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Featured Application: Replacement of black pavements by high-reflective concrete pavements
is an easy and cost-effective measure to stem climate change. In addition, concrete is a build-
ing material that is fully recyclable at the end of its service life. Furthermore, the construc-
tion of concrete pavements demands local resources, avoiding greenhouse gas emissions due
to transport.

Abstract: Pavements store heat, which is subsequently released into the atmosphere, heating the
surrounding air. Therefore, this process contributes to climate change and global warming. For
this reason, the use of high-solar-reflectance (albedo) pavements is seen as one of the potential
mitigation methods for climate change. Concrete pavements have a much higher albedo than
asphalt due to their light gray color compared with black pavements. Accordingly, the widespread
utilization of highly reflective concrete pavements will improve local climate change mitigation.
Nevertheless, concrete albedo slightly decreases over time because of weathering. Albedo and solar
reflectance index (SRI) measurements were taken on actual precast concrete pavements made with
different mixes. The methodology applied for this project is based on the comparison between the
asphalt and concrete pavements’ reflectivity. Conventional concrete mix designs can provide cool
pavements with SRI higher than 29. Replacement of black pavements by highly reflective concrete
pavements appeared to be a cost-effective and easily implemented measure to combat climate change.
Finally, multidisciplinary studies considering factors such as building materials’ albedo, among
other mitigation measures, should be performed to provide more precise and reliable guidance to
policymakers, stakeholders, decision makers and urban planners.

Keywords: climate change; 1.5 ◦C climate goal; albedo; greenhouse gases; climate change policies

1. Introduction

According to the law of conservation of energy, radiation of wavelength λ incident
upon a material has either been transmitted across the material, has been reflected from
its external surface or has been absorbed. The proportions of transmitted, reflected and
absorbed energy can be expressed as ratios of the incident energy [1]. Accordingly, trans-
missivity (Ψλ), reflectivity (αλ) and absorptivity (ζλ) are defined as dimensionless numbers
between zero and the unity, according to Equation (1). They are radiative properties of
the material. Strictly speaking, Equation (1) is valid exclusively for the case of a single
wavelength. Nevertheless, it is acceptable for fairly wide range of wave bands. For instance,
the reflectivity, α, for solar radiation, is referred to as the surface albedo. Therefore, surface
albedo can be defined as the reflected solar radiation of the material surface divided by the
amount incident upon it, and it is one of the main parameters of material surface radia-
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tion [2]. Consequently, the value of the reflectivity, α, directly determines the absorptivity
of an opaque surface.

Ψλ + αλ + ζλ = 1, (1)

Albedo regulates the surface short-wave absorption for a given solar input. This
fact controls the daytime net radiation budget. Consequently, it rules the moisture and
thermal climate of the material surface and the surrounding air and land. In particular, the
albedo (αλ) is a key surface characteristic and one which can be easily modified by surface
treatment. Furthermore, it should be taken into account that some surfaces that are dark
colored can reflect large portions of infrared solar radiation. Accordingly, they may also
have high albedo values [3]. Modification of the construction material’s albedo will invoke
a significant climatic chain reaction [4].

The climatic conditions and the layout of the buildings has been a subject of interest
since the 1st century BC, when Marco Lucio Vitruvio Polion showed that climatic conditions
and the layout of the buildings should be considered by the architects [5]. Currently, it
is widely acknowledged that the placement of a building on the landscape gives rise to
moisture, thermal, radiative, and aerodynamic variation of the surrounding environment.

Although cities occupy just 2% of the Earth’s land surface, city dwellers consume about
75% of the world’s energy resources [6]. In addition, the urban population is increasing
worldwide as more people are leaving the rural areas to move to the cities.

Albedo and land surface temperature (LST) are correlated [7], i.e., a high albedo value
(high reflection rate of solar radiation) results in lower heat absorption, and therefore, in
a lower LST value. Accordingly, the utilization of building materials with high values
of albedo can help to reduce heat accumulation within cities [7]. Andrés-Anaya et al. [7]
reported a temperature reduction and performance improvement of construction materials
for Urban Heat Island (UHI) mitigation in the city of Valladolid (Spain). Taha [8] has
argued that mitigation measures can offset the Urban Heat Island (UHI). Furthermore,
the use of several simultaneous measures can further offset the UHI, albeit the combined
results are not linear and normally smaller than the mere sum of cooling effects from the
individual measures.

