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Abstract: The demand for flexible large area optoelectronic devices such as organic light-emitting
diodes (OLEDs) and organic photovoltaics (OPVs) is growing. Roll-to-roll (R2R) printing enables
cost-efficient industrial production of optoelectronic devices. The performance of electronic devices
may significantly suffer from local electrical defects. The dark lock-in infrared thermography (DLIT)
method is an effective non-destructive testing (NDT) tool to identify such defects as hot spots. In this
study, a DLIT inspection system was applied to visualize the defects of R2R printed silver conduc-
tors on flexible plastic substrates. A two-stage automated defect recognition (ADR) methodology
was proposed to detect and localize two types of typical electrical defects, which are caused by
complete or partial breaks on the printed conductive wires, based on localized segmentation and
thresholding methods.

Keywords: automated defect recognition; roll-to-roll; printing; organic photovoltaic; thin film; non-
destructive testing; dark lock-in thermography

1. Introduction

The high-volume production of flexible electronics using roll-to-roll (R2R) manufactur-
ing technologies is a promising upscaling solution for the organic electronics industry [1–4].
R2R printing enables cost-efficient industrial production of optoelectronic devices, such as
organic and polymer solar cells (OPVs) and organic light emitting diodes (OLEDs) [5–8].
Since electronic devices have a multilayered structure, local defects within the thin layers
may cause severe malfunctions of the entire module. During the processing of the indi-
vidual layers, functionality tests are required to visualize and control the quality of each
layer [8].

Early-stage defect detection can improve the production yield and reduce the amount
of waste, as the defected parts will not be used for further processing. It is also easier to
recycle the non-functional material before printing any other layers on top of it. The EC-
funded OLEDSOLAR Project [9,10] aims to develop innovative manufacturing processes
and in-line monitoring techniques to detect defects in solar panels. This study, forms part of
the OLEDSOLAR project which, in-part, sets out to investigate the use of Non-Destructive
Testing (NDT) Techniques for in-line quality control of processing steps in the fabrication of
thin film photovoltaics. It is a growing trend to utilize NDT techniques for process control
as opposed to the traditional method of applying NDT on completed products.

Electrical characterization based on current-voltage (IV) measurement can provide in-
formation on the overall functionality of the optoelectronic devices and provide information
about the malfunction of the device but not the location of the problem [11]. Electro-optical
imaging techniques such as light beam induced current (LBIC) mapping, dark lock-in
thermography (DLIT), electroluminescense (EL) imaging, and photoluminescence (PL)
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imaging are able to reveal the details on registration, defects, particles, shunts and process-
ing variations affecting electrical functionality [12–15]. These techniques have also proven
useful for inline inspection, monitoring and process control [12,16–19].

In this study, the DLIT method was investigated as a potential in-line inspection
method for qualification of fabrication steps in thin film photovoltaic processes, as DLIT
can be used as a quality control method for both devices and individual layers involved in
the full device stack. The in-house developed DLIT system was validated in the laboratory
trials where printing defects and variation in the print quality of silver printed conductors
on thin film samples were detected.

A new automated defect recognition (ADR) methodology for inspection of the printed
conductive thin films, which is based on segmentation and thresholding methods is pro-
posed. The thermal image post-processing procedure involves two main stages:

Stage 1: Each individual silver printed conductive wire was identified by using image
segmentation. This was compared with the designed printing patterns which enabled the
completely broken wires to be automatically detected;

Stage 2: Within the identified printed conductors, the local electrical defects on the
thin film, which are shown as hot spots in the thermal images, were automatically detected
using the thresholding method.

The remainder of this paper is structured as follows; in Sections 2 and 3, the in-house
developed DLIT inspection system, the laboratory-based validation trials are introduced.
Section 4 describes the proposed ADR algorithms with block schematic diagrams of the
localized segmentation and thersholding methods. Section 5 presents the results of ADR
from DLIT images acquired from validation trials. The conclusions are summarized in
Section 6.

2. DLIT System

Thermographic cameras use infrared detectors that detect incident infrared radiation
which is converted to temperature values. This results in a map of temperature values also
known as thermograms. Inspected parts are usually in thermal equilibrium and therefore
require the use of a heat source to produce a thermal contrast between any defected regions
of interest and the background material. This is known as active thermography. Several
options for heat sources exist in inducing the required thermal contrast. In the context
of photovoltaic materials, the two main options are the use of a light source and voltage
application. Light transfers its energy as heat to the sample whereas the application of the
voltage induces the flow of current in a conductor material which in turn results in the
generation of heat.

