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Abstract: In the present day, virtually every application software generates large amounts of log
entries during its work. The log files that are made from these entries are a collection of information
about what happened while the program was running. This report can be used for multiple purposes
such as performance monitoring, maintaining security, or improving business decision making. Log
entries are usually generated in a disorganized manner. Using template miners, the different ‘event
types’ can be distinguished (each log entry is an event), and the set of all entries is split into disjointed
subsets according to the event types. These events consist of two parts. The first is the constant part,
which is the same for all occurrences of the same event type. The second is the parameter part, which
can be different for each occurrence. Since software mass-produces log files, in our previous paper,
we introduced an algorithm that uses the templates mined from the data to create a dictionary, which
is then used to encode the log entries, so only the ID and the parameter list would be stored. In this
paper, we enhance our algorithm with the use of the frequency of the templates, by encoding the
parameters and also making use of Huffman coding. With the use of these measures, compared to the
previous 67.4% compression rate, a 94.98% compression rate can be achieved (where compression rate
is 1 minus the ratio of the size of the compressed file to the uncompressed size). The running times of
the different measures that we used to enhance our algorithm are also compared. We also analyze the
difference between the compression rate of the enhanced algorithm and general compressors such
as LZMA, Bzip2, and PPMd. We examine whether the size of the log files can be further decreased
with the combined use of our enhanced method and the general compressors. We also generate log
files that follow different distributions to examine the compression capability if the distribution does
not follow the power law. Based on our experiments, we would recommend the use of the MoLFI
(Multi-objective Log message Format Identification) template miner method with our enhanced
algorithm together with PPMd.

Keywords: log file processing; template mining; compression; LZMA; Bzip2; PPMd

1. Introduction

System logs have many applications due to the fact that they contain important
runtime information of software systems. This data is created by logging statements
inserted into the source code by programmers. The accumulated runtime data can be used
for various purposes, such as anomaly detection, business model mining, or performance
monitoring. The authors of [1] propose a new, dynamic methodology of anomaly detection
on log files. Instead of treating the log files as static files, they incrementally group log
lines within time windows. After that, different cluster analysis techniques are used to find
merges or splits between the windows. Then, a self-learning algorithm is used to detect
anomalies based on the evolution of the clusters. In [2], a method is proposed that uses
both data page tagging and log files to build business models. They use new trends in web
development languages to analyze customer behavior. They mainly focus on the diversity
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of the traces left by Rich Internet Applications (web applications using desktop application
characteristics). The authors of [3] introduce a new tool, namely DISTALYZER, that uses
machine learning techniques. It deduces associations between different components and
their performance with the use of previously extracted system behaviors.

With the large-scale structure of modern software systems, the size of the log files
increases rapidly. Large log files require high amounts of storage space, which is usually
very costly. For example, even the networking devices of a small internet service provider
could generate TBs of data in one day. In [4], the research looks at a data center containing
only 1,000 nodes, which could generate 86 TB worth of log data in a single day. It is also
important to mention that log files are usually replicated, which results in more massive
storage use, or they have to be stored for years.

It can be said that the reduction of the size of the generated data is important. One
option is to oblige developers to print less information; however, this can result in losses
of key information [5]. The other commonly used practice is compression of the data.
Several compression algorithms have been proposed over the years, such as gzip or Bzip2.
These are capable of reducing the size by a factor of 10 [6]. They work well on general
data [7], but, since they encode blocks of data, the retrieval of a single log entry can be
costly and time-consuming. Furthermore, entry-level compression can be used for various
statistical purposes.

Log entries correspond to various event types, such as different errors, restarts, etc.
Template miners are used to retrieve these message types. The templates consist of constant
parameters that are the same in each occurrence, as well as parameters that may differ. To
retrieve event types, numerous template miners have been proposed. Spell [8] treats log
entries like sequences and uses the longest common subsequence approach to retrieve the
templates. The presumption that entries that have the same event type have words with
equal length at the same positions is used by LenMa [9]. Drain [10] built a fixed-depth tree,
which consisted of the root node, internal nodes, and leaf nodes. The first layer (where a
layer is the depth of a node) of internal nodes represented groups with the same length.
The groups represented by the second layer have the same constant token as the first word.
The third layer, which consisted of the leaf nodes, groups the messages by their token
similarity. After a log entry is assigned to a leaf node, the tree is updated.

2. Related Work

In recent years, various algorithms have been proposed that take different aspects of
log files into account. There are numerous studies where log entries have been grouped in
a way in which general compressors will be more effective on them. An entry is a plain
text message (ASCII) that gives information about the behavior of the software at a given
time. In [11], the messages with a high degree of similarity are placed into the same bucket.
These buckets are then compressed individually. Up to 30% improvement can be reached
with their adaptive approach. The authors of [12] propose a Multi-level Log Compression
(MLC) method which is similar to the previously mentioned algorithm. The difference is
that it removes the duplicate entries before grouping the messages into buckets. After the
placement, the messages are encoded with a variation of the delta compression that results
in simple IDs. Finally, these IDs are compressed with the use of a general compressor
method. They are able to improve the compression ratio of Bzip2 by 16.1%.

