drug Administration. Summary of Color Additives for Use in the United States in Foods, Drugs, Cosmetics, and Med-ical Devices. FDA: Silver Spring, MD, USA, 2020. [Google Scholar]
- Turck, D.; Castenmiller, J.; Henauw, S.D.; Hirsch-Ernst, K.I.; Kearney, J.; Maciuk, A.; Mangelsdorf, I.; McArdle, H.J.; Naska, A.; Pelaez, C.; et al. Safety of Schizochytrium Sp. Oil as a Novel Food Pursuant to Regulation (EU) 2015/2283. EFSA J. 2020, 118, e06242. [Google Scholar] [CrossRef]
- Turck, D.; Castenmiller, J.; de Henauw, S.; Hirsch-Ernst, K.I.; Kearney, J.; Maciuk, A.; Mangelsdorf, I.; McArdle, H.J.; Naska, A.; Pelaez, C.; et al. Safety of Astaxanthin for Its Use as a Novel Food in Food Supplements. EFSA J. 2020, 18, e05993. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Van der Voort, M.P.J.; Vulsteke, E.; de Visser, C.L.M. Macro-Economics of Algae Products: Output WP2A7.02; EnAlgae Swansea University: Swansea, UK, 2015. [Google Scholar]
- Baert, P.; Bosteels, T.; Sorgeloos, P. Manual on the Production and Use of Live Food for Aquaculture; Food and Agriculture Organization (FAO): Rome, Italy, 1996; pp. 196–251. [Google Scholar]
- Oostlander, P.C.; van Houcke, J.; Wijffels, R.H.; Barbosa, M.J. Microalgae Production Cost in Aquaculture Hatcheries. Aquaculture 2020, 525, 735310. [Google Scholar] [CrossRef]
- Rizwan, M.; Mujtaba, G.; Memon, S.A.; Lee, K.; Rashid, N. Exploring the Potential of Microalgae for New Biotechnology Applications and beyond: A Review. Renew. Sustain. Energy Rev. 2018, 92, 394–404. [Google Scholar] [CrossRef]
- Rumin, J.; Nicolau, E.; de Junior, R.G.O.; Fuentes-Grünewald, C.; Picot, L. Analysis of Scientific Research Driving Microalgae Market Opportunities in Europe. Mar. Drugs 2020, 18, 264. [Google Scholar] [CrossRef]
- Morvan, P.-Y.; Vallee, R. Effects of Chlorella Extract on Skin. Pers. Care 2007, 7, 57–64. [Google Scholar]
- Khan, M.I.; Shin, J.H.; Kim, J.D. The Promising Future of Microalgae: Current Status, Challenges, and Optimization of a Sustainable and Renewable Industry for Biofuels, Feed, and Other Products. Microb. Cell Factories 2018, 17, 36. [Google Scholar] [CrossRef]
- Lundquist, T.; Woertz, I.; Quinn, N.; Benemann, J. A Realistic Technology and Engineering Assessment of Algae Biofuel Production. Energy 2010, 1, 1–178. [Google Scholar]
- Legere, E.; Roessler, P.; Miller, H.; Belicka, L.; Yuan, Y.; Chance, R.; Dalrymple, K.; Porubsky, W.; Coleman, J.; Sweeney, K.; et al. Recovery Act—Integrated Pilot-Scale Biorefinery for Producing Ethanol from Hybrid Algae; Algenol Biotech LLC: Fort Myers, FL, USA, 2017. [Google Scholar]
Reserve Form | Microalgae |
---|---|
Floridian starch (amylopectin subunits) | Red microalgae |
Myxophyceal starch (amylopectin or glycogen-like subunits) | Blue-green microalgae |
Cross-linked amylose-amylopectin starch Fructans (inulin-like fructose oligosaccharides) | Green microalgae |
α-(1-4)-glucan | Cryptophyceae and Dinoflagellate |
Oil or chrysolaminarin Chrysolaminarin | Chrysophyceae Bacillariophyceae |
Paramylon: β-(l-3)-d-glucan | Euglenophyta and Prymnesiophyceae |
Phylum | Class | Pigments | Reserve | Flagellation | Reproduction | Cell Envelope | Habitat |
---|---|---|---|---|---|---|---|