The main methods for retrieving information about Urban Heat Island (UHI) and
albedo effect of pavements are numerical modelling, “in situ” measurements and remote
sensing. The first one is the most widely used method, followed by “in situ” measurements
and remote sensing [9]. Remote sensing is a promising method for retrieving information
about the heat from the Earth’s surface covering a large area, where satellites and aircrafts
are used to collect images showing the data [10]. Some sensors capture the long- and
short-wavelength radiant energy reflected from the Earth’s surface [11,12]. For instance,
the surface albedo in the entire land surface of Chinese has been assessed from 2000 to 2016
by using the database of the MODIS (Moderate Resolution Imaging Spectroradiometer)
key instrument aboard the NASA’s Terra satellite [13]. In addition, Geographic Information
Systems (GIS) has been used to study the Urban Heat Island (UHI) effect in several cities in
Greece [14], and in Shanghai [15], Singapore [16], Atlanta [17], and so on. Other studies are
focussed on studying the impact of Urban Heat Islands (UHI) on population health [18].

Thermodynamic models based on thermal and radiative exchanges between the land
surface and the atmosphere, and atmospheric models, which simulate local temperature
distribution, are categorized as computer models. They are used to assess, simulate, and
predict the thermal spatial distribution and energy flows.

Finally, the greatest advantage offered by the “in situ” measurements approach is the
direct and reliable measurement of the physical parameters, such as land temperature,
air temperature, humidity, wind speed and direction and energy flows, among other
parameters [19].

According to new satellite imagery provided by international space agencies, urban
pavements are important sources of heat radiation and thermal activity [6]. That is to
say, pavements absorb solar energy and radiate it back to the atmosphere, contributing
substantially to climate change.
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Acharya et al. [20] performed computational fluid dynamics (CFD) analyses on asphalt
and concrete pavements, and they concluded that increasing the albedo is more effective in
reducing pavement surface temperatures than increasing the thermal inertia.

Soares et al. [21] underlined the significance of performing a particular assessment
for each local area whenever an intervention is to be planned. They found that a higher
pavement emissivity reduces both air and mean radiant temperatures. Nevertheless,
pavement albedo results can be different between to mean radiant temperature reported
in confined spaces and what tests reveal in larger and more open spaces. The albedo
decrease in small spaces is due to radiation trapping within the canyons. Therefore, thermal
conditions of outdoor areas can be affected by many factors, and climatic predictions are
not that simple, but some tendencies can be identified in any case.

Pavements play a key role in the social and economic progress of the countries, which
often entail significant improvements in the life of individuals. Therefore, pavements
account for a considerable extension of the land cover worldwide. Overall, cool pavements
are basically classified into three types: (i) reflective cool pavements, (ii) evaporative cool
pavements, and (iii) heat storage pavements [22,23]. Recently, pavement solar collector
(PSC) technology has been developed, whereby pavement heat is used for recharging
geothermal boreholes [24].

The most common materials utilized for pavement construction are asphalt and
concrete. It is well-known that conventional pavements can absorb and store solar radiation
due to their dark and opaque surface and their large thermal inertia [25]. By contrast, the
design and use of highly reflective pavements is a mitigation strategy which is gaining
more interest regarding minimizing climatic change effects. Cotana et al. [26] reported a
reduction of 16,000 tons of CO2eq provided by a high-albedo surface area of 115,000 m2

for a service life of 30 years. In addition, permeable pavements are more effective than
traditional ones in reducing air temperature compared to the current asphalt surface [27].

Furthermore, some coated materials can be nearly 1 ◦C cooler for concrete and about
5 ◦C cooler for asphalt pavements [28]. Manni and Nicolini [29] suggested that the use of
cool coatings can be optimized to improve urban albedo.

Accordingly, Zeng et al. [30] reported that high-albedo construction materials in urban
areas are enough to alleviate high temperatures in megacities worldwide, such as Shenzhen
and Hong Kong in China.