Other papers consider data in a way that it can be transformed. In [13], each message
is considered to be a vector of length n, where n is the number of tokens that make up the
message. Each entry (log line, message) is added to a matrix that has n columns. These
matrices are then sorted, based on the value of the first column, and transposed. After this
step, similar tokens are placed next to each other. A data structure is then made, storing
all matrices in a dictionary by hashing a unique field name. Then, these are compressed
by a general compressor. That study achieved a 79% compression rate improvement and
reduced the execution time by 64%. The authors of [14] propose an algorithm that reorders
the data field by field. After that, the correlating fields are merged. This solution reduces
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Bzip archives by an average of 52%. A column-wise compression method that is capable of
handling data streams is introduced in [6]. Each log entry is split to create various columns.
Then, a semi-dictionary-based model is built for each column that is used to compress the
data. With the use of this model, the compression ratio can be increased by 27.7%.

Delta encoding is a commonly used data reduction technique that uses the differences
between the chunks of a file. Various research has been proposed that uses this method to
improve the compression ratio or the speed. The authors of [15] propose a new method,
namely Run-Length Base-Delta, an algorithm that uses segmentation and parallelization to
increase the compression and decompression speeds while not affecting the compression
ratio. The network throughput used by supercomputers can be revamped by 57%. In [16],
Gdelta is proposed, which is a delta encoding approach that uses array-based indexing;
gear-based rolling hashes, which is a rolling hash algorithm used to scan words; and batch
compressing. An improvement of 10–120% was reached in the compression ratio of the
investigated datasets.

Some papers use the idea of token replacement. The authors of [17] propose a multi-
tiered algorithm that takes advantage of the similarity of log lines next to each other. First,
the position of the first different character between two log lines is found. A reference is
made (on the byte level) based on the position, and the character is kept. This is repeated
until the end of the line is reached. This method also uses a dictionary to store globally
repetitive tokens. The authors were able to achieving 41% smaller files in the case of
Bzip2. The method proposed in [18] profits from the fact that the binary representations of
numerical values such as IP addresses or timestamps are smaller in size than their string
representation. They also use a dictionary to replace constant tokens with shorter forms.
With the use of this algorithm, a 32% improvement of the compression ratio was achieved.

Hidden structures, such as templates, can be found in every log file. The authors of [19]
propose a method that employs iterative clustering on the raw log entries. This results
in coherent in-between representations that are used to compress the data. Compared
to gzip, the compressed data takes up 40% less space. In [20] CLC (Comprehensive Log
Compression) is introduced. Short representations are assigned to frequent patterns to
reduce the size. This method could reach coverage of up to 95.8% and found the templates.

In this paper, we enhance our method produced in [21]. Even though LenMa reached
the highest compression rate with 67.4% in our previous research, due to its high execution
time, which is 8.5 times more in the case of the “Big” dataset, we encouraged the use of
IPLoM or MoLFI, both of which are considerably faster and have an average compression
rate of 57.8% and 60.8%. To further improve our algorithm, we initially examine the
frequency of the templates; smaller IDs (with the least possible characters) are assigned to
frequent templates. Previously, only one dictionary was created for the templates, while,
in this paper, there is also one created for the variable tokens. Similar to templates, each
variable gets assigned to an ID and only the ID is stored. This results in log entries that
only contain IDs (numbers) separated by spaces. In the end, these entries are encoded
via Huffman coding. A more detailed description is introduced in Section 4. The basic
method applies template miners such as IPLoM and MoLFI to determine the event types
that occur in the log file. A dictionary is then created where a new unique ID gets assigned
to each of the templates. We then encoded each log entry with the use of this dictionary,
so each line would consist of an ID and the parameters of that individual line. To further
increase the compression rate, we take the frequency of the templates into account, encode
the parameters, and apply Huffman coding. A more detailed explanation can be found in
Section 4.

This paper uses the following structure. Section 3 introduces the concept of log parsing.
A brief summary of the used template miners, IPLoM, and MoLFI can also be found here.
That section also contains a high-level overview of the used general compressing methods:
LZMA, Bzip2, and PPMd. Prediction by Partial Matching (PPM) is an adaptive statistical
data compression technique that has several implementations, denoted by the letters (a,
b, c, d, e, f), which mainly indicate the amount of memory usage; in our case version d
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was used. A detailed description of the enhanced algorithm and statistical analysis of the
examined data can be found in Section 4. An explanation of the concluded experiments,
that assesses the compression rate and the time taken by the enhanced method and the
general compressors on log files that were generated by real-world networking equipment,
is presented in Section 5. The conclusion of the paper and the possible future works are
listed in Section 6.