In both cases, constant application of the heating would lead to lateral heat conduction
within the sample. This results in poor spatial resolution even with the use of current
commercially available infrared detectors that are capable of achieving sub mm spatial
resolution. Modulated heating in combination with lock-in post processing of the data
could overcome this limitation, offering excellent spatial resolution that increases with
increasing modulation frequency, and significantly improved signal-noise-ratio due to its
averaging nature of the lock-in correlation procedure [20].

The thermography inspection system will be eventually implemented and validated
on a roll-to-roll (R2R) electrical testing line at VTT [18,19]. The test operations are performed
by general-purpose electrical test and measurement instruments and layout-specific test
fixtures, which can be equipped with up to 400 arbitrarily configurable test pins. The
pins are used to provide physical access to the printed structures on the web to be tested,
and the typical test applications are measurements of basic electrical parameters, such as
resistance, current or voltage. As such, the application of voltage—also known as Dark
Lock-In Thermography (DLIT)—was preferred over the use of a light source (Illuminated
Lock-In Thermography—ILIT) in this study.

In the DLIT system, as shown in Figure 1, a periodically modulated voltage is applied
to the test sample while being imaged using an infrared thermal camera (FLIR A6751
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MWIR F/2.5). This cooled indium antimonide (InSb) camera offers high-speed windowed
frame rates (up to 120 Hz), performs a variety of non-destructive testing, and provides
327,680 (640 × 512) pixel resolution. Along with thermal images, the camera can also
record the synchronized square wave reference signal that is generated using a signal
generator (RS Pro RS DG805 Signal Generator). The in-house developed software comprises
data acquisition, data visualization, lock-in post processing and data analysis capabilities
through a graphical user-interface (GUI).
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Figure 1. DLIT system set-up.

During the thermography test, the camera records the frames of thermal video images
and the synchronized heating excitation simultaneously. In the lock-in correlation proce-
dure, the frames are multiplied with the weight factors in two channels. The product of
recorded frame and in-phase weight factor is summed over the entire dataset to provide
the sine image ISIN . On the other hand, the same process is repeated but with a 90◦

phase shifted quadrature weight factor resulting in a cosine image ICOS. The amplitude
of the temperature variation as well as the phase can be obtained from the two images
produced [20]. The post processing procedure is graphically illustrated in Figure 2.
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3. DLIT Trials

DLIT tests were carried out on the R2R printed thin film samples provided by VTT.
The conductors are rotary screen-printed Ag-wires (Dupont 5025) on a polyethylene tereph-
thalate (PET) foil (Melinex ST506) [18]. Figure 3 shows one piece of R2R printed silver
conductor on PET foil.
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To validate the developed DLIT system’s ability to identify electrical defects on the
R2R printed thin film, the test sample was created by cutting a small piece of specific
printing pattern with five printing wires (8 cm × 12 cm) from the full piece of printed thin
film (Figure 3). Figure 4a–d show the cropped single piece of test sample of four printing
patterns to be used for laboratory trial. Four patterns (meander, U-shape, rectangular,
straight) were R2R printed with different widths (80, 100, 300, 500, 1000 µm).
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Figure 4. Cropped test sample with printing patterns (a) meander; (b) U-shape; (c) rectangular;
(d) straight.

A test jig was specifically designed and additively consisted of a specimen holder that
enables the application of voltage across five printed wires simultaneously using pogo pins.
As shown in Figure 5, a cropped test sample, with printing patterns of meander shape,
was installed on the test jig. During DLIT test, two terminals were connected to the signal
generator to apply 5 Ag-wires with 0–5 V square wave at 1 Hz. The infrared camera was
set to record the data at 60 Hz for a period of 5 s.

Appl. Sci. 2022, 12, x FOR PEER REVIEW 6 of 17 
 

 
Figure 5. Test sample installed on test jig. 

Artificial defects were induced on the test samples to replicate defected printing. Two 
types of typical printing defects were considered in this study, which were:  
1. Complete wire breaks—artificially created by cutting through the printed Ag-wire. 