Cyanobacteria | Cyanophyceae | Chl a, β-carotene, flavacene, Echinenone isozea-, zea-, myxo-, oscillaxanthin APC, C-PC, C-PE | Starch (granule) and glycogen | Unflagellated | Simple division, non-motile endospore, vegetative fragmentation No sexual reproduction | Lack of cellulose | Marine Freshwater Terrestrial |
Chlorophyta | Chlorophyceae | Chl a, b, α and β-carotene, lutein, zea-, viola-, loro- and neoxanthin | Starch Oil | From two to four flagella (mobile), isokont | Isogamy, anisogamy, oogamy Motile zoospore, non-motile spore | Cellulose+ mannans+ xylans Sitosterol Sometimes calcified | Marine Freshwater |
Trebouxiophyceae | |||||||
Ulvophyceae | |||||||
Euglenophyta | Euglenophyceae | Some colorless Chl a, b, diadinoxanthin | Paramylon Ergosterol | One or two flagella, one of which contains cilia and the second being reduced | Longitudinal division | No cell membrane Flexible periplast or pellicle | Marine Freshwater Terrestrial |
Heterokontophyta/ Ochrophyta | Xanthophyceae Eustigmatophyceae | Chl a and c, β-carotene, heteroxanthin, diadinoxanthin (++) | Oil Leucosin Ergosterol | Two heterokont flagella and sometimes a single flagellum | Zoospore, aplanospores, statospores Isogamy, oogamy (Vaucheria) | Rich in pectic compounds Silicification during the rest period | Marine Freshwater Terrestrial |
Miozoa | Dinophyceae | Chl a, c, β-carotene, diadinoxanthin, dinoxanthin, peridinins | Starch Lipids | Lateral biflagella | Zoospore Longitudinal oblique division Aniso or isogamy | With or without cellulose | Marine Freshwater |
Heterokontophyta/ Ochrophyta | Chrysophycea | Chl a, c, β-carot, Fuco-, Diato-, diadinoxanthin | Chrysolaminarin Fucosterol Porifasterol | Two heterokont flagella | Zoospore, statospore | Less cellulose with silicification or calcification of the membrane | Marine Freshwater |
Haptophyta | Coccolithophyceae Pavlovophyceae Rappephyceae | Chl a, c, β-carot, Fuco-, Diato-, diadinoxanthin | Chrysolaminarin Fucosterol Porifasterol | Two isokont flagella + haptonema | Zoospore, statospore | Less cellulose with silicification or calcification of the membrane | Marine Freshwater |
Bacillariophyta (Diatoms) | Bacillariophyceae | Chl a, c, β-carot, Fuco-, Diato-, diadinoxanthin | Chrysolaminarin Oil | Without flagellum except for male gametes | Cell division Oogamie (centered diatoms) Amoeboid isogamy (pinnate diatoms) | Silica + pectic compounds | Marine Freshwater Terrestrial |
Cryptophyta | Cryptophyceae | Chl a, c, Biliproteins, α-carot, Allo-, Croco-, Monado-xanthin | Starch (granule) Oil Carbohydrates | Two unequal flagella except for Bjornbergiella and Tetragonidium | Zoospores | Proteinaceous periplast | Marine Freshwater |
Heterokontophyta/ Ochrophyta | Phaeophyceae | Chl a, c, β-carot, violaxanthin Fucoxanthin (++) | Mannitol Laminarin Lipids | Two heterokont flagella | Monospores, tetraspores, non-motile aplanospores From isogamy to oogamy | Cellulose + alginic acid + fucoidin | Marine Freshwater Terrestrial |
Rhodophyta | Porphyridiophyceae Bangiophyceae Florideophyceae | APC, C-PC, R-PC, B-PE, R-PE, phytochrome,α and βcarot, Chl a and d, zeaxanthin, lutein | Starch, floridoside, mannoglycerate, sulfated polysaccharides | No flagella | Oogamy complex | Carbohydrates (xylose, cellulose, galactane) | Marine Freshwater Terrestrial |
Kingdom | Phylum | Class | ||||||
---|---|---|---|---|---|---|---|---|
Kingdom EUBACTERIA | Subkingdom Negibacteria | Phylum Cyanobacteria [=Cyanophyta] | Class Cyanophyceae [=Phycobacteria] | |||||