3. Concepts and Problems
3.1. Log Parsing

To gain insight into the operation of computer software, programmers carry out a
specific programming practice, namely logging. With the use of commands that print out
specific attributes of the given software at a specific time, developers create log files. The
output of a print command is usually represented by a single line in the log file, which
could be also called a log entry. These entries are frequently raw, which means they are
not structured, since there is no restriction about what a developer can write. A typical log
line is the combination of multiple pieces of information, such as the Sequence Number,
which identifies the message; the Timestamp, which shows when the event took place; the
Module on which the event took effect; and the free-text Message. Figure 1 is a snippet
from our working data.

Figure 1. Excerpt of log file generated by real-world networking device.

The message consists of words or tokens, which are separated by spaces. The tokens
can either belong to the constant part or to the parameter part of the message. The constant
tokens are identical at every occurrence of the given event type, while parameter tokens
can be different. For example, in the second line of the example shown in Figure 1 “NPU”
and “Software” are constants, while “CXP9029630_4” and “R9D3925” are parameters.

With log parsing, we allocate each log entry, e, to its corresponding event type. For-
mally, a structured log parser assigns each entry in the list, e1, e2, . . . , eN , of log lines
representing the log to a single event type M, where M are unique message types that
were created by P distinct processes [8]. While log parsers are powerful instruments in
log processing, they cannot be used in all cases. The parser does not have, in advance, the
information about entry types and processes that generate the entries, and it has to deduce
all this information using classifiers called ‘template miners’. Pre- and post-processing of
the data, such as deleting duplicates or using regex, are also indispensable. For example,
regex can be used to remove not unnecessary fields like sequence numbers [22].

3.2. IPLoM

IPLoM (Iterative Partitioning Log Mining) is a technique that clusters log entries in
order to acquire event types [23]. It iteratively partitions the messages. The method consists
of three steps that are based on different heuristics, as well as a fourth step that returns the
different event types.

Log entries that belong to the same message type are usually equivalent in their size
(number of words). Based on this assumption, in the first step, the algorithm creates distinct
groups of messages, each with a different size. At this stage, the messages of a group can
be interpreted as n-tuples, where n is the size of the entry.
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The algorithm uses the location of tokens (words between two spaces) in the second
step to further partition the messages. It uses the heuristic that the token position with the
least number of unique words probably consists of tokens that are constant at that position.
The messages are once again grouped by the recently discovered unique words. At the end
of this step, each group will only involve messages that have the same unique value at the
chosen location.

The final clustering step is performed with the use of bijective relationships. The
number of unique words at each position is used to determine the token count that appears
most often. This value expresses the number of event types in that group. This indicates
the existence of a bijective relationship between the words that are located in the position
with the most unique words. This heuristic is used to further partition the data: the first
two token positions that have an equal number of unique tokens as the most frequent token
count are used to assign messages into different groups.

At this point, it can be assumed that each group contains messages corresponding to
an event type. As a final step, the distinction between constant words and parameters has
to be performed. If, for each entry inside a group, there is only one token at a position, then
it is considered to be a constant, otherwise, the token is a parameter that is then represented
with a wildcard.

3.3. MoLFI

To acquire the log message types, the MoLFI (Multi-objective Log message Format
Identification) method [24] utilizes the multi-objective genetic algorithm, NSGA-II [25].
NSGA-II first randomly generates a pool of chromosomes, which is also known as the
population. A chromosome is a possible solution for the problem in question. To imitate
the selection and replication process that can be seen in nature, it improves and evolves
the chromosomes through continuous iterations, which are called generations. In each
iteration, NSGA-II employs binary tournament selection [25] to find the best solutions
that will be reproduced. With the use of mutation and crossover, a new chromosome is
created from two of the chromosomes from the current iteration. Crossover swaps parts of
the parent chromosomes to create new ones, while mutation slightly changes the newly
generated chromosomes. From these chromosomes, a new generation is created with the
use of crowding distance [25]. The MoLFI algorithm works in a similar fashion.

Before using the steps of NSGA-II, MoLFI pre-processes data with the use of domain
knowledge and regular expressions to filter out clearly variable tokens, such as IP addresses,
error codes that consist of only numbers, and so on. Such guidelines can be found in [22].
These variables are changed to a special “#spec#” token that cannot be modified later. The
deletion of duplicate entries and the tokenization are also performed here. The messages
are also partitioned based on the number of tokens they have. In the end, the group GL
contains all the entries that contain L tokens.

To accelerate the speed, a two-level encoding schema is defined, where a chromosome
contains a set of groups that are each a collection of event types with the same length.
More formally,

C = {G1, G2, . . . , Gmax}, (1)

where a group, GL = {t1, t2, . . . , tk}, is a set containing k templates that consist of the same
number of words, L. With this encoding schema, they ensure that only entries of the same
length are matched in the later steps.