The albedo of some common materials used in pavement construction is given in
Table 1, where it can be seen that in comparison with asphalt, they are rather high [31–35].
Concrete is a mix composed of Portland cement (grey or white) [36], aggregates, water,
chemical admixtures, and sometimes supplementary cementitious materials (SCM) such
as coal fly ash, blast-furnace slag and silica fume. Besides, the external concrete surface
may be covered by a fine white layer of calcium carbonate formed by carbonation [37] or
salts deposition (efflorescence). Albedo of smooth-surface concrete ranges from 0.41 to 0.77.
Moreover, white-cement smooth concrete’s albedo value is approximately 0.18–0.39 higher
than that of grey-cement smooth concrete [31]. Nevertheless, abrasion, weathering and dirt
reduce concrete albedo about 0.05-0.19. These albedo values are higher than albedo values
found in many natural surfaces (e.g., desert is 0.35 and jungle is 0.12) [31]. Another way of
fighting against climate change is the use of cost-effective new materials such as polymer
wastes and nanofibers [38,39]. In addition, they could have a positive contribution to the
concrete albedo.

The Leadership in Energy and Environmental Design (LEED) program for certifying
the amount of sustainability incorporated in a building design is one of the most widely
utilized green building rating systems in the world [40]. There are 110 points available
through seven categories (base certification: 40–49; silver: 50–59; gold 60–79, and platinum
> 80 points). One point can be scored in the credit 7.1 by using hardscape materials with an
SRI of at least 29, such as conventional concrete pavements [41]. Additionally, 1–2 points
could be scored under the materials and resources credit 4 for recycled content.
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Table 1. Albedo of typical pavement materials and concrete constituents.

Pavement Constituent Albedo

New asphalt 0.05–0.10
Polished asphalt 0.10–0.20

White Portland cement 0.87
Blast-furnace cements 0.71–0.75
Grey Portland cement 0.32–0.47

Coal fly ash 0.28–0.55

Fine grain natural gravel 0.62
Gold and white rock (chert, iron impurities) 0.55

White rock (plagioclase) 0.49
Limestone fine aggregate 0.42

Limestone coarse aggregate 0.42
Dark grey riverbed sand (quartz, clay minerals, mica) 0.20

Black and red rock (granite) 0.19

Concrete composed of ordinary Portland cement, fine aggregate
fromcrushed limestone, and light-colored slag cement 0.64

Concrete composed of white cement and fine aggregate from
crushed limestone 0.64

Smooth dry concrete made with white cement and fine aggregate
from crushed limestone 0.41–0.77

New grey concrete 0.35–0.40
Weathered grey concrete 0.25–0.30

These points may be awarded if at least 10–20% of the total cost of the materials
contains by-products and recycled materials. Some blended cements such as slag cements
are considered in LEED as a material made with recycled constituents [40].

Climate change has become a central concern in local policy. In 2005, The C40 Cities
Climate Leadership Group was founded. This is a network of mayors of about 100 world-
leading cities worldwide working together to confront the climate change crisis. In 2020,
54 cities representing about 10% of the world’s economy finalized climate action plans in
line with avoiding climate change. In 2021, the C40′s Leadership Standards for 2021–2024,
to ensure C40 are on the way to a zero-carbon future, went into effect. Furthermore,
C40 partnered with The Global Cool Cities Alliance (GCCA), which was launched in
2010. One project of this group is the “100 Cool Cities” program that will endeavor to
obtain commitments from 100 major cities worldwide and great implementation of cool
pavements and roofs in a timely and predictable manner [42]. Considering that pavements
and roofs comprise roughly 60% (normally, roofs account for 20–25%, whereas pavements
for approximately 40%) of city surfaces, pavements and roofs with high solar reflectance
could help to reflect away the summer temperatures of cities (Urban Heat Island, (UHI)),
improving outdoor comfort by reducing summer air temperature by 2–3 ◦C.

The City of Madrid committed to ensuring that a large area of the city will be “zero-
emission” by 2030, by signing the C40 Green and Healthy Streets Declaration on 9th
December 2019. The specific objectives for each of the strategic objectives are defined
within the context of the overall commitment of the Roadmap to Climate Neutrality by
2050. Within the strategic objective named “A cooler city”, there is a specific objective to
encourage the use of high-albedo building materials [43].

This paper is focused on testing reflective concrete pavements. Albedo and the solar
reflectance index (SRI) of different precast concrete pavements have been measured. The
results found in these concrete pavements are compared with the ones reported for the most
commonly used materials to construct pavements. Finally, the effect of using high-albedo
pavement materials on climate change mitigation has been discussed.
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2. Materials and Methods
2.1. Pavement Materials for Measurement

Precast concrete pavements made by different materials and provided by one manufac-
turer (QUADRO, Casarrubuelos, Madrid, Spain) were used in this experimental program
(Figure 1). Precast concrete pavement with improved mix designs can be considered as an
emerging technology worldwide for climate change mitigation. These precast elements
are perfect for use in innovative and functional pavement systems. Thereby, they aim
to improve the mitigation procedures, engage more effective means of construction, and
promote sound rehabilitation of existing pavements.
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Figure 1. QUADRO samples from top to bottom: first column: Glacier 1 and 2; second column:
Glacier 3 and 4; third column: Glacier 5 and 6; and fourth column: titanium and dolomite.

