Dynamic Activity Index for Feature Engineering of Geodynamic Data for Safe Underground Isolation of High-Level Radioactive Waste
Abstract
:1. Introduction
2. Methodology for Assessing the Integral Index of Dynamic Stability of a Structural Tectonic Block
3. Feature Engineering Based on Measurement of Dynamic Stability Index
3.1. Needed Data
3.2. Feature Calculation
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Gvishiani, A.D.; Kaftan, V.I.; Krasnoperov, R.I.; Tatarinov, V.N.; Vavilin, E.V. Geoinformatics and systems analysis in geophysics and geodynamics. Izvestiya Phys. Solid Earth 2019, 55, 42–60. [Google Scholar] [CrossRef]
- Glikson, A.Y.; Meixner, A.J.; Radke, B.; Uysal, I.T.; Saygin, E.; Vickers, J.; Mernagh, T.P. Geophysical anomalies and quartz deformation of the Warburton West structure, central Australia. Tectonophysics 2015, 643, 55–72. [Google Scholar] [CrossRef] [Green Version]
- Adetunji, A.Q.; Ferguson, I.J.; Vayavur, R.; Cheraghi, S.; Naghizadeh, M.; Whymark, W.; Craven, J.A. Evidence of magmatism and rifting in the southern superior craton from the Temagami geophysical anomaly. Precambrian Res. 2021, 362, 106310. [Google Scholar] [CrossRef]
- Dzeboev, B.A.; Gvishiani, A.D.; Belov, I.O.; Agayan, S.M.; Tatarinov, V.N.; Barykina, Y.V. Strong-earthquake-prone areas recognition based on an algorithm with a single pure training class I Altai-Sayan-Baikal region, M ≥ 6.0. Izvestiya. Phys. Solid Earth 2019, 55, 563–575. [Google Scholar] [CrossRef]
- Gvishiani, A.D.; Dzeboev, B.A.; Agayan, S.M. FCAZm intelligent recognition system for locating areas prone to strong earthquakes in the Andean and Caucasian mountain belts. Izv. Phys. Solid Earth 2016, 52, 461–491. [Google Scholar] [CrossRef]
- Fonsêca, J.A.S.; Ferreira, J.M.; do Nascimento, A.F.; Bezerra, F.H.R.; Lima Neto, H.C.; de Menezes, E.A.S. Intraplate earthquakes in the Potiguar Basin, Brazil: Evidence for superposition of local and regional stresses and implications for moderate-size earthquake occurrence. J. S. Am. Earth Sci. 2021, 110, 103370. [Google Scholar] [CrossRef]
- Dzeboev, B.A.; Karapetyan, J.K.; Aronov, G.A.; Dzeranov, B.V.; Kudin, D.V.; Karapetyan, R.K.; Vavilin, E.V. FCAZ-recognition based on declustered earthquake catalogs. Russ. J. Earth Sci. 2020, 20, 1–9. [Google Scholar] [CrossRef]
- Karapetyan, J.K.; Sargsyan, R.S.; Kazaryan, K.S.; Dzeranov, B.V.; Dzeboev, B.A.; Karapetyan, R.K. Current state of exploration and actual problems of tectonics, seismology and seismotectonics of Armenia. Russ. J. Earth Sci. 2020, 20, 3. [Google Scholar] [CrossRef]
- Chesalova, E. The use of GIS technologies for the classification of underwater topography and estimation of their ore production (on the example of the Magellan seamounts, the Pacific Ocean). Russ. J. Earth Sci. 2021, 21, 1–10. [Google Scholar] [CrossRef]
- Batugina, I.M.; Petukhov, I.M. Geodynamic Zoning of Deposits in the Design and Operation of Mines; Nedra: Moscow, Russia, 1988; 166p. [Google Scholar]
- Jing, L.; Tsang, C.-F.; Stephansson, O. DECOVALEX—An international co-operative research project on mathematical models of coupled THM processes for safety analysis of radioactive waste repositories. Int. J. Rock Mech. Min. Sci. Geomech. Abstr. 1995, 32, 389–398. [Google Scholar] [CrossRef]
- Pérez-Aguirre, X.J.; Chávez-Cabello, G.; Ramírez-Peña, C.F.; Méndez-Delgado, S.; Romero-de la Cruz, O.M. Geophysical modeling of the crustal boundary between the Central and Oaxaquia terranes in northern Mexico. J. S. Am. Earth Sci. 2021, 110, 103288. [Google Scholar] [CrossRef]