The complete wire breaks result in open circuits so zero current can flow between the 
two terminals;  

2. Partial wire breaks—artificially created by scratching and partially cutting the printed 
Ag-wire. The partial wire breaks result in a local increased resistance consequently a 
higher temperature to be detected by an infrared camera, which is so-called hot spot. 

3.1. Defect Case 1—Complete Wire Breaks 
Figure 6 shows the test samples with complete wire breaks, which were tested in the 

laboratory trials. Test sample 1, as shown in Figure 6a, is a 5-wire thin film of U-shape 
printing pattern with a cut through defect on the third wire, which is in the middle of the 
thin film. Test sample 2, as shown in Figure 6b, is a 5-wire thin film of straight printing 
pattern with a cut through defect on the fifth wire, which is at the bottom of the thin film. 
The defects and their locations are indicated in the enlarged images.  

 

 

 

 
(a) (b) 

Figure 5. Test sample installed on test jig.



Appl. Sci. 2022, 12, 2005 6 of 16

Artificial defects were induced on the test samples to replicate defected printing. Two
types of typical printing defects were considered in this study, which were:

1. Complete wire breaks—artificially created by cutting through the printed Ag-wire.
The complete wire breaks result in open circuits so zero current can flow between the
two terminals;

2. Partial wire breaks—artificially created by scratching and partially cutting the printed
Ag-wire. The partial wire breaks result in a local increased resistance consequently a
higher temperature to be detected by an infrared camera, which is so-called hot spot.

3.1. Defect Case 1—Complete Wire Breaks

Figure 6 shows the test samples with complete wire breaks, which were tested in the
laboratory trials. Test sample 1, as shown in Figure 6a, is a 5-wire thin film of U-shape
printing pattern with a cut through defect on the third wire, which is in the middle of the
thin film. Test sample 2, as shown in Figure 6b, is a 5-wire thin film of straight printing
pattern with a cut through defect on the fifth wire, which is at the bottom of the thin film.
The defects and their locations are indicated in the enlarged images.
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Figure 6. Complete wire breaks on (a) Test sample 1—U-shape printing pattern with cut through
on the third wire; (b) Test sample 2—Straight printing pattern test sample with cut through on the
fifth wire.

Figures 7 and 8 shows the processed DLIT amplitude images of two test samples.
Figure 7a,b show the results of Test Sample 1 without and with a complete wire broken.
It can be seen that a complete wire break on the third wire prevents the wire from be-
ing illuminated so that it is invisible in the DLIT amplitude image, as highlighted by a
red rectangle.
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Figure 8. DLIT amplitude images of Test Sample 2 (a) without complete wire break; (b) with a
complete wire broken on the fifth wire.

Figure 8a,b show the results of Test Sample 2 without and with a complete wire break.
The broken wire, which is the fifth wire on Test Sample 2, is invisible in Figure 8b, as
highlighted by a red rectangle.

3.2. Defect Case 2—Partial Wire Breaks

Figure 9 shows the test samples with partial wire breaks. A partial wire break was
induced on Test Sample 3, as shown in Figure 9a. Two partial wire breaks were induced
on Test Sample 4, as shown in Figure 9b. The arrows in red indicate the locations of the
defects in the figures. The defect sizes of these two wire breaks are around a half of the
wire widths, which are 250–500 µm.



Appl. Sci. 2022, 12, 2005 8 of 16

Appl. Sci. 2022, 12, x FOR PEER REVIEW 8 of 17 
 

on Test Sample 4, as shown in Figure 9b. The arrows in red indicate the locations of the 
defects in the figures. The defect sizes of these two wire breaks are around a half of the 
wire widths, which are 250–500 μm. 

Figure 10 shows the DLIT amplitude images of Test Samples 3 and 4. It is seen from 
the figures that the partial wire breaks can be clearly detected as hot spots, which are 
indicated by the arrows in red. 

 
 

 

 
 

        
(a) (b) 

Figure 9. Partial wire breaks on (a) Test Sample 3—meander printing pattern with one partial wire 
break on the third wire; (b) Test Sample 4—meander printing pattern test sample with cut through 
on the fifth wire. 

  
(a) (b) 

Figure 10. DLIT amplitude images of (a) Test Sample 3 and (b) Test Sample 4. 