Class Gloeobacterophyceae | ||||||||
Kingdom PROTOZOA | SUBKINGDOM EOZOA | INFRAKINGDOM EUGLENOZOA | Phylum Euglenozoa | Subphylum Glycomonada | Class Diplonemea | |||
Class Kinetoplastea | ||||||||
Subphylum Euglenoida | Infraphylum Entosiphona | Class Entosiphonea | ||||||
Class Euglenophyceae | ||||||||
Subphylum Symbiontida | Class Postgaardea | |||||||
Infraphylum Dipilida | Superclass Spirocuta | Class Peranemea | ||||||
Superclass Rigimonada | Class Ploeotarea | |||||||
Class Stavomonadea | ||||||||
INFRAKINGDOM EXCAVATA | Phylum Loukozoa | Subphylum Eolouka | Class Jakobea | |||||
Subphylum Neolouka | Class Malawimonadea | |||||||
Phylum Metamonada | Subphylum Trichozoa | Superclass Eopharyngia | Class Trepomonadea | |||||
Phylum Choanozoa | Subphylum Choanofila | Class Choanoflagellatea | ||||||
Subphylum Cristidiscoidea | Class Cristidiscoidia | |||||||
Phylum Picozoa | Class Picomonadea | |||||||
Phylum Percolozoa | Subphylum Tetramitia | Class Heterolobosea | ||||||
Kingdom CHROMISTA | Subkingdom Hacrobia | Phylum Cryptophyta | Class Cryptophyceae | |||||
Phylum Haptophyta | Class Coccolithophyceae [=Prymnesiophyceae] | |||||||
Class Pavlovophyceae | ||||||||
SUBKINGDOM HAROSA | INFRAKINGDOM HALVARIA | Superphylum Alveolata | Phylum Ciliophora | Subphylum Intramacronucleata | Class Ciliatea | |||
Class Litostomatea | ||||||||
Class Spirotrichea | ||||||||
Phylum Miozoa | Subphylum Myzozoa | Infraphylum Apicomplexa | Superclass Apicomonada | Class Apicomonadea | ||||
Superclass Sporozoa | ||||||||
Infraphylum Dinozoa | Superclass Dinoflagellata | Class Dinophyceae | ||||||
Class Ellobiopsea | ||||||||
Class Noctilucea | ||||||||
Class Oxyrrhea | ||||||||
Class Syndinea | ||||||||
Superclass Perkinsozoa | Class Perkinsea | |||||||
Subphylum Protalveolata | Class Colponemea | |||||||
Phylum Ochrophyta [= Heterokontophyta p.p.] | Class Bolidophyceae | |||||||
Class Chrysomerophyceae | ||||||||
Class Chrysophyceae | ||||||||
Class Eustigmatophyceae | ||||||||
Class Pelagophyceae | ||||||||
Class Dictyochophyceae | ||||||||
Class Phaeophyceae | ||||||||
Class Phaeothamniophyceae [=Aurophyceae] | ||||||||
Class Picophagophyceae | ||||||||
Class Pinguiophyceae | ||||||||
Class Raphidophyceae (=Chloromonadophyta) | ||||||||
Class Schizocladiophyceae | ||||||||
Class Synchromophyceae | ||||||||
Class Synurophyceae | ||||||||
Class Xanthophyceae | ||||||||
Phylum Bigyra | Class Bikosea | |||||||
Class Blastocystea | ||||||||
Class Nanomonadea | ||||||||
Class Opalinea | ||||||||
Class Labyrinthulea | ||||||||
Class Placididea [=Placidiophyceae] | ||||||||
INFRAKINGDOM RHIZARIA | Phylum Cercozoa | Class Chlorarachniophyceae [Chlorarachnea] | ||||||
Class Thecofilosea | ||||||||
Class Filosa | ||||||||
Class Imbricatea | ||||||||
Phylum Bacillariophyta | Subphylum Bacillariophytina | Class Bacillariophyceae [=Diatomeae] | ||||||
Kingdom PLANTAE | SUBKINGDOM BILIPHYTA | Phylum Glaucophyta | Class Glaucophyceae | |||||
Phylum Rhodophyta | Subphylum Cyanidiophytina | Class Cyanidiophyceae | ||||||
Subphylum Eurhodophytina | Class Bangiophyceae | |||||||
Class Florideophyceae | ||||||||
Subphylum Proteorhodophytina | Class Compsopogonophyceae | |||||||
Class Porphyridiophyceae | ||||||||
Class Rhodellophyceae | ||||||||
Class Stylonematophyceae | ||||||||