In the first step, the initial population P is created from M, which is a set of pre-
processed log messages, and N, the size of the population. After the creation of one
previously introduced C chromosome, it is packed with one group of event types, GL, for
each group. At first, GL is empty. The algorithm selects a log entry from the unmatched
collection (initially, every entry is located here) and creates a t template which is a copy of
the original message except that one of its tokens is changed to a wildcard “*”. The token to



Appl. Sci. 2022, 12, 2044 6 of 32

be modified is selected randomly. The entry is then deleted from the unmatched set and the
template t is added to GL. This is repeated as long as the unmatched set contains messages.

In the next step, the uniform crossover operation [26,27] is used to shuffle the character-
istics of the parents that were selected from the previous population with the use of binary
tournament selection [25], P1 = {G1P1 , G2P1 , . . . , GmaxP1} and P2 = {G1P2 , G2P2 , . . . , GmaxP2}.
A random binary vector is used to create two children, C1 and C2. If the vector’s ith element
is 1, then C1 inherits GiP2 and C2 inherits GiP1 ; if the vector’s ith element is anything other
than 1, the result will be the other way around.

In the last step, the newly generated children are mutated. Each group in the chro-
mosome has a 1

Gmax
chance of being mutated. The mutation is performed by changing one

of its t1 templates with the removal or addition of a variable token. Each token has a 1
tk

probability of being changed.
At the end of the NSGA-II algorithm, the set of feasible solutions is post-processed,

namely, the knee point [28], a Pareto optimal solution, is selected to be the final product.

3.4. General Compressors

A comprehensive study about the general compressors can be found in [7]. They can
be categorized into three different groups based on the idea of how they work.

The first one consists of Sorting-based compressors, that use different approaches to
move similar data together in order to obtain better compression ratios. A conventional
method is the Burrows–Wheeler transformation (BWT) [29]. It rearranges characters based
on context, thus creating runs of similar characters. This is useful, since techniques such
as run-length encoding tend to more easily compress strings that have runs of the same
character. It is also important to point out that this transformation can be reversed. To
achieve this, only the position of the first original character has to be stored. The BWT is
used by Bzip2.

There are Dictionary-based compressors that maintain a dictionary based on the
already processed data, which is used to replace duplicate instances of data. One such
algorithm is the Lempel–Ziv–Markov-chain algorithm (LZMA). It is similar to LZ77 [30],
except it supports dictionary sizes of up to 4 GB and has a special scheme that chooses
phrases (not greedily as in LZSS or LZ77) and a particular scheme of encoding for phrases.
The algorithm produces phrases and a stream of literals which are then encoded bit by bit
with the use of a range encoder.

Prediction-based compressors apply statistical models in order to predict upcoming
symbols based on context. This can be used to lower the number of bits that are needed
to encode the next character. For example, prediction by partial matching (PPMd) [31,32]
predicts the upcoming symbol in an uncompressed stream of characters with the use of
a set of previously known symbols. A probability is allocated to each previously seen
symbol, and these probabilities are then used to compress the sequence. The PPMd uses
the previous 16 tokens while assigning probability, and its memory limit is set to 256 MB.

4. The Algorithm

The original algorithm that was proposed in [21] works as follows. First, we employ
a template miner, i.e., an algorithm that obtains the event types corresponding to the
processed log entries. A message template is made up of constant tokens and “<*>”
wildcards that indicate the location of a parameter token. For example “NPU Software
<*> <*>” is the message type of the second log entry in Figure 1. Then, we assign an ID to
each of the message templates, hence, a template dictionary is constructed. After this, each
message is assigned to its associated template. We use the aforementioned dictionary to
encode our log entries as follows. From a log line that corresponds to MID event type, and
consists of log = (c1, c2, . . . , cr)∪ (p1, p2, . . . , pq), where c1, c2, . . . , cr are the constant tokens
of the entry, and p1, p2, . . . , pq are the parameters, a new log line log = ID, p1, p2, . . . , pq is
created with the use of only the parameters and the ID. With this technique, we were able
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to achieve up to 67.4% compression rate which contains both the size of the compressed
file and the dictionary.

To increase the compression rate of our algorithm, we first examined the properties
of our data. We came to the conclusion that our data, which is detailed in Section 5.1,
follows the power-law distribution. This can be seen in Figures 2–5. The x-axis represents
the ordered (based on occurrences) templates from 1 to n, where n is the number of the
discovered templates in the dataset.

Figure 2. Distribution of the templates in the Small dataset.

Figure 3. Distribution of the templates in the Mid dataset.

Figure 4. Distribution of the templates in the Large dataset.
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Figure 5. Distribution of the templates in the Big dataset.

It can be seen that there are only a few event types with a large number of occurrences
and plenty that appear only once or twice. Based on this principle, we decided to assign the
IDs based on the repetition of the template. Events with higher frequencies would obtain a
smaller ID, which can be stored on fewer bits, while higher IDs would be assigned to rare
message types. The IDs are stored as integers with a 32-bit fixed size, that are later encoded
using the Huffman coding.