4. ADR Algorithms 
As previously discussed, two types of typical defects on the conductive thin film 

were investigated in this study which have distinct characteristics captured by the DLIT 
method: namely, complete wire breaks, e.g., Figure 7b, and partial wire breaks such as the 
images shown in Figure 10. An ADR algorithm can automate the detection process for the 
two defect types, therefore reducing the labor cost for human inspection and increasing 
the efficiency of monitoring R2R fabrication process.  

For ADR development and processing, the amplitude matrices collected from the 
DLIT process are adopted and analyzed, instead of using the image formats presented in 

Figure 9. Partial wire breaks on (a) Test Sample 3—meander printing pattern with one partial wire
break on the third wire; (b) Test Sample 4—meander printing pattern test sample with cut through
on the fifth wire.

Figure 10 shows the DLIT amplitude images of Test Samples 3 and 4. It is seen from the
figures that the partial wire breaks can be clearly detected as hot spots, which are indicated
by the arrows in red.
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4. ADR Algorithms

As previously discussed, two types of typical defects on the conductive thin film were
investigated in this study which have distinct characteristics captured by the DLIT method:
namely, complete wire breaks, e.g., Figure 7b, and partial wire breaks such as the images
shown in Figure 10. An ADR algorithm can automate the detection process for the two
defect types, therefore reducing the labor cost for human inspection and increasing the
efficiency of monitoring R2R fabrication process.

For ADR development and processing, the amplitude matrices collected from the
DLIT process are adopted and analyzed, instead of using the image formats presented in
previous section. Adopting the data matrices grants access to raw pixels, hence facilitating
detailed analysis. The input data are 512 × 640 matrices of pixel values from laboratory
trials. To assist analysis, all input matrices are visualized in grayscale. An example is
demonstrated in Figure 11a below using data from Test Sample 1.
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4.1. Challenges with DLIT Images

It has been shown in the previous section that the DLIT process can generate images
with high signal-to-noise ratio (SNR) to facilitate operators to spot defects, e.g., Figure 10.
However, the DLIT images also bring several challenges when dealing with region of
interest (ROI) detection, which will be discussed in the following paragraphs.

Firstly, the intensity of each wire is not uniform and should be investigated indi-
vidually. For instance, it can be observed from Figure 11b that the first three wires are
clearly visible in grayscale, whereas the last two wires are not visible directly in grayscale,
unless scaled as shown in Figure 7a. In this paper, the overall intensity level for each
wire is estimated by inspecting averaged pixel magnitude per row, calculated from the
equation below:

Ir =
∑c

i=0 pixelr,i

c
(1)

where r is the row number, and c represents the number of columns in the image. Note that
because the images are generated using DLIT method, the pixels are dimensionless and
are not actual temperature levels. In Figure 12, an intensity estimation plot is presented,
based on the data shown in Figure 11, which were collected from a five-wire sample with
no defects.
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It is evident from Figure 12 that the intensity level of the three wires (ROI from row
0 to 300) are clear. However, as the wire becomes thinner for the last two wires (ROI
from row 300 to 500), the intensity level is barely noticeable in relation to the background.
Additionally, the intensity curve within the edges of each wire resembles a “bathtub” curve,
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where the lowest intensity occurs in between the edges. This makes it more challenging
to distinguish the thinner wires against the background noise, especially when applying
traditional thresholding methods, such as Otsu’s method [21]. Otsu’s method is effective
in automatically choosing threshold to separate all the pixels into two classes, namely
the foreground and background, but its efficacy deteriorates as the intensity of the thin
wires tend to the values of background noise while the thick wires are distinctly stronger.
Similarly, other widely adopted edge-based methods such as the Canny edge detector [22]
perform less effectively. The Canny edge detector is a multi-stage algorithm that discovers
the intensity gradients of the image in both horizontal and vertical directions, and then
applies thresholding to determine potential edges. It therefore suffers from lack of contrast
in the weak edges. Although it is likely to achieve optimal edge detection results through
fine-tuning of the Canny detector parameters including the width of Gaussian filter, the
lower and upper threshold for hysteresis thresholding, but the process is tedious.

As shown in Figure 13a, Otsu’s method separates the top three wires which are strong,
but completely misses the two thin wires at the bottom. The Canny edge detector in
Figure 13b performs better where all five wires are detected, although some background
noise persists. However, the process of finding the optimal parameters for the Canny
edge detector are challenging, because the efficacy of the Canny edge detector is highly
dependent on the low and high thresholding as well as the Gaussian filter used.
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Figure 13. Demonstration of edge detection methods: (a) Otsu’s method; (b) Canny edge detector
with sigma = 0.1, threshold = [0.025, 0.03].

