Gut Microbiome in Patients with Obstructive Sleep Apnoea
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Design and Subjects
2.2. Sleep Studies
2.3. Stool Sample Collection and Analysis
3. Results
3.1. Comparison of the OSA and Control Groups
3.2. Comparison of the OSA and Control Groups Using Bioinformatics Analysis
3.3. Comparison of Relative Abundances of Bacteria between the OSA and Control Groups
3.4. Correlation between Gut Microbiome and Demographics, Clinical Data and Markers of Disease Severity
4. Discussion
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Chen, J.; Lin, S.; Zeng, Y. An Update on Obstructive Sleep Apnea for Atherosclerosis: Mechanism, Diagnosis, and Treatment. Front. Cardiovasc. Med. 2021, 8, 647071. [Google Scholar] [CrossRef] [PubMed]
- Trøseid, M.; Andersen, G.; Broch, K.; Hov, J.R. The gut microbiome in coronary artery disease and heart failure: Current knowledge and future directions. eBioMedicine 2020, 52, 102649. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Neroni, B.; Evangelisti, M.; Radocchia, G.; Di Nardo, G.; Pantanella, F.; Villa, M.P.; Schippa, S. Relationship between sleep disorders and gut dysbiosis: What affects what? Sleep Med. 2021, 87, 1–7. [Google Scholar] [CrossRef] [PubMed]
- Albenberg, L.; Esipova, T.V.; Judge, C.P.; Bittinger, K.; Chen, J.; Laughlin, A.; Grunberg, S.; Baldassano, R.N.; Lewis, J.D.; Li, H.; et al. Correlation between intraluminal oxygen gradient and radial partitioning of intestinal microbiota. Gastroenterology 2014, 147, 1055–1063.e8. [Google Scholar] [CrossRef] [Green Version]
- Zhang, X.; Wang, S.; Xu, H.; Yi, H.; Guan, J.; Yin, S. Metabolomics and microbiome profiling as biomarkers in obstructive sleep apnoea: A comprehensive review. Eur. Respir. Rev. Off. J. Eur. Respir. Soc. 2021, 30, 200220. [Google Scholar] [CrossRef]
- Cai, Y.; Juszczak, H.M.; Cope, E.K.; Goldberg, A.N. The microbiome in obstructive sleep apnea. Sleep 2021, 44, zsab061. [Google Scholar] [CrossRef]
- Gileles-Hillel, A.; Kheirandish-Gozal, L.; Gozal, D. Biological plausibility linking sleep apnoea and metabolic dysfunction. Nat. Rev. Endocrinol. 2016, 12, 290–298. [Google Scholar] [CrossRef]
- Singh, R.K.; Chang, H.W.; Yan, D.; Lee, K.M.; Ucmak, D.; Wong, K.; Abrouk, M.; Farahnik, B.; Nakamura, M.; Zhu, T.H.; et al. Influence of diet on the gut microbiome and implications for human health. J. Transl. Med. 2017, 15, 73. [Google Scholar] [CrossRef] [Green Version]
- Collado, M.C.; Katila, M.K.; Vuorela, N.M.; Saarenpää-Heikkilä, O.; Salminen, S.; Isolauri, E. Dysbiosis in Snoring Children: An Interlink to Comorbidities? J. Pediatr. Gastroenterol. Nutr. 2019, 68, 272–277. [Google Scholar] [CrossRef] [Green Version]
- Valentini, F.; Evangelisti, M.; Arpinelli, M.; Di Nardo, G.; Borro, M.; Simmaco, M.; Villa, M.P. Gut microbiota composition in children with obstructive sleep apnoea syndrome: A pilot study. Sleep Med. 2020, 76, 140–147. [Google Scholar] [CrossRef]