Precast concrete pavements were made with Portland cement CEM I 52.5 R according
to the European standard for common cements, grey or white, depending on the final color
of the sample. Siliceous and calcareous sand (0–2 mm) was used. The calcareous sand was
marble powder. Table 2 collects the code and main characteristics of all the tested precast
concrete pavements. They were made with different Portland cements and aggregates.

Table 2. Description and codification of the tested samples.

Code Denomination and Description Color

Glacier 1 and 2 Concrete slabs aged in a natural manner Glacial grey tone
Glacier 3 and 4 Concrete slabs without ageing treatment and kept in factory Glacial grey tone

Glacier 5 and 6 New mix design used in concrete slabs without
ageing treatment Glacial grey tone

Titanium Concrete slabs without ageing treatment with high SRI
index. Titanium colour Clear grey with a slight white tinge

Dolomite Concrete slabs without ageing treatment with high SRI
index. Dolomite colour Clear grey with a slight yellow tinge

2.2. Measurement Method and Equipment

Square prims were taken from precast pavements currently used in practice in Spain.
Albedo average results (Rm), solar absorptance (α), thermal emittance (ε) and the tem-
perature that each sample would reach (Ts) and its solar reflectance index (SRI) for three
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convection coefficients (hc), corresponding to three wind speeds, were measured in cut
concrete surfaces. They were dried prior to radiative properties measurement because the
moisture of the material markedly modifies the reflectance of concrete surfaces.

In order to calculate thermal emittance, hemispherical reflectance of pavements is
measured with a single-beam FTIR Perkin Elmer Frontier Spectrophotometer, with a 75 mm
integrating sphere coated with a gold diffusing material.

Four readings of each pavement samples were measured (2500–17,000 nm) and thermal
emittance was calculated using hemispherical spectral reflectance (ρλ,h) with blackbody
emission at 298 K: ∫ 17µm

0.3µm(1 – ρλ,h)iλ,bb(λ, Ta)dλ∫ 17µm
0.3µm iλ,bb(λ, Ta)dλ

where iλbb(λ,Ta) is the emission of a blackbody at ambient temperature.
Thermal emittance at a defined temperature T (εT) is the energy emitted by a material

in comparison with the energy emitted by a blackbody at the same temperature and
represents the ability of a material to lose energy by thermal radiation. Pavements with
high emittance values will lose thermal energy faster than pavements with lower ones and
they will reach lower temperatures by solar absorption.

Albedo, or solar reflectance, is the percentage of solar energy reflected by a surface.
Researchers have developed methods to determine solar reflectance by measuring how
well a material reflects energy at each wavelength, then calculating the weighted average
of these values.

In order to calculate albedo, hemispherical reflectance of pavements is measured
with a double-beam UV/VIS/NIR Perkin Elmer Lambda 950 Spectrophotometer, with a
10 cm integrating sphere coated with a diffusing material. The integrating sphere allows
us to measure the amount of incident radiation on sample surface that is reflected in
all directions.

Four readings of each pavement sample were measured (300–2500 nm), and albedos
of concrete pavements were calculated by averaging reflectance measurements with air
mass 1.5 global solar radiation spectrum:

Albedo =

∫ 2.5µm
0.3µm ρλ Gb(λ)dλ∫ 2.5µm

0.3µm Gb(λ)dλ
(2)

where ρλ is the hemispherical reflectance for each wavelength value and Gb(λ) is the
spectral solar irradiance AM1.5G (ASTM G173-03).

The air mass 1.5 albedo of a surface refers to its ability to reflect sunlight that has
a spectral irradiance distribution characteristic of having traversed an atmospheric path
length equal to 1.5 times the height of the Earth’s atmosphere. This path length corresponds
to a solar altitude of 42◦. An air mass 1.5 irradiance is representative of average conditions
in the contiguous United States (ASTM 1998) [44].