While a parameter of a message type could have more than one value, these values are
usually chosen from a finite set of values. To further reduce the size of the compressed log
file, we also apply the previously used method to the parameters. A dictionary is created
where each parameter value has a unique ID. For example, the parameter “CXP9029630_4”
would be stored as ‘1’, where ‘1’ is the ID of the token “CXP9029630_4”. After this, the
encoded log file would only contain numbers and spaces.

As a final step, we also employ Huffman coding on the log file. It is a method that is
commonly used in data compression and was proposed in [33]. It can be used to create
a prefix-free binary code that has a minimum expected codeword length. The algorithm
analyses the frequencies of the characters that appear. Commonly appearing symbols
would be encoded as shorter bit strings, while uncommon characters are encoded as longer
strings. For example, a common symbol such as “a” would be encoded as a single “0”,
while rare characters such as “x” would be encoded as “11,000”. The use of Huffman
coding is very profitable in our case; since our log file only contains numbers and spaces
at this point, we only have to store an additionall fixed-sized Huffman codec, since the
alphabet size is always 12 (numbers 0–9, space, and EOF character). The entire IDs are
then encoded.

There are three compression models that are widely studied. The first type is where
the same model is used for all texts by the static model; this performs badly if the text that
was used to build the model and the text to be compressed are different. The second type is
the semi-static which works in two runs; a unique model that can be based on occurrence
probabilities is built for the text, which is then used to compress the data. The last model is
the adaptive model that is initially empty and updates when a new symbol is found [34].

General compressors are not suited for stream-like data, since the compression relies
upon the preceding messages and the initial state. Once the template and parameter
dictionaries are created, our algorithm is capable of updating them at any time when a new
template or parameter is found, which means it can compress stream-like data as well.

Many compression algorithms handle data on a block level. In such cases, it can
happen that multiple blocks have to be decompressed to acquire the desired log entry. This
can be time-consuming, if we want to use our compressed data for statistical purposes, e.g.,
to count the number of occurrences of an event type. Since every template gets assigned
an ID, our algorithm is capable of decoding any specific log entry without decompressing
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others. For example, if we want to list all the software updates, we only have to look
up the ID of the message type “NPU Software <*> <*>” and decode the parameters that
follow the ID. Based on this, it could be said that our algorithm is suited for statistical and
analytical use.

We created a script that creates log files with the desired distribution of the message
templates. A high-level flow-chart showing how the script works can be seen in Figure 6.

Figure 6. The flow chart that represents log data generation.

First, a template dictionary, a parameter dictionary, and a dictionary that contains all
the possible parameters for each template are created based on the user-provided data.
After this, based on the distribution that the user desires, an array is created that contains
the probabilities for all of the templates. These are then used to generate a sample list that
consists of template IDs that have been generated with the use of the probabilities. In the
next step, the desired number of log entries is created as follows. While the sample has
items (we iterate through it) the template is chosen based on the actual ID in the sample.
Then, each of the tokens in the template is examined. This is performed by iterating over
the template and checking if it has a word or the end has been reached. If the token is
a wildcard “*”, then it is changed to a randomly chosen parameter from the template’s
possible parameters, otherwise, the token is kept. In the end, the log file is generated by
writing the created messages to a file.

5. Results
5.1. Data

Our log files were provided by networking appliances that are used at the Ericsson-
ELTE Software Technology Lab. To evaluate the effectiveness of the enhanced algorithm
compared to the original, we used the same datasets that were used in our previous
paper [21], and some new datasets that are several gigabytes in size. All of our datasets
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are distinct and independent from each other. Each entry of the datasets belongs to one
of the 107 possible message types that are used to indicate the runtime information of the
networking assets. The distribution of the entries follows the power-law distribution in the
case of all investigated datasets. The details of our data, such as the alphabet size or the
Shannon Entropy, can be seen Table 1.

Table 1. Size of the datasets.

Name Number of Messages Size in Kilobytes Alphabet Size Shannon Entropy

Small 39,139 1152 KB 76 5.08167
Mid 124,433 4607 KB 76 5.08872

Large 280,002 10,198 KB 74 5.05287
Big 637,369 22,840 KB 71 5.00206
A 50,000,000 2,039,483 KB 76 4.97789
B 130,000,000 5,303,394 KB 76 4.97798
C 254,000,000 10,361,437 KB 76 4.97781
D 1,264,000,000 51,562,601 KB 76 4.89284

The amount of information involved in the value of a random variable is known
as Shannon Entropy or Entropy [35]. In the case of a discrete random variable X, that
has possible outcomes of x1, x2, ·, xn, that occur with probability P(x1), P(x2), ·, P(xn), the
entropy of X is defined as:

H(X) = −
n

∑
i=1

P(xi)logP(xi), (2)

where the sum of the variable’s possible values is denoted by ∑. There are other types of
entropy, such as k-th order entropy [36].