- Ko, C.Y.; Liu, Q.Q.; Su, H.Z.; Zhang, H.P.; Fan, J.M.; Yang, J.H.; Hu, A.-K.; Liu, Y.-Q.; Chou, D.; Zeng, Y.-M. Gut microbiota in obstructive sleep apnea-hypopnea syndrome: Disease-related dysbiosis and metabolic comorbidities. Clin. Sci. 2019, 133, 905–917. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ko, C.Y.; Fan, J.M.; Hu, A.K.; Su, H.Z.; Yang, J.H.; Huang, L.M.; Yan, F.-R.; Zhang, H.-P.; Zeng, Y.-M. Disruption of sleep architecture in Prevotella enterotype of patients with obstructive sleep apnea-hypopnea syndrome. Brain Behav. 2019, 9, e01287. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yan, R.; Andrew, L.; Marlow, E.; Kunaratnam, K.; Devine, A.; Dunican, I.; Christophersen, C. Dietary Fibre Intervention for Gut Microbiota, Sleep, and Mental Health in Adults with Irritable Bowel Syndrome: A Scoping Review. Nutrients 2021, 13, 2159. [Google Scholar] [CrossRef] [PubMed]
- Szily, M.; Tarnoki, A.D.; Tarnoki, D.L.; Kovacs, D.T.; Forgo, B.; Lee, J.; Kim, E.; Sung, J.; Kunos, L.; Meszaros, M.; et al. Genetic influences on the onset of obstructive sleep apnoea and daytime sleepiness: A twin study. Respir. Res. 2019, 20, 125. [Google Scholar] [CrossRef]
- Tarnoki, A.D.; Tarnoki, D.L.; Forgo, B.; Szabo, H.; Melicher, D.; Metneki, J.; Littvay, L. The Hungarian Twin Registry Update: Turning From a Voluntary to a Population-Based Registry. Twin Res. Hum. Genet. Off. J. Int. Soc. Twin Stud. 2019, 22, 561–566. [Google Scholar] [CrossRef]
- Berry, R.B.; Budhiraja, R.; Gottlieb, D.J.; Gozal, D.; Iber, C.; Kapur, V.K.; Marcus, C.L.; Mehra, R.; Parthasarathy, S.; Quan, S.F.; et al. Rules for scoring respiratory events in sleep: Update of the 2007 AASM Manual for the Scoring of Sleep and Associated Events. Deliberations of the Sleep Apnea Definitions Task Force of the American Academy of Sleep Medicine. J. Clin. Sleep Med. JCSM Off. Publ. Am. Acad. Sleep Med. 2012, 8, 597–619. [Google Scholar] [CrossRef] [Green Version]
- Szabo, H.; Hernyes, A.; Piroska, M.; Ligeti, B.; Fussy, P.; Zoldi, L.; Galyasz, S.; Makra, N.; Szabo, D.; Tarnoki, A.; et al. Association between Gut Microbial Diversity and Carotid Intima-Media Thickness. Medicina 2021, 57, 195. [Google Scholar] [CrossRef]
- Ewels, P.; Magnusson, M.; Lundin, S.; Käller, M. MultiQC: Summarize analysis results for multiple tools and samples in a single report. Bioinformatics 2016, 32, 3047–3048. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bolger, A.M.; Lohse, M.; Usadel, B. Trimmomatic: A flexible trimmer for Illumina sequence data. Bioinformatics 2014, 30, 2114–2120. [Google Scholar] [CrossRef] [Green Version]
- Lu, J.; Salzberg, S.L. Ultrafast and accurate 16S rRNA microbial community analysis using Kraken 2. Microbiome 2020, 8, 124. [Google Scholar] [CrossRef]
- Quast, C.; Pruesse, E.; Yilmaz, P.; Gerken, J.; Schweer, T.; Yarza, P.; Peplies, J.; Glöckner, F.O. The SILVA ribosomal RNA gene database project: Improved data processing and web-based tools. Nucleic Acids Res. 2013, 41, D590–D596. [Google Scholar] [CrossRef] [PubMed]
- Breitwieser, F.P.; Lu, J.; Salzberg, S.L. A review of methods and databases for metagenomic classification and assembly. Brief. Bioinform. 2019, 20, 1125–1136. [Google Scholar] [CrossRef] [PubMed]
- Palarea-Albaladejo, J.; Martín-Fernández, J.A. Compositions—R package for multivariate imputation of left-censored data under a compositional approach. Chemom. Intell. Lab. Syst. 2015, 143, 85–96. [Google Scholar] [CrossRef]
- The Scikit-Bio Development Team. Scikit-Bio: A Bioinformatics Library for Data Scientists, Students, and Developers. Available online: http://scikit-bio.org (accessed on 1 December 2021).