- Petrov, V.A.; Minaev, V.A.; Ustinov, S.A.; Nafigin, I.O.; Lexin, A.B. Assessment of Seismogeodynamic Activity of Mining Areas on the Basis of 3D Geoinformation Modeling. Russ. J. Earth Sci. 2021, 21, 1–12. [Google Scholar] [CrossRef]
- Jia, R.; Lv, Y.; Wang, G.; Carranza, E.; Chen, Y.; Wei, C.; Zhang, Z. A stacking methodology of machine learning for 3D geological modeling with geological-geophysical datasets, Laochang Sn camp, Gejiu (China). Comput. Geosci. 2021, 151, 104754. [Google Scholar] [CrossRef]
- Jiang, L.; Zhao, Y.; Golsanami, N.; Chen, L.; Yan, W. A novel type of neural networks for feature engineering of geological data: Case studies of coal and gas hydrate-bearing sediments. Geosci. Front. 2020, 11, 1511–1531. [Google Scholar] [CrossRef]
- Niño-Adan, I.; Manjarres, D.; Landa-Torres, I.; Portillo, E. Feature weighting methods: A review. Expert Syst. Appl. 2021, 184, 115424. [Google Scholar] [CrossRef]
- Abramov, A.A.; Bolshov, L.A.; Dorofeeev, A.N.; Igin, I.M.; Kazakov, K.S.; Krasilnikov, V.Y.; Linge, I.I.; Trokhov, N.N.; Utkin, S.S. Underground Research Laboratory in the Nizhnekanskiy Massif: Evolutionary Design Study. Radioact. Waste 2020, 1, 9–21. [Google Scholar] [CrossRef]
- Tatarinov, V.N.; Morozov, V.N.; Kamnev, E.N.; Manevich, A.I. Geodynamic aspects of high-level radioactive waste disposal: A case-study of Nizhnekansky massif. Gorn. Zhurnal 2021, 3, 108–112. [Google Scholar] [CrossRef]
- Gvishiani, A.D.; Tatarinov, V.N.; Kaftan, V.I.; Manevich, A.I.; Dzeboev, B.A.; Losev, I.V. The velocities of modern horizontal movements of Earth crust in the South sector of Yenisei ridge according to GNSS observations. Dokl. Earth Sci. 2020, 493, 544–547. [Google Scholar] [CrossRef]
- Kishkina, C.B.; Tatarinov, V.T.; Bugaev, E.G.; Gupalo, V.S.; Zabrodin, S.M. Underground Research Laboratory: Overcoming Uncertainties in the Assessment of Seismic Conditions for the Yeniseiskiy Site. Radioact. Waste 2021, 3, 80–93. [Google Scholar] [CrossRef]
- Morozov, V.N.; Kolesnikov, I.Y.; Tatarinov, V.N. Modeling the hazard levels of stress-strain state in structural blocks in Nizhnekanskii granitoid massif for selecting nuclear waste disposal sites. Water Resour. 2012, 39, 756–769. [Google Scholar] [CrossRef]
- Nguyen-Van, H.; Van Phong, T.; Trinh, P.T.; Van Liem, N.; Thanh, B.N.; Pham, B.T.; Bui, D.T.; Bieu, N.; Vinh, H.Q.; Xuyen, N.Q.; et al. Recent tectonics, geodynamics and seismotectonics in the Ninh Thuan Nuclear Power plants and surrounding regions, South Vietnam. J. Asian Earth Sci. 2020, 187, 104080. [Google Scholar] [CrossRef]
- Young, R.P.; Nasseri, M.H.B.; Sehizadeh, M. Mechanical and seismic anisotropy of rocks from the ONKALO underground rock characterization facility. Int. J. Rock Mech. Min. Sci. 2020, 126, 104190. [Google Scholar] [CrossRef]
- Tatarinov, V.N.; Morozov, V.N.; Manevith, A.I.; Tatarinova, T.A. Underground Research Laboratory: To the Program of Geomechanical Research. Radioact. Waste 2019, 2, 101–118. [Google Scholar]
- Federal Safety Regulations in the Field of the Use of Atomic Energy. Disposal of Radioactive Waste. Principles, Criteria and Main Safety Requirements. NP-055-14: Approved by Rostechnadzor Order № 379 of August 22, 2014. Available online: http://en.gosnadzor.gov.ru/framework/nuclear/NP-055-04%20(to%20be%20updated%20to%20NP-055-14)%20pdf (accessed on 10 February 2022).