In addition to the thresholding and edge-based detection methods, there are other
methods proposed based on various algorithms [23–26], such as region-based methods [27],
clustering-based methods [28] and deep-learning methods [29–31]. However, they all have
their own drawbacks. The DLIT images are inherently one channel grayscale, therefore it is
difficult to implement distance-based algorithms, e.g., clustering methods as the pixel space
is only one dimension of intensity. Another challenge is that due to the difficulty in obtain-
ing thin films with natural wire breaks, the number of images generated from experiments
are not sufficient to support the training needs for deep-learning based methods. Therefore,
in this study, a multi-stage image processing pipeline was developed, which consists of
localized segmentation to extract areas of illuminated wires, and hot spot detection based
on further analysis within the detected illuminated wire areas.

4.2. Localised Segmentation

To overcome the issue of weak intensity pixels, the ROI that contain wires are proposed
be inspected locally and individually so that the weak signatures can be extracted in a
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refined ROI. The working principle of R2R and DLIT determines that the relative positions
of the wires are fixed during inspection, making the localized inspection possible. The
schematic diagram for this process is depicted in Figure 14.
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Figure 14. Schematic diagram of the process to refine ROI.

The averaging filter is applied as a first step to further remove any unwanted noise
and minor fluctuations. For this study, it was discovered that a general 15 × 15 averaging
filter was adequate. The intensity estimator plot shown in Figure 15 demonstrates the
smooth effect in comparison to the unprocessed intensity plot in Figure 12. It is shown that
the minor fluctuations are suppressed, as well as the “bathtub” curves in between the front
and back edges for each wire.
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Figure 15. Intensity plot after applying 15 × 15 average filter.

The next step was to extract the pixels within the specified a rough ROI individually
so that a more refined ROI could be defined for wire detection. To achieve highlighting
possible pixel peaks and reducing the pixel noises, a 0–1 scaler function was applied for
each specified ROI. The 0–1 scaler was defined as a mapping function, which converts the
pixel values from one range to range of [0, 1], so that the smaller pixels are suppressed and
pixels with larger intensities are amplified. The scaler is achieved through the equation
defined in Equation (4):

In ∈ ROI

Iscaled = In−Min(In)
Max(In)−Min(In)

(2)

The effect of this 0–1 scaler is demonstrated in Figure 16, where an example of rough
ROI of [300–400] row index is given. It is worth noting that the 0–1 scaler itself does not
modify the shape of the curve, but rather normalizes the DLIT image so that all pixels are
comparable in the same scale of [0, 1] for the thresholding process.
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From Figure 16, a globally applicable threshold, in this study 0.4 can be applied to
detect the edges using heuristic rules:

In is a Front edge if : In and In−1< threshold, In+1 >threshold

In is a Back edge if : In and In+1< threshold, In−1 >threshold
(3)

There should be other heuristics, including that the detected Back edge should come
after the Front edge, the number of Front edges and Back edges should be equal, and
multiple Front edges and Back edges should be allowed to be discovered in order to
increase the sensitivity of weak signal detection. If after processing, no edges are discovered,
satisfying the rules specified above, then it indicates no wire is detected in the specified ROI.

If edges are detected, the refined ROI is formed by combining earliest Front edge and
latest Back edge. In the Figure 16 example, the detected refined ROI is [342, 377], noted that
the 300 offset is added on row index from Figure 16b. The refined ROI is sent to a z-score
analyzer to detect irregularities that are associated with hot spots.

4.3. Hot Spot Detection Based on Localised Segmentation

As shown in Figure 17, the refined ROI is sent to a z-score analyzer, which then
determines the existence of hot spots induced by partial wire breaks within the refined ROI.
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The z-score analyzer analyses the z-score defined by the equation below:

Z_Score =
In −Mean(In)

σ
(4)
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where the s represents the standard deviation of the pixels. The z-score indicates how
far away each pixel within the refined ROI is deviated from the mean value. If a hot
spot exists within the ROI, then the z-scores for the pixels associated with hot spot will
be severely deviated from normal pixels. The thresholding to determine the existence of
hot spot in this paper is set to z-score of six, acquired from DLIT images obtained from
lab-based experiments.