SUBKINGDOM VIRIDIPLANTAE | INFRAKINGDOM CHLOROPHYTA | Phylum Chlorophyta | Subphylum Chlorophytina | Class Chlorodendrophyceae | ||||
Class Chlorophyceae | ||||||||
Class Pedinophyceae | ||||||||
Class Trebouxiophyceae | ||||||||
Class Ulvophyceae | ||||||||
Subphylum Prasinophytina | Class Nephrophyceae | |||||||
Class Mamiellophyceae | ||||||||
Class Pyramimonadophyceae | ||||||||
INFRAKINGDOM STREPTOPHYTA | Superphylum Charophyta: Phylum Charophyta | Class Charophyceae | ||||||
Class Chlorokybophyceae | ||||||||
Class Coleochaetophyceae | ||||||||
Class Conjugatophyceae | ||||||||
Class Klebsormidiophyceae | ||||||||
Class Mesostigmatophyceae |
Industry | Product Name | Microalgae/Microfungi Strain | Specificity/Description | |
---|---|---|---|---|
Food supplement | Nutriphys (Enghien, Belgium) https://nutriphys.com/, accessed on 17 March 2021 | CHLORELLA Green Gem® | Auxenochlorella pyrenoidosa (Chlorophyta) | Food nutritional supplement |
FLORIL | Food supplement: stimulates the intestinal flora while eliminating toxins and heavy metals | |||
DIETIMAG | Food supplement: reduces exhaustion and regain energy | |||
VITENE | Dietary supplement: helps to fight against the signs of aging and premature aging | |||
CHLORELLA PLUS® | Food supplement with antioxidant properties: revitalizing action, detoxifying the body, toning, acid-base regulator, stimulating natural defenses, helps regulate intestinal transit | |||
NUbiocell ® TONIC PLUS | Food supplement: improves sportive performance; treats herpes, reduces fatigue; stimulates the immune system, tones the body | |||
Algavia (Oran, Algeria) https://algavia.com/, accessed on 26 January 2021 | AlgaVia® Protein-Rich Whole Algae | Auxenochlorella pyrenoidosa (Chlorophyta) | Protein-rich product | |
AlgaSpring (Almer, Netherlands) https://www.algaspring.nl/, accessed on 3 February 2021 | NutriSpring | Microchloropsis gaditana (Eustigmatophyceae) | Food supplement | |
Fitoplancton Marino (Cadiz, Spain) https://www.tetrasod.com/, accessed on 10 March 2021 | TetraSOD | Tetraselmis chuii (Chlorophyta) | Powerful antioxidant and nutritious marine phytoplankton ingredient | |
Flora (Burnaby, British Columbia, USA) https://www.florahealth.com/, accessed on 17 March 2021 | Omega Brain+ | Schizochytrium spp. (Fungi) | Vegan rich in EPA and DHA: maintains good health and brain function, supports cardiovascular health, healthy blood triglycerides levels, and cognitive health in an aging population | |
DSM (Heerlen, Netherlands) https://www.dsm.com/23 March 2021 | DHASCO-B® | Schizochytrium sp. (Fungi) | Nutritional oil from microalgae containing min. 38% DHA | |
Sun Chlorella (Torrance, USA) https://www.sunchlorellausa.com/, accessed on 17 March 2021 | Sun Wakasa Gold Plus | Chlorella (Chlorophyta) | Food supplement: extract from the nucleus containing CGF | |
Microphyt (Baillargues, France) http://www.microphyt.eu/, accessed on 17 March 2021 | BrainPhyt | Phaeodactylum tricornutum (Bacillariophyta) | Functional food: Phycoprostans, Xanthophylls, omega-3 fatty acids, sterols… Prevent the effects of cognitive decline | |
Kyanos nutrition (Toulouse, France) https://kyanos-nutrition.com/, accessed on 28 March 2021 | KyanosBrain | Aphanizomenon flos-aquae and Arthrospira platensis (Cyanobacteria) | Food supplement: phenylethylamineandphycocyanin | |