5.2. Experimental Analysis

We conducted various experiments to demonstrate the compression efficiency of
our enhanced algorithm. We also examined the runtime of our algorithm. To obtain a
more detailed picture, we compared the compression rate and the speed of our enhanced
algorithm with those of general compressors. We investigated whether the compression
rate could be further improved with the joint use of our method and general compressors.
The time and storage space needed to retrieve all instances of a given set of templates
was also investigated. We also compared the compression rates and the memory usage of
the proposed algorithm and Logzip, a compressor that also uses hidden structures. The
dahuffman python library [37] was used as our Huffman coder. Since Bzip, LZMA, and
PPMd are supported by 7-Zip [38], we chose these algorithms as our general compressors.
The default settings of 7-Zip were used, which are a 16 MB dictionary size, a word size of
32, and a solid block size of 2 GB. The experimental analyses are divided into six parts and
are explained below.

5.2.1. Experiment 1: Comparing the Compression Values Achieved by the
Different Enhancements

In order to further improve the compression ratio that our algorithm, proposed in [21],
achieved, we employed multiple enhancements. First, we used Huffman coding on the
output of the original algorithm, which consisted of an ID and the parameters in string
format, for example, “1 CXP9029630_4 R9D3925”, where 1 stands for “NPU Software <*>
<*>”. This approach is labeled “Huff”. The second idea was that the template IDs should
be assigned based on frequency, and parameters should also be encoded, since the same
values appear multiple times, and the average length of a parameter ID is less than the
average length of a parameter’s string representation. If “CXP9029630_4” is represented by
1 and “R9D3925” is represented by 2, the output would be “1 1 2”, which is 27 characters
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less than the original entry. This approach is labeled “Enh”. Finally, we combined the
first two ideas. This approach is labeled “Huff”. The compression rates achieved by these
enhancements can be seen in Figures 7–10.

Figure 7. Compression rate of the different enhancement approaches of the Small dataset.

Figure 8. Compression rate of the different enhancement approaches of the Mid dataset.

Based on our experiments, it can be said that each enhancement improves the com-
pression rate. The single use of Huffman coding provides the smallest improvement; the
compression rate is around ≈75%, which is ≈17% more than the original algorithm (where
the compression rate is 1 minus the ratio of the size of the compressed file to the uncom-
pressed size). The reason behind this is that the lines to be encoded could contain various
characters since the parameters are in a plain text format. Due to the large number of
possible characters, some of them will have lengthy representations, which results in worse
compression capability. The codec size also depends on the number of unique characters.
Table 2 contains information about the size of the template dictionary, parameter dictionary,
Huffman codec, and the overall compressed data size. WPE stands for “Without Parameter
Encoding”. This is used in our second approach, where the parameters are not encoded,
only the Huffman coding is used.
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Figure 9. Compression rate of the different enhancement approaches of the Large dataset.

Figure 10. Compression rate of the different enhancement approaches of the Big dataset.

Table 2. Size of the different assets.

IPLoM Small Dataset Mid Dataset Large Dataset Big Dataset

Huff

Template dictionary 2.981 KB 4.266 KB 4.24 KB 4.293 KB
Huffman codec (WPE) 1.158 KB 1.179 KB 1.203 KB 1.197 KB

Compressed file 409.426 KB 1068.173 KB 2674.835 KB 5776.537 KB
Overall 413.565 KB 1073.618 KB 2680.278 KB 5782.027 KB

Enh

Template dictionary 2.981 KB 4.266 KB 4.24 KB 4.293 KB
Parameter dictionary 6.877 KB 22.151 KB 24.906 KB 25.626 KB

Compressed file 358.361 KB 855.013 KB 2004.595 KB 4506.784 KB
Overall 368.219 KB 881.43 KB 2033.741 KB 4536.703 KB

Enh Huff

Template dictionary 2.981 KB 4.266 KB 4.24 KB 4.293 KB
Parameter dictionary 6.877 KB 22.151 KB 24.906 KB 25.626 KB

Huffman codec 0.362 KB 0.362 KB 0.362 KB 0.362 KB
Compressed file 132.147 KB 306.09 KB 725.813 KB 1608.534 KB

Overall 142.367 KB 332.869 KB 755.321 KB 1638.815 KB
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Table 2. Cont.

MoLFI Small Dataset Mid Dataset Large Dataset Big Dataset

Huff

Template dictionary 3.832 KB 4.45 KB 4.606 KB 4.461 KB
Huffman codec (WPE) 1.068 KB 1.125 KB 1.118 KB 1.134 KB

Compressed file 313.133 KB 986.065 KB 2455.239 KB 5550.092 KB
Overall 318.033 KB 991.64 KB 2460.963 KB 5555.687 KB

Enh

Template dictionary 3.832 KB 4.45 KB 4.606 KB 4.461 KB
Parameter dictionary 6.348 KB 21.743 KB 24.448 KB 25.206 KB

Compressed file 288.102 KB 854.308 KB 1996.157 KB 4522.154 KB
Overall 298.282 KB 880.501 KB 2025.211 KB 4551.821 KB

Enh Huff

Template dictionary 3.832 KB 4.45 KB 4.606 KB 4.461 KB
Parameter dictionary 6.348 KB 21.743 KB 24.448 KB 25.206 KB