- Gvishiani, A.D.; Agayan, S.M.; Bogoutdinov, S.R. Investigation of systems of real functions on two-dimensional grids using fuzzy sets. Chebyshevskii Sbornik 2019, 20, 94–111. [Google Scholar]
- Agayan, S.M.; Tatarinov, V.N.; Gvishiani, A.D.; Bogoutdinov, S.R.; Belov, I.O. FDPS algorithm in stability assessment of the Earth’s crust structural tectonic blocks. Russ. J. Earth Sci. 2020, 20, 2. [Google Scholar] [CrossRef]
- Agayan, S.M.; Bogoutdinov, S.R.; Dobrovolsky, M.N. Discrete perfect sets and their application in cluster analysis. Cybern. Syst. Anal. 2014, 50, 176–190. [Google Scholar] [CrossRef]
- Skrzypkowski, K. Case Studies of Rock Bolt Support Loads and Rock Mass Monitoring for the Room and Pillar Method in the Legnica-Głogów Copper District in Poland. Energies 2020, 13, 2998. [Google Scholar] [CrossRef]
- Agayan, S.M.; Bogoutdinov, S.R.; Ivanchenko, O.V.; Kamaev, D.A. DMA algorithms for registration of a tsunami arrival in sea-level records. J. Volcanol. Seismol. 2021, 15, 126–132. [Google Scholar] [CrossRef]
- Dzeboev, B.A.; Dzeranov, B.V.; Pasishnichenko, M.A. Recognition of strong earthquake–prone areas with a single learning class. Caucasus, M ≥ 6.0. In Heat-Mass Transfer and Geodynamics of the Lithosphere. Innovation and Discovery in Russian Science and Engineering; Springer: Cham, Germany, 2021; pp. 441–453. [Google Scholar]
- Gvishiani, A.D.; Dzeboev, B.A.; Nekhoroshev, S.A. Recognition of earthquake-prone areas for seismic hazard evaluation. In Disaster Risk Reduction and Resilience. Disaster and Risk Research: GADRI Book Series; Springer: Berlin/Heidelberg, Germany, 2020; pp. 9–24. [Google Scholar]
- Gvishiani, A.; Soloviev, A.; Krasnoperov, R.; Lukianova, R. Automated Hardware and Software System for Monitoring the Earth’s Magnetic Environment. Data Sci. J. 2016, 15, 18. [Google Scholar] [CrossRef]
- Gvishiani, A.D.; Mikhailov, V.O.; Agayan, S.M.; Bogoutdinov, S.R.; Graeva, E.M.; Diament, M.; Galdeano, A. Artificial intelligence algorithms for magnetic anomaly clustering. Izv. Phys. Solid Earth 2002, 38, 545–559. [Google Scholar]
- Oshchenko, A.A.; Sidorov, R.V.; Soloviev, A.A.; Solovieva, E.N. Overview of anomality measure application for estimating geomagnetic activity. Geophys. Res. 2020, 21, 51–69. [Google Scholar]
- Gvishiani, A.D.; Agayan, S.M.; Losev, I.V.; Tatarinov, V.N. Geodynamic hazard assessment of a structural block holding an underground radioactive waste disposal facility. Min. Inf. Anal. Bull. 2021, 12, 5–18. [Google Scholar]
- Gvishiani, A.D.; Tatarinov, V.N.; Kaftan, V.I.; Losev, I.V.; Manevich, A.I. GIS-oriented database as basis for system analysis of geodynamic stability the Nizne-Kansky massif. Issled. Zemli Iz Kosm. 2021, 1, 53–66. [Google Scholar]
- Nikulov, L.P.; Babkin, A.N.; Kolyamkin, V.M. State Geological Map of the Russian Federation. Scale 1: 200,000, 2nd ed.; The Yenisei series; Sheet O-46-XXXIV (Sosnovoborsk); Moscow Branch Office VSEGEI: Moscow, Russia, 2015. [Google Scholar]
- Belov, S.V.; Morozov, V.N.; Tatarinov, V.N.; Kamnev, E.N.; Hammer, J. Study of the structure and geodynamic evolution of the Nizhnekansky Massif in connection with the disposal of highly radioactive waste. Geoecology 2007, 2, 248–266. [Google Scholar]
- Lobatskaya, R.M. Neotectonic fault-block structure of junction of Siberian Platform and West Siberian Plate. Geol. I Geofiz. 2005, 46, 141–150. [Google Scholar]