2.3. Solar Reflectance Index

The solar reflectance index (SRI) represents the “coolness” of a material surface, since
it accounts for the two major characteristics, i.e., solar reflectance and thermal emittance.
This index is determined according to the procedure described in the American standard
ASTM 1980 [44]. Firstly, the steady-state surface temperature under the sunlight (Ts), the
apparent sky temperature, Tsky, the solar absorbance, α, the irradiance, I, and the thermal
emissivity, ε, are evaluated (Equation (3)).

α I = ε σ
(

T4
S − T4

Sky

)
+ hc (TS − Ta) (3)
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where σ is the Stefan–Boltzmann constant (5.670367 × 10−8 W m−2 K−4) and hc is the
convective coefficient (W m−2 K−1). In addition, the steady-state surface temperature can
be calculated by using Equation (4).

Ts = 309.07 +
(1066.07 α− 31.98 ε )

(6.78 ε + hc)
−
(
890.94α2 + 2153.86 α ε

)
(6.78 ε + hc)

2 (4)

Finally, the solar reflectance index (SRI) of a surface can be calculated by iteration
from the solar reflectance and thermal emittance testing measurements for some defined
convection conditions and Ts (Equation (5)), where Tw and Tb are the steady-state surface
temperatures of the white and black reference surfaces, respectively.

SRI = 100
Tb − Ts

Tb − Tw
(5)

The conditions are described in the American standard ASTM 1980 [44].
Considering medium wind conditions, the standard black material surface with zero

solar reflectance index (SRI = 0) is characterized by solar reflectance and thermal emittance
values of 0.05 and 0.9, respectively, whereas the standard white material surface has solar
reflectance of 0.8 and thermal emittance of 0.9.

Accordingly, high values of thermal emittance and solar reflectance induce lower
surface temperatures and higher SRI results. The solar reflectance index (SRI) could be con-
sidered as an indirect coolness scale where the fully reflective white material corresponds
to an index equal to 100, and the fully absorptive black surface is characterized by an index
equal to zero. Nevertheless, some new materials recently available in the building sector
could be lower than 0 or higher than 100.

3. Results and Discussion

Solar reflectance is often measured in terms of albedo, and Figure 2 shows the four
individual results considered in this work for each sample to calculate the average albedo,
Rm. It should be stressed that the standard deviation for the samples with the highest
albedo values (dolomite and titanium) was the lowest.
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Table 3 shows the albedo average results (Rm), solar absorptance (α), thermal emittance
(ε), temperature that each sample would reach (Ts) and the solar reflectance index (SRI)
for three convection coefficients (hc), corresponding to three wind speeds, obtained in the
tested precast pavements.

Table 3. Albedo average results (Rm), solar absorptance (α), thermal emittance (ε), the temperature
that each sample would reach (Ts) and its solar reflectance index (SRI) for three convection coefficients
(hc), corresponding to three wind speeds.

Denomination Rm α ε Ts (hc = 5) Ts (hc = 12) Ts (hc = 30) SRI (hc = 5) SRI (hc = 12) SRI (hc = 30)

BLACK - 0.95 0.9 376.2 355.4 334.3 0.0 0.0 0.0
WHITE - 0.2 0.9 322.2 318.0 313.9 100.0 100.0 100.0

GLACIER 1 0.281 0.719 0.897 360.6 344.2 328.1 28.9 29.8 30.3
GLACIER 2 0.291 0.709 0.894 360.0 343.8 327.8 30.1 30.9 31.5
GLACIER 3 0.309 0.691 0.888 359.0 343.0 327.4 32.0 33.0 33.8
GLACIER 4 0.295 0.705 0.888 359.9 343.7 327.8 30.2 31.2 31.9
GLACIER 5 0.359 0.641 0.882 355.6 340.6 326.1 38.2 39.4 40.3
GLACIER 6 0.404 0.596 0.886 352.2 338.3 324.8 44.5 45.6 46.4

DOLOMITE 0.535 0.465 0.891 342.5 331.6 321.2 62.5 63.5 64.1
TITANIUM 0.572 0.428 0.893 339.7 329.7 320.2 67.7 68.6 69.1

Average albedo values of all the samples range from 0.28 to 0.57, while solar absorp-
tance values range from 0.42 to 0.72. In addition, solar absorptances for the white and black
bodies were 0.2 and 0.95, respectively.

High-albedo concrete surfaces tend to keep the pavement environment cooler than low-
albedo concrete surfaces by promoting a further takeaway in energy efficiency enhancement
of the heat pumps because of the lower thermal gap [45].