BlueBioTech/Dr. Peter Hartig (Holstein/Germany) https://dr-peterhartig.de/, accessed on 28 March 2021 | Spirulina 720 | Arthrospira platensis (Cyanobacteria) | Food supplement with plant and microalgae powder | |
Spirulina 5-Flowers | Food supplement with Bach flowers, microalgae and vitamin B5 | |||
Astaxanthin | Haematococcus lacustris (Chlorophyta) | Dietary supplement with astaxanthin | ||
Chlorella coriander 900 | Auxenochlorella pyrenoidosa (Chlorophyta) | Food supplement: microalgae powder | ||
Sunny 200 | Dunaliella salina (Chlorophyta) | Food supplement: beta-carotene-rich microalgae powder | ||
Power 22® double pack | Arthrospira platensis (Cyanobacteria), Auxenochlorella pyrenoidosa (Chlorophyta) | Dietary supplement: microalgae powder | ||
Nutraceuticals | AlgaTechnologies Ltd. (Hevel Eliot, Israel) https://www.algatech.com/, accessed on 29 March 2021 | FucoVital™ | Phaeodactylum tricornutum (Bacillariophyta) | Fucoxanthin |
AstaPure | Haematococcus lacustris(Chlorophyta) | Astaxanthin | ||
Fuji Chemical Industries (Toyama, Japan) http://www.fujichemical.co.jp/, accessed on 29 March 2021 | AstaReal | Haematococcus lacustris (Chlorophyta) | Astaxanthin | |
Cyanotech (Kailua-Kona, Hawai) https://www.cyanotech.com/, accessed on 17 March 2021 | BioAstin | Haematococcus lacustris (Chlorophyta) | Astaxanthin | |
Progress Biotech (Capelle aan den IJssel, Netherlands) https://www.progressbiotech.com/, accessed on 6 March 2021 | DHA algal oil | Schizochytrium (Fungi) | DHA (omega-3) | |
Parry nutraceuticals (Onnaiyur, India) https://www.parrynutraceuticals.com/, accessed on 6 January 2021 | Organicphycocyanin | Arthrospira/Spirulina (Cyanobacteria) | Phycocyanin | |
Kyanos nutrition (Toulouse, France) https://kyanos-nutrition.com/, accessed on 12 March 2021 | Kyanos Blue | Arthrospira/Spirulina (Cyanobacteria) | Phycocyanin | |
BASF (Ludwigshafen, Germany) https://nutrition.basf.com/, accessed on 2 February 2021 | Betatene | Dunaliella salina (Chlorophyta) | β-carotene | |
Algosource (Saint Nazaire, France) https://algosource.com/, accessed on 12 March 2021 | Spirulysat | Arthrospira/Spirulina (Cyanobacteria) | Extract of phycocyanin with polysaccharides, amino acids |
Microalgae/ Microfungi | Fraction | Specified Food Category | Maximum Dose | Authorized by |
---|---|---|---|---|
Ulkenia sp. (Marine Fungi) | Extracted oil | Bakery products (breads, rolls, and sweet cookies) | 200 mg·100 g−1 | EU |
Cereal bars | 500 mg·100 g−1 | |||
Non-alcoholic drinks (including milk drinks) | 60 mg·100 mL−1 | |||
Haematococcus lacustris (Chlorophyta) | extracted Oleoresin rich in astaxanthin | Food supplements | 40–80 mg oleoresin per day, equivalent to ≤8 mg astaxanthin per day | |
Odontella aurita (Bacillariophyta) | Flavored pasta | 1.5% | ||
Fish soups | 1% | |||
Marine terrines | 0.5% | |||
Court bouillon preparations | 1% | |||
Crackers | 1.5% | |||
Frozen breaded fish | 1.5% | |||
Schizochytrium sp. (Marine Fungi) | Extracted oil with high DHA and EPA content | Food supplements, intended for the adult population, excluding pregnant or breastfeeding women | 3000 mg·day−1 | |
Food supplements, intended for pregnant or breastfeeding women | 450 mg·day−1 | |||
Substitutes for the total daily ration for weight control | 250 mg | |||
Milk-based beverages and similar products intended for young children | 200 mg·100 g−1 | |||
Cereal-based preparations and baby food intended for infants and young children | ||||