- Anderson, M.J. Permutational Multivariate Analysis of Variance (PERMANOVA); Wiley Statsref: Statistics Reference Online, 2014; pp. 1–15. [Google Scholar]
- Faul, F.; Erdfelder, E.; Buchner, A.; Lang, A.G. Statistical power analyses using G*Power 3.1: Tests for correlation and regression analyses. Behav. Res. Methods 2009, 41, 1149–1160. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Smith, R.P.; Easson, C.; Lyle, S.M.; Kapoor, R.; Donnelly, C.P.; Davidson, E.J.; Parikh, E.; Lopez, J.V.; Tartar, J.L. Gut microbiome diversity is associated with sleep physiology in humans. PLoS ONE 2019, 14, e0222394. [Google Scholar] [CrossRef] [PubMed]
- Poroyko, V.A.; Carreras, A.; Khalyfa, A.; Khalyfa, A.A.; Leone, V.; Peris, E.; Almendros, I.; Gileles-Hillel, A.; Qiao, Z.; Hubert, N.; et al. Chronic Sleep Disruption Alters Gut Microbiota, Induces Systemic and Adipose Tissue Inflammation and Insulin Resistance in Mice. Sci. Rep. 2016, 6, 35405. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yunes, R.A.; Poluektova, E.U.; Dyachkova, M.S.; Klimina, K.M.; Kovtun, A.S.; Averina, O.V. GABA production and structure of gadB/gadC genes in Lactobacillus and Bifidobacterium strains from human microbiota. Anaerobe 2016, 42, 197–204. [Google Scholar] [CrossRef]
- Cortés-Martín, A.; Iglesias-Aguirre, C.E.; Meoro, A.; Selma, M.V.; Espín, J.C. There is No Distinctive Gut Microbiota Signature in the Metabolic Syndrome: Contribution of Cardiovascular Disease Risk Factors and Associated Medication. Microorganisms 2020, 8, 416. [Google Scholar] [CrossRef] [Green Version]
- Peppard, P.E.; Young, T.; Barnet, J.H.; Palta, M.; Hagen, E.W.; Hla, K.M. Increased prevalence of sleep-disordered breathing in adults. Am. J. Epidemiol. 2013, 177, 1006–1014. [Google Scholar] [CrossRef] [Green Version]
- Jeong, M.Y.; Jang, H.M.; Kim, D.H. High-fat diet causes psychiatric disorders in mice by increasing Proteobacteria population. Neurosci. Lett. 2019, 698, 51–57. [Google Scholar] [CrossRef]
- Aron-Wisnewsky, J.; Vigliotti, C.; Witjes, J.; Le, P.; Holleboom, A.G.; Verheij, J.; Nieuwdorp, M.; Clément, K. Gut microbiota and human NAFLD: Disentangling microbial signatures from metabolic disorders. Nat. Rev. Gastroenterol. Hepatol. 2020, 17, 279–297. [Google Scholar] [CrossRef] [PubMed]
- Vich Vila, A.; Collij, V.; Sanna, S.; Sinha, T.; Imhann, F.; Bourgonje, A.R.; Mujagic, Z.; Jonkers, D.M.A.E.; Masclee, A.A.M.; Fu, J.; et al. Impact of commonly used drugs on the composition and metabolic function of the gut mi-crobiota. Nat. Commun. 2020, 11, 362. [Google Scholar] [CrossRef] [PubMed]
OSA (n = 19) | Control (n = 20) | p | |
---|---|---|---|
Age (years) | 55 ± 12 | 43 ± 16 | 0.01 |
Gender (males%) | 53 | 35 | 0.27 |
BMI (kg/m2) | 26.3/25.0–28.1/ | 22.8/20.9–27.1/ | 0.07 |