Huffman codec 0.362 KB 0.362 KB 0.362 KB 0.362 KB
Compressed file 105.48 KB 303.202 KB 699.61 KB 1606.879 KB

Overall 116.022 KB 329.757 KB 729.026 KB 1636.908 KB

It can be seen that the size of the template dictionary is small and constant. In the
case of the second enhancement, we were also required to store the parameter dictionary.
It is larger than the template dictionary but still negligible compared to the size of the
uncompressed data. The use of the parameter dictionary resulted in a ≈80% compression
rate, which is ≈20% more than the original algorithm’s. The joint use of the parameter
dictionary approach and the Huffman coding provided the best compression rates, around
≈92%. This can be explained by the fact that the file to be compressed only contains
numbers and spaces, which results in a constant and small codec. It is also important to
mention that this approach scales well for large datasets. In the case of all the enhancements,
the MoLFI version has slightly better rates than the one that uses IPLoM.

5.2.2. Experiment 2: Comparing the Speeds of the Different Enhancements

The time it takes for a compressor to compress a file is also an important factor. As a
result of this, we found it important to compare the run times of the different enhancements.
We also analyzed the time our algorithm took to decompress the data. We assume that the
templates are present, so the evaluation of the speed needed to generate the templates is
not part of this paper. The results can be seen in Figures 11–14.
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Figure 11. Speeds of the different enhancements used on the Small dataset.
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Figure 12. Speeds of the different enhancements used on the Mid dataset.
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Figure 13. Speeds of the different enhancements used on the Large dataset.
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Figure 14. Speeds of the different enhancements used on the Big dataset.
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It can be seen that the creation of a parameter dictionary does not take much time,
while the Huffman coding proves to be slower, especially when any kind of character
could occur in the file to be compressed, so it takes more time to find the representation
in the codec. In the case of the parameter dictionary approach, the decompression time
is just slightly more than the time it takes to compress the file. The same cannot be said
for the approaches that use Huffman coding, since it takes at least twice as much time to
decompress the file when this method is involved. The MoLFI version is somewhat faster
than the IPLoM one.

5.2.3. Experiment 3: Comparing the Compression Rates of the New Enhanced Algorithm
and General Compressors

In this experiment, we wanted to compare the compression rate achieved by our
parameter dictionary and Huffman coding technique with the compression rates of general
compressors. The results can be seen in Figures 15–18.
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Figure 15. The comparison of compression rates of the enhanced algorithm and general compressors
on the Small dataset.
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Figure 16. The comparison of compression of the enhanced algorithm and general compressors on
the Mid dataset.
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Figure 17. The comparison of compression rates of the enhanced algorithm and general compressors
on the Large dataset.
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Figure 18. The comparison of compression rates of the enhanced algorithm and general compressors
on the Big dataset.

Out of the three investigated general compressors, LZMA has the highest compression
rate, with an average of 98.97%, while PPMd has the least, with 97% on average. Our
enhanced algorithm achieved 91.49% on average when used with IPLoM and 92.11% in the
case of MoLFI. We also wanted to measure the compression rates on larger data, with the
size being measured in gigabytes. We only investigated the compression rates of MoLFI,
since it had the highest compression rate on the previous datasets. For this purpose, we
introduced four new datasets, A, B, C, and D, with the sizes of 2 GB, 5 GB, 10 GB, and 50 GB,
respectively. The compression rates achieved are shown in Table 3 and Figures 19–22.

Table 3. Compression rates on the A, B, C and D datasets.

Dataset Proposed LZMA Bzip2 PPMd

A 94.652% 92.931% 95.823% 95.542%
B 94.782% 92.931% 95.823% 95.543%
C 94.650% 92.932% 95.823% 95.543%
D 94.682% 92.931% 95.823% 95.543%
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Figure 19. The comparison of compression rates of the enhanced algorithm and general compressors
on the A dataset.
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Figure 20. The comparison of compression of the enhanced algorithm and general compressors on
the B dataset.
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Figure 21. The comparison of compression rates of the enhanced algorithm and general compressors
on the C dataset.
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Figure 22. The comparison of compression rates of the enhanced algorithm and general compressors
on the D dataset.

It can be seen that, in the case of larger files (with the size of gigabytes), there was no
improvement in the compression rate of the examined methods. Bzip2 and PPMd have the
best rates, with 95.823% and 94.543%, respectively, while our algorithm falls slightly behind
them (approximately 1%). The proposed algorithm also outperforms LZMA with 1.75%.