Foods suitable for intense muscular expenditure (for athletes) | ||||
Dairy product substitutes, except beverages | 600 mg·100 g−1 for cheeses; 200 mg·100 g−1 for soy milk and imitation milk products (except beverages) | |||
Tetraselmis chuii (Chlorophyta) | Dried microalgae | Sauces | 20% or 250 mg·day−1 | |
Special salts | 1% | |||
Condiments | 250 mg·day−1 | |||
Food supplements | 250 mg·day−1 | |||
Arthrospira/Spirulina (Cyanobacteria) | Extract (color additive) | Coloring confections, frostings, ice cream and frozen desserts, dessert coatings and toppings, beverage mixes and powders, yogurts, … | FDA | |
Haematococcus sp. (Chlorophyta) | Meal | Salmonid fish feed only | Total astaxanthin from all astaxanthin color additive sources ≤80 mg per kg of finished feed | FDA |
Industry | Product Name | Microalgae Strain | Description | |
---|---|---|---|---|
Food | Allma (Pataias, Portugal) https://www.allmicroalgae.com/en/, accessed on 26 January 2021 | Bars with microalgae—Chlorella | Chlorella (Chlorophyta) | Bars |
Chlorella Cookies | Cookies | |||
Seeds Crunchy Bar. Bar with microalgae | Seeds Crunchy Bar | |||
Sun Chlorella (Torrance, USA) https://www.sunchlorellausa.com/, accessed on 17 March 2021 | Chlorella Udon Noodles | Chlorella (Chlorophyta) | Noodles | |
Paldo (Seoul, South Korea) http://www.paldofood.com/, accessed on 18 March 2021 | Green Tea Chlorella Noodles | Chlorella (Chlorophyta) | Noodles | |
Fooding Company (Sucy-en-Brie, France) http://foodingcompany.com/, accessed on 18 March 2021 | The good spoon | Chlorella (Chlorophyta) | Mayonnaise | |
eChlorial (L’isle-d’Abeau, France) https://www.echlorial.fr/, accessed on 19 March 2021 | TetraselmischuiieChlorial | Tetraselmis chuii (Chloroophyta) | Sea spice, condiment | |
The Algae Factory (Wageningen, The Netherlands) http://thealgaefactory.com/the-milk-chocolate/, accessed on 17 March 2021 | The dark chocolate | Arthrospira/Spirulina (Cynaophya) | Chocolate | |
Feed | AlgaSpring (E. Heimansweg Almere, The Netherlands) https://www.algaspring.nl/nannochloropsis-gaditana-micro-algae/, accessed on 17 March 2021 | NannoStar | Microchloropsis gaditana (Chlorophyta) | Aquaculture feed |
TomAlgae (Belgium) https://www.tomalgae.com/, accessed on 19 March 2021 | TomAlgae (ThalaPure) | freeze-dried algae | Aquaculture feed | |
Solazyme (San Francisco, USA) https://algaprime.com/, accessed on 17 March 2021 | AlgaPrime™ DHA | Microalgae | Companion animals and in aquaculture feed |
Industry | Product | Microalgae | Fraction Used | Effect |
---|---|---|---|---|
DSM (Heerlen, The Netherlands) https://www.dsm.com/, accessed on 26 January 2021 | PEPHA®-CTIVE | Dunaliella salina (Chloroophyta) | aqueous extract rich in amino acids, minerals, and carbohydrates | Skin care: reloads skin with new energy and improves its radiance. |
PEPHA®-TIGHT | Microchloropsis gaditana (Chlorophyta) | aqueous extract rich in vitamin C, vitamin B12, and polysaccharides | Skin care: Tightening effect and long-term skin firming effect | |
PEPHA-AGE | Halochlorella rubescens (Chlorophyta) | aqueous extract rich in amino acids, vitamins (B3), algal saccharides, and minerals (Zn) | Skin protection from blue light and UV | |
Evonik (Frankfurt, Germany) https://corporate.evonik.com/en, accessed on 26 January 2021 | TEGO® Stemlastin | Cyanidium caldarium (Rhodophyta) | n.d. | Skin care: retains a youthful skin appearance and reduces the signs of chronological skin aging |