Smoking (ever%) | 32 | 10 | 0.09 |
Hypertension (%) | 53 | 35 | 0.27 |
Cardiovascular disease (%) | 11 | 5 | 0.52 |
Arrhythmia (%) | 21 | 10 | 0.34 |
Diabetes (%) | 11 | 0 | 0.14 |
Dyslipidaemia (%) | 57 | 25 | 0.04 |
SBP (mmHg) | 135/118–140/ | 120/120–130/ | 0.39 |
DBP (mmHg) | 80/70–90/ | 75/70–80/ | 0.06 |
Fasting blood glucose (mmol/L) | 4.8/4.4–5.3/ | 4.4/4.1–5.1/ | 0.32 |
CRP (mg/L) | 1.8/1.2–4.1/ | 1.6/0.7–4.7/ | 0.66 |
Total cholesterol (mmol/L) | 5.5 ± 1.1 | 5.4 ± 1.1 | 0.76 |
LDL-C (mmol/L) | 1.0 ± 1.7 | 1.0 ± 1.1 | 0.86 |
HDL-C (mmol/L) | 1.2/0.9–1.8/ | 1.7/1.3–2.1/ | 0.04 |
Triglyceride (mmol/L) | 1.7 ± 0.6 | 1.1 ± 0.4 | <0.01 |
TST (min) | 388/361–423/ | 383/357–412/ | 0.56 |
SPT (min) | 429/413–450/ | 419/397–435/ | 0.59 |
Sleep% | 93/89–97/ | 95/85–99/ | 0.66 |
AHI (1/h) | 8.8/6.5–12.2/ | 1.8/0.9–2.6/ | <0.01 |
ODI (1/h) | 6.9/5.2–9.9/ | 0.7/0.2–1.2/ | <0.01 |
TST90% | 0.7/0.2–2.2/ | 0.0/0.0–0.0/ | <0.01 |
ESS | 6.9 ± 3.5 | 6.8 ± 3.5 | 0.93 |
OSA (n = 19) | Control (n = 20) | p | |
---|---|---|---|
Not on any medications (%) | 47 | 45 | 0.86 |
ACE inhibitor (%) | 37 | 10 | 0.04 |
Angiotensin Receptor Blocker (%) | 0 | 5 | 0.32 |
Beta-blocker (%) | 16 | 10 | 0.59 |
Calcium chanel blocker (%) | 10 | 0 | 0.13 |
Diuretic (%) | 10 | 5 | 0.52 |
Clopidogrel (%) | 10 | 5 | 0.52 |
Aspirin (%) | 5 | 0 | 0.30 |
Statin (%) | 21 | 5 | 0.13 |
Antidepressant (%) | 5 | 5 | 0.97 |
Benzodiazepines (%) | 10 | 5 | 0.52 |
Allopurinol (%) | 5 | 0 | 0.30 |
Antidiabetic (%) | 5 | 0 | 0.30 |
L-thyroxine (%) | 5 | 15 | 0.32 |
Hormonal replacement therapy (%) | 0 | 5 | 0.32 |
Laxatives (%) | 5 | 5 | 0.97 |
Antihistamine (%) | 0 | 15 | 0.08 |
Proton pump inhibitor (%) | 15 | 5 | 0.27 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bikov, A.; Szabo, H.; Piroska, M.; Kunos, L.; Szily, M.; Ligeti, B.; Makra, N.; Szabo, D.; Tarnoki, D.L.; Tarnoki, A.D. Gut Microbiome in Patients with Obstructive Sleep Apnoea. Appl. Sci. 2022, 12, 2007. https://doi.org/10.3390/app12042007
Bikov A, Szabo H, Piroska M, Kunos L, Szily M, Ligeti B, Makra N, Szabo D, Tarnoki DL, Tarnoki AD. Gut Microbiome in Patients with Obstructive Sleep Apnoea. Applied Sciences. 2022; 12(4):2007. https://doi.org/10.3390/app12042007
Chicago/Turabian StyleBikov, Andras, Helga Szabo, Marton Piroska, Laszlo Kunos, Marcell Szily, Balazs Ligeti, Nora Makra, Dora Szabo, David Laszlo Tarnoki, and Adam Domonkos Tarnoki. 2022. "Gut Microbiome in Patients with Obstructive Sleep Apnoea" Applied Sciences 12, no. 4: 2007. https://doi.org/10.3390/app12042007
APA StyleBikov, A., Szabo, H., Piroska, M., Kunos, L., Szily, M., Ligeti, B., Makra, N., Szabo, D., Tarnoki, D. L., & Tarnoki, A. D. (2022). Gut Microbiome in Patients with Obstructive Sleep Apnoea. Applied Sciences, 12(4), 2007. https://doi.org/10.3390/app12042007