Only three samples have albedo values below 0.30 (Glacier 1, Glacier 2 and Glacier 4).
Glacier 1 and Glacier 2 correspond to the concrete slabs aged in a natural manner, while
Glacier 3 and Glacier 4 are concrete samples without ageing. These paving materials were
made with dark grey Portland cement and fine siliceous aggregates. The ageing effect is
quite low, that is, the albedo fell from 0.30 to 0.28 in the worst-case scenario. Furthermore,
the new mix design provides albedo values that can go as high as 0.36–0.40 (Glacier 5
and Glacier 6). In any case, concrete pavements have a much higher albedo than asphalt
pavements due to their light gray color compared with black, but unfortunately, concrete
albedo decreases over time because of weathering and the accumulation of dirt.

By contrast, the highest albedo was measured in the titanium sample (0.57), which
was made with white Portland cement. This specimen shows a clear grey color with a
slight white tinge. The second highest albedo was recorded in the dolomite pavement
(0.54), which was made with grey Portland cement. In this case, it presents a clear grey
color with a slight yellow tinge.

Figure 3 shows the solar reflectance index (SRI) as a function of the wavelength.
Dolomite and titanium samples present a maximum SRI between 50 and 60 in the range
between 500 and 1500 nm, whereas there was a downward trend in the samples with the
lowest albedo (from 30–35 to 20) in the same range of wavelengths.

There is a linear correlation between the solar reflectance index (SRI) and albedo.
Figure 4 shows the marked correlation between the SRI and albedo. As the trend line
shows, there is a significant correlation between the two. The following Equations (6)–(8)
show the strong correlation (R2 > 0.999).

For hc = 5: y = 134.03x − 9.2667; R2 = 0.9993 (6)

For hc = 12: y = 133.81x − 8.1937; R2 = 0.9997 (7)

For hc = 30; y = 133.59x − 7.4259; R2 = 0.9999 (8)
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The Wanda Metropolitano Stadium in Madrid, Spain, was built between 1990–1993
with Glacier precast concrete pavements (Figure 5). Precast concrete pavement named
Glacier was collocated into the surrounding ground with a solar reflectance index (SRI)
about 0–30 and albedo 0.28–0.29 (Table 3). It has been estimated that ageing will reduce
concrete albedo of this pavement by about 0.1.

Figure 5 shows several pavement applications of the tested precast pavements with
their albedo values: (a) Wanda Stadium (0.30); (b) titanium precast concrete pavement (0.57);
(c) dolomite precast concrete pavement (0.54). The photograph on the left is a pavement
made with white cement and a very fine and clear aggregate (dolomite precast concrete
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pavement). Consequently, it presents a very high albedo of 0.54. The second photograph
also shows an example of high-reflectance concrete pavement with a solar reflectance index
(SRI) of 0.68–0.69 and albedo of 0.54 (Table 3). In fact, the use of cool-colored materials,
namely titanium and dolomite (Figure 5b,c), increases albedo substantially without altering
visual appearance.
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Typical albedo values for new concrete range between 0.35 and 0.40, and between
0.25 and 0.30 for weathered concrete [4]. For comparison, the common albedo value for
asphalt is 0.05–0.10, which increases to about 0.10–0.20 over time due to the polishing effect
of vehicular traffic and the subsequent exposure of aggregates.

The effect of decreasing albedo and SRI of precast concrete pavements with age can
be observed clearly in Table 3. The new mix design (Glacier 5 and 6) of concrete sections
appears much lighter (0.59–0.64) than the existing aged concrete (Figure 1). Although
precast concrete pavements start out with a relatively high albedo, i.e., solar reflectance
(Glacier 3 and 4), and are not as prevalent as asphalt in pavements, it is a worthwhile
endeavour to improve the solar reflectance of pavements. Some research studies reported
that even a small increase of 0.01 in albedo has an important environmental benefit. There-
fore, it is recommended to use cool pavements (i.e., concrete pavements), which have
made an effective contribution to climate change mitigation by reducing the Earth’s surface
temperature. Considering an albedo of 0.10 for asphalt pavements as reference value, we
can calculate the “carbon dioxide equivalent” reduction by replacing this conventional type
of pavement with concrete pavements. An increase in albedo of 0.1 causes a variation of
34.1 W m−2 and an average decrease in “carbon dioxide equivalent” of 25 kgCO2/m2 of
pavement. Table 4 shows the reduction in carbon dioxide emissions by using the tested
concrete pavements, taking as a reference the asphalt pavement’s albedo.