If the hot spots are detected, the corresponding ROI will be painted as red using a
painter provided by OpenCV library. If not detected, the corresponding ROI will be painted
as green. In spite of whether hot spots are detected, all detected refined ROI will be counted
into the number of wires detected.

5. ADR Results and Discussion

The DLIT images introduced in Chapter 3—DLIT Trials, were used for validating
the proposed two-stage method. In Figures 18 and 19, the DLIT images of thin film Test
Sample 1 and Test Sample 2 with and without wire breaks, which are shown previously in
Figures 7 and 8, are processed. The wires are U-shaped and straight-line shaped, respec-
tively. No hot spots were instigated or detected in this batch of results, which is in line with
the prior knowledge that no hot spots existed in these samples.
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Figure 19. Demonstration of the wire breaks detection using the proposed method of Test Sample 2:
(a) healthy condition of straight wires; (b) one wire break in straight wires.

It is evident that in Figure 18, the refined ROI areas are successfully detected and
clearly highlighted in green for both types of wires with an intention of assisting con-
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firmation checks. After processing, weak wires such as the bottom two wires shown in
Figure 19a, which can barely be seen with naked eyes, are detected and highlighted to avoid
being mistakenly classified as breaks. Additionally, the detection results are automatically
labelled as image titles. The results can also be summarized in batches to assist operators’
post inspection.

In Figure 20, the DLIT images of thin film Test Sample 3 and Test Sample 4 with partial
wire breaks, which were previously shown in Figure 10, were processed. It is clear that the
ROI contains hot spots which are correctly highlighted in red color, whereas normal wires
are labelled in green color.
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Figure 20. Hot spots detection on meander-shaped wires: (a) two wires with one hot spot (b) two
wires with two hot spots.

The ADR results presented in figures from Figure 19 to Figure 20 show that the
developed ADR algorithm is able to successfully detect the ROI of intact wires, detect wires
with hot spots, and detect complete wire breaks. Detected intact wires’ ROIs are highlighted
with green frames, whereas wires with hot spots are highlighted with red frames. Number
of complete wire breaks can be calculated by subtracting number of wires detected from
total number of wires. The entire process is automatically completed by the processing
computer with a pre-defined coarse ROI arrangement of wires, and the detection results
can be incorporated into a separate reporting system to generate batch processing results
for human operators, or with an alarm system which notifies operators when wire breaks
or hot spots are detected.

The ADR algorithm, written in Python, runs 0.7 s processing time per image, on a
laptop with 16GB RAM and an Intel i7 processor. The ADR can be further optimized using
compiled programming languages such as C/C++ to reduce processing time. The short
processing time required means that the ADR is suitable to operate either as an in-line
inspection tool to be incorporated into the DLIT system, or as a post-analysis tool to assist
post-inspection of the fabricated films.

The current version of ADR is semi-automatic as it still requires the operators to
input a coarse ROI arrangement of wires. To be able to achieve full-automatic ADR,
additional experiment data need to be collected to enable edge detection and image object
segmentation using Deep Learning methods to detect the coarse ROI as input to the
proposed ADR. Simulation work has been undertaken to generate bespoke images to be
used as training datasets.

6. Conclusions

A DLIT tool was developed to inspect R2R printed silver conductors on thin films. It
has been shown that it has the ability to detect defects in the printing quality of printed
patterns in this study, which will help the operator to find the faulty parts in the roll and
remove them before further processing. When compared to simple resistance measure-
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ments, the benefit of DLIT is that, in addition to showing that the conductor is faulty/not
conducting, it shows exactly the position of the defect, which will help to improve the
printing process in the following runs. This will improve the production yield and reduce
the amount of waste.

To enable ADR for identifying the type and location of defects from DLIT images, a
multi-stage image processing methodology was proposed based on localized segmentation
and thresholding. The results of ADR processing of DLIT images are promising, although
they were demonstrated on limited laboratory trial results. The DLIT tests were run semi-
automatically by manually initiating thermal image acquisition and post-processing. In
the next stage, the DLIT tool will be upgraded to provide fully automated operation and
implemented on R2R testing line at VTT to continually inspect the printed conductive thin
films. The future works will also include more DLIT trials with various printing pattern,
material, and defect scenarios. Hence, the repeatability and robustness of the proposed
method can be extensively studied in the next stage.
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