CODIF technologie naturelle (SaintMalo, France) http://www.codif-tn.com/, accessed on 12 January 2021 | Phormiskinbioprotech g | Pseudanabaena persicina (Cyanobacteria) | Concentrate microalgae | Skin care: against photo-aging of the skin, makes skin pigmentation uniform and adds luster to the skin tone |
Detoxondria | Rhodella (Rhodophyta) | Concentrate microalgae | Skin care: improves tissue oxygenation and luminosity of the skin, reduces the susceptibility of the skin to fatigue and signs of fatigue | |
Rosacea | Rhodella violacea (Rhodophyta) | The complete extract | Skin care: hydrates the skin | |
Dermochlorella D | Chlorella vulgaris (Chlorophyta) | aqueous extract rich in amino acid concentrate | Skin care: reactivates collagen synthesis | |
Goldella | Chlorella vulgaris (Chlorophyta) | Extracted oil rich in lutein | Skin care: Anti-Aging | |
Sun Chlorella (Torrance, USA) https://www.sunchlorellausa.com/, accessed on 26 January 2021 | Astarella Primetime Skin Cream | Chlorella (Chlorophyta) | Astaxanthin and CGF | Skin care: ensures healthy-looking skin |
Sun Chlorella Cream | Chlorella (Chlorophyta) | 20% CGF | Skin care: Nourishes and hydrates the skin | |
Kalia Naturel (Bondy, France) https://kalianature.com/fr/, accessed on 2 March 2021 | Protect My Hair | Arthrospira/Spirulina (Cyanobacteria) | Microalgae powder | Hair care: strengthens the hair and accelerates their growth |
Algenist (Torrance, CA, USA) https://www.algenist.com/, accessed on 2 March 2021 | BLUE ALGAE VITAMIN C™ Dark Spot Correcting Peel | Arthrospira/Spirulina (Cyanobacteria) | Extracted vitamin C | Skin care: reduces the appearance of dark spots & discolorations |
ELEVATE Advanced Lift Contouring Cream | Dunaliella salina (Chlorophyta) | n.d. | Skin care: anti-aging | |
GENIUS Liquid Collagen® | Parachlorella beijerinckii and Auxenochlorella protothecoides (Chlorophyta) | Parachlorella beijerinckii Exopolysaccharides and Chlorella protothecoides Oil | Skin care: enhances skin’s bounce and resilience | |
Estee lauder (New York, USA) https://www.esteelauder.fr, accessed on 17 March 2021 | Nutritious Micro-Algae, Pore Purifying Cleansing Jelly | Chlorella vulgaris (Chlorophyta) and Arthrospira platensis (Cyanobacteria) | Chlorella vulgaris extract and Spirulina platensis powder | Skin care: gel to remove makeup and impurities. |
Givaudan (Vernier, Switzerland) https://www.givaudan.com/, accessed on 17 March 2021 | Depollutine | Phaeodactylum tricornutum (Bacillariophyta) | Peptidic extract | Skin care: Anti-pollution, anti-ageing |
Sensityl™ | Water extract | Skin care: calm the skin | ||
Costalane | Skeletonema costatum (Bacillariophyta) | Poly-unsaturated fatty acid rich in omega-3 | Skin care: restore skin homeostasis and promotes epidermal differentiation | |
Grevilline™ PF | Peptidic extract | Anti-inflammatory, Anti-redness | ||
Hydrintense | Porphyridium purpureum (Rhodophyta) | Exopolysaccharide | Skin care: hydrates the skin | |
Mariliance | Rhodosorus marinus (Rhodophyta) | n.d. | Neurosoother | |
blue algae life water | Arthrospira/Spirulina (Cyanobacteria) | Extract rich in vitamins, minerals, trace elements, and essential amino-acid | Skin care: stimulates and revitalizes the skin | |