- Tatarinov, V.N.; Morozov, V.N.; Kaftan, V.I.; Manevich, A.I. Modern geodynamics of the southern of the Yenisei ridge derived from the results of satellite observations. Geophys. Res. 2018, 19, 64–79. [Google Scholar]
- Anderson, E.B.; Belov, S.V.; Kamnev, E.N.; Kolesnikov, I.Y.; Lobanov, N.F.; Morozov, V.N.; Tatarinov, V.N. Underground Isolation of Radioactive Waste; Izdatel’stvo Gornaya Kniga: Moscow, Russia, 2011; p. 592. [Google Scholar]
- Morozov, V.N.; Tatarinov, V.N.; Manevich, A.I.; Losev, I.V. Analogy method to determine the stress-strain state of structural-tectonic blocks of the Earth’s crust for the disposal of radioactive waste. Russ. J. Earth Sci. 2019, 19, ES6001. [Google Scholar] [CrossRef]
- Faber, R.G.; Domej, G. 3D computer-assisted geological mapping: Testing WinGeol’s FaultTrace for semi-automatic structural geological assessment. Russ. J. Earth Sci. 2021, 21, 1. [Google Scholar] [CrossRef]
- Kocharyan, G.G. Geomechanics of Faults; GEOS: Moscow, Russia, 2016; 424p. [Google Scholar]
- Gvishiani, A.D.; Lukianova, R. Geoinformatics and observations of the Earth’s magnetic field: The Russian segment. Izvestya Phys. Solid Earth 2015, 51, 157–175. [Google Scholar] [CrossRef]
- Soloviev, A.A.; Bogoutdinov, S.R.; Agayan, S.M.; Gvishiani, A.D.; Kihn, E. Detection of hardware failures at INTERMAGNET observatories: Application of artificial intelligence techniques to geomagnetic records study. Russ. J. Earth Sci. 2009, 11, ES2006. [Google Scholar] [CrossRef]
- Soloviev, A.A.; Agayan, S.M.; Gvishiani, A.D.; Bogoutdinov, S.R.; Chulliat, A. Recognition of disturbances with specified morphology in time series: Part 2. Spikes on 1-s magnetograms. Izv. Phys. Solid Earth 2012, 48, 395–409. [Google Scholar] [CrossRef]
- Widiwijayanti, C.; Mikhailov, V.; Diament, M.; Deplus, C.; Louat, R.; Tikhotsky, S.; Gvishiani, A. Structure and evolution of the Molucca Sea area: Constraints based on interpretation of a combined sea-surface and satellite gravity dataset. Earth Planet. Sci. Lett. 2003, 215, 35–150. [Google Scholar] [CrossRef]
Node (Cell, Structural Block) w | |
---|---|
hazardous | |
neutral | |
safe |
Intervals | Value |
---|---|
0–0.5 | |
0.5–1 | |
1–0.5 | |
0.5–0 |
1 | 0.13 | −0.03 | 0.28 | |
0.13 | 1 | 0.04 | 0.16 | |
−0.03 | 0.04 | 1 | −0.28 | |
0.28 | 0.16 | −0.28 | 1 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Agayan, S.M.; Losev, I.V.; Belov, I.O.; Tatarinov, V.N.; Manevich, A.I.; Pasishnichenko, M.A. Dynamic Activity Index for Feature Engineering of Geodynamic Data for Safe Underground Isolation of High-Level Radioactive Waste. Appl. Sci. 2022, 12, 2010. https://doi.org/10.3390/app12042010
Agayan SM, Losev IV, Belov IO, Tatarinov VN, Manevich AI, Pasishnichenko MA. Dynamic Activity Index for Feature Engineering of Geodynamic Data for Safe Underground Isolation of High-Level Radioactive Waste. Applied Sciences. 2022; 12(4):2010. https://doi.org/10.3390/app12042010
Chicago/Turabian StyleAgayan, Sergei M., Ilya V. Losev, Ivan O. Belov, Victor N. Tatarinov, Alexander I. Manevich, and Maksim A. Pasishnichenko. 2022. "Dynamic Activity Index for Feature Engineering of Geodynamic Data for Safe Underground Isolation of High-Level Radioactive Waste" Applied Sciences 12, no. 4: 2010. https://doi.org/10.3390/app12042010
APA StyleAgayan, S. M., Losev, I. V., Belov, I. O., Tatarinov, V. N., Manevich, A. I., & Pasishnichenko, M. A. (2022). Dynamic Activity Index for Feature Engineering of Geodynamic Data for Safe Underground Isolation of High-Level Radioactive Waste. Applied Sciences, 12(4), 2010. https://doi.org/10.3390/app12042010