Madrid Central is a low-emission zone located in the center of Madrid (4.72 km2).
More specifically, in the hypothetical case that it could be covered with high-reflectance
materials (albedo > 0.5), a yearly equivalent reduction in carbon dioxide of 0.43 gigatons
could be reached.

The stadium was built on 88,150 m2 of land near the city center. The use of concrete
pavements of albedo 0.30 instead of asphalt pavements will contribute to combatting
climatic change by reducing about 4500 tons of carbon dioxide each year. This positive
effect could be increased by using high-reflective concrete pavements with albedos over
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0.5. In this case, the mitigation will become 8800 tons of carbon dioxide by pavement areas
of 88,000 m2 (Table 4).

Table 4. Reduction in carbon dioxide emissions by using the tested concrete pavements with different
albedo values (Rm) calculated taking as a reference the asphalt pavements albedo.

Parameter GLACIER 1 GLACIER 2 GLACIER 3 GLACIER 4 GLACIER 5 GLACIER 6 DOLOMITE TITANIUM

Rm 0.281 0.291 0.309 0.295 0.359 0.404 0.535 0.572
Reduction in

solar flux
(W m−2)

61.72 65.13 71.27 66.50 88.32 103.66 148.34 160.95

Reduction in
CO2

(kgCO2/m2)
45.25 47.75 52.25 48.75 64.75 76 108.75 118

Reduction in
CO2 (kgCO2) * 3,982,000 4,202,000 4,598,000 4,290,000 5,698,000 6,688,000 9,570,000 10,384,000

* Reduction in carbon dioxide emissions for 88,000 m2 of concrete pavement (kgCO2).

Climate change is having an alarming impact worldwide and the problem continues
to grow because of ever-increasing global temperatures. Accordingly, extreme weather
events are becoming more common.

Atmospheric carbon dioxide levels reached more than 400 parts per million. There-
fore, urgent action is needed to combat climate change and to reduce the ever-increasing
climate-related hazards. Albedo of the tested precast concrete pavements can be up to six
times higher than that of asphalt pavements (Table 3). Thus, they reflect between 60 and
160 W m−2 of the incident radiation with respect to asphalt pavements. Accordingly, a
reduction in the Earth’s surface temperature, equivalent to a decrease of 45–118 kgCO2/m2,
is expected.

4. Conclusions

From albedo and solar reflectance index (SRI) measurements on actual precast concrete
pavements made with different mixes, the following qualitative takeaways are provided:

1. The tested precast concrete pavements present a range of solar reflectance values of
0.29–0.46. Therefore, all of them meet the requirements of LEED-NC SS 7.1 (SRI ≥ 29).
Conventional concrete mix designs can provide cool pavements with SRI higher than
29. Replacement of black pavements by high-reflective concrete pavements is an easy
and cost-effective measure to stem climate change.

2. There is a linear correlation between the solar reflectance index (SRI) and albedo.
3. It is estimated that the concrete mixes reflect between 60 and 160 W m−2 of the incident

radiation with respect to dark conventional pavements, equivalent to a reduction of
45–118 kgCO2/m2. The main outcome of this carbon dioxide decrease is a reduction
in Earth’s surface temperature.

4. High-albedo (>0.5) concrete surfaces exhibit significant “active cool effects” due to
a reduction in solar flux of 136 W m−2, with an equivalent carbon dioxide emission
reduction of 100 kgCO2/m2.

5. These results will allow stakeholders and decision makers to improve environmental
resilience at large territorial scales, especially in the urban core.

6. Multidisciplinary studies considering factors such as building materials’ albedo,
among other mitigation measures, should be performed to provide more precise and
reliable guidance to policymakers, stakeholders, decision makers and urban planners.

7. A huge surface of covered with 4.72 km2 of high-reflectance materials (albedo > 0.5)
can offset about 0.43 gigatons of carbon dioxide every year. Thus, concrete pavements
can contribute very efficiently to climate change mitigation by lowering the land
area temperature.

8. Concrete is fully recyclable material used to construct pavements, which is manufac-
tured with local resources and may be successfully utilized for cool concrete pavement
construction, replacing conventional asphalt pavements.
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The novelty of this paper relies on the study of precast pavements founded on high-
albedo constituents, which were disposed in actual places. They offer the possibility of
continuous and more flexible supervision during the pavement’s service life.
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