Microphyt (Baillargues, France) http://www.microphyt.eu/, accessed on 20 March 2021 | ReinaPhyt | Chlamydomonas reinhardtii (Chlorophyta) | extract rich in carotenoids | Skin care: protects the skin |
MonaPhytcarotenes rich extract | Skin care: rejuvenates the skin | |||
Luteana | Tisochrysis lutea (Haptophyta, Coccolithophyceae) | lipidic fractions rich in xanthophylls | Skin care: soothing effect and anti-aging | |
Renouvellance | Porphyridium purpureum (Rhodophyta) | Phycoerythrin and EPS | Skin care: Anti-aging, anti-pollution, exposomial protection, radiance enhancer and sun care | |
Expanscience (Epernon, France) with microphyt (Baillargues, France) https://www.expanscience.com/fr/, accessed on 25 March 2021 | ALGAENIA | Chlamydomonas acidophila (Chlorophyta) | peptide concentrate | Skin care: protects sensitive skin |
GREENSEA (Mèze, France) http://greensea.fr/, accessed on 27 March 2021 | Silidine® | Porphyridium purpureum (Rhodophyta) | mixture of oligosaccharides and trace elements | Skin care: corrects skin dysfunctions |
Symrise (Holzminden, Germany) https://www.symrise.com/, accessed on 29 March 2021 | SymControl | Tetraselmis suecica (Chlorophyta) | n.d. | Skin care: reduce sebum overproduction, soothing the skin and strengthening the skin barrier. |
SymBronze®1659 | Isochrysis Galbana (Haptophyta, Coccolithophyceae) | n.d. | Skin care: increases skin pigmentation and accelerates the natural tanning process | |
SymHair® Force 1631 | n.d. | Hair care: prevents hair loss, improves volume, and makes hair stronger, healthier, and more vital | ||
algoVita (Tunis, Tunisia) https://www.algovita.tn/, accessed on 19 January 2021 | CONFORTING SOOTHING CREAM | Porphyridium purpureum (Rhodophyta) | n.d. | Skin care: provides intense and long-lasting hydration, soothes, and promotes skin repair. |
LIPOFILLER SERUM | Nannochloropsis (Eustigmatophyceae) | n.d. | Skin care: treat older stains | |
DEPICLEAR SERUM | Haematococcus lacustris (Chlorophyta) | astaxanthin | Skin care: unifies skin complexion while reducing spots and imperfections. |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hachicha, R.; Elleuch, F.; Ben Hlima, H.; Dubessay, P.; de Baynast, H.; Delattre, C.; Pierre, G.; Hachicha, R.; Abdelkafi, S.; Michaud, P.; et al. Biomolecules from Microalgae and Cyanobacteria: Applications and Market Survey. Appl. Sci. 2022, 12, 1924. https://doi.org/10.3390/app12041924
Hachicha R, Elleuch F, Ben Hlima H, Dubessay P, de Baynast H, Delattre C, Pierre G, Hachicha R, Abdelkafi S, Michaud P, et al. Biomolecules from Microalgae and Cyanobacteria: Applications and Market Survey. Applied Sciences. 2022; 12(4):1924. https://doi.org/10.3390/app12041924
Chicago/Turabian StyleHachicha, Rihab, Fatma Elleuch, Hajer Ben Hlima, Pascal Dubessay, Helene de Baynast, Cedric Delattre, Guillaume Pierre, Ridha Hachicha, Slim Abdelkafi, Philippe Michaud, and et al. 2022. "Biomolecules from Microalgae and Cyanobacteria: Applications and Market Survey" Applied Sciences 12, no. 4: 1924. https://doi.org/10.3390/app12041924
APA StyleHachicha, R., Elleuch, F., Ben Hlima, H., Dubessay, P., de Baynast, H., Delattre, C., Pierre, G., Hachicha, R., Abdelkafi, S., Michaud, P., & Fendri, I. (2022). Biomolecules from Microalgae and Cyanobacteria: Applications and Market Survey. Applied Sciences, 12(4), 1924. https://doi.org/10.3390/app12041924