5.2.4. Experiment 4: Comparing the Speeds of the New Enhanced Algorithm and
General Compressors

As mentioned before, the time an algorithm takes to compress the data is also an
important measure. As a result of this, we wanted to compare the speeds of the general
compressors against our enhanced algorithm. Both the compression and decompression
times are analyzed. The time it takes to compress the used datasets are visualized in
Figures 23–26.
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Figure 23. The speeds of the enhanced algorithm and general compressors on the Small dataset.
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Figure 24. The speeds of the enhanced algorithm and general compressors on the Mid dataset.
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Figure 25. The speeds of the enhanced algorithm and general compressors on the Large dataset.
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Figure 26. The speeds of the enhanced algorithm and general compressors on the Big dataset.
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Based on the results, it can be said that general compressors take less time to compress
data than our enhanced algorithm. The explanation behind this is that the algorithm has
to count and order the templates based on their occurrences, which takes more time than
creating a stream of literals or allocating probabilities. It can also be seen that the more log
entries that have to be counted, the more time our algorithm takes. Apart from this, we still
consider our algorithm to be fast, since it compresses large amounts of data in just a few
seconds. In terms of decompression time, our algorithm takes twice as much time as the
general compressors, since it has to look up two dictionaries to decode the log messages.
Aside from that, our algorithm is slower to decompress than general compressors; it only
needs seconds in the case of the investigated datasets. The MoLFI variant of our enhanced
algorithm is slightly faster in terms of both compression and decompression.

5.2.5. Experiment 5: Comparing the Compression Rates of the Joint Use of the New
Enhanced Algorithm and General Compressors

In this experiment, we wanted to investigate if the compression rate can be further
improved if we use our enhanced algorithm in conjunction with the general compressors.
These compression rates can be seen in Figures 27–30.

Figure 27. The compression rates of the joint use on the Small dataset.

Figure 28. The compression rates of the joint use on the Mid dataset.
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Figure 29. The compression rates of the joint use on the Large dataset.

Figure 30. The compression rates of the joint use on the Big dataset.

The use of a general compressor improves the compression rate of our enhanced
algorithm by approximately 5%, but this rate still does not reach the compression rate
of the single use of general compressors. Nonetheless, we would encourage the use of
both our algorithm and traditional compressors, since they can function as a wrapper for
our template- and parameter-dictionaries, codec, and compressed file. Out of the tried
combinations, the MoLFI variant of our enhanced algorithm used alongside PPMd had the
best compression rate with an average of 98.42%.

We also wanted to investigate the compression rate of the joint use of the MoLFI
version (since it has better rates) of our proposed method and general compressors on the
previously mentioned datasets, A, B, C, and D. The results are shown in Figures 31–34.
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Figure 31. The compression rates of the joint use on the A dataset.

Figure 32. The compression rates of the joint use on the B dataset.

Figure 33. The compression rates of the joint use on the C dataset.
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Figure 34. The compression rates of the joint use on the D dataset.

It can be seen that, in the case of datasets with sizes in gigabytes, the joint use produces
approximately 1% higher compression rates than the ones achieved by the single use of the
general compressor in Section 5.2.3.

5.2.6. Experiment 6: Comparing the Speeds of the Joint Use of the New Enhanced
Algorithm and General Compressors

We also evaluated the compression and decompression times of the joint use of our
algorithm and general compressors. The results can be seen in Figures 35–38.
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Figure 35. The speeds of the joint use on the Small dataset.

The use of a general compressor increases both the compression and decompression;
however, this extra time is negligible. In terms of compression, out of all combinations, the
joint use of MoLFI and PPMd proved to be the fastest, while the combination of MoLFI and
LZMA takes less time to decompress the data. The use of any combination is considered to
be fast.
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Figure 36. The speeds of the joint use on the Mid dataset.
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Figure 37. The speeds of the joint use on the Large dataset.
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5.2.7. Experiment 7: Comparing the Speeds and the Storage Sizes Needed to Retrieve All
Instances of an Event Type by the New Enhanced Algorithm and General Compressors

In this experiment, we randomly selected 10 and 100 templates and investigated the
time and storage space that were needed to recover all log entries that correspond to a
template in the set. For this experiment, the previously introduced A dataset was used.
Figures 39 and 40 show the results of the experiment.
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Figure 39. The times needed to recover all instances of the 10 template.
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Figure 40. The times needed to recover all instances of the 100 template.

Since we can find the corresponding log entry based on the ID of the template, in the
case of our algorithm, only the Huffman decoding step is necessary. This requires more
time than decompressing with a general compressor; however, the time needed to look up
the entries is considerably less. The reason behind this is that we only need to check the first
n characters of the encoded file (where n is the length of the ID), rather than checking all the
constant tokens. The storage size needed is much larger in the case of general compressors,
since a full decompression of the data is necessary to look for templates, while, in the case
of our algorithm, the intermediate compressed file is enough. In the case of dataset A, this
means 2 GB for the general compressors, while only 290 MB for our algorithm.

We also wanted to measure the time needed to retrieve the entries when our algorithm
is used in conjunction with a general compressor. Since, in Section 5.2.5, the joint use of
the proposed method and PPMd had the best compression rate, we chose PPMd as the
general compressor for this experiment. The compressed file is first decompressed with
PPMd, then the compressed file is decoded using the Huffman algorithm. The results can
be seen in Figures 41 and 42.
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Figure 41. The times needed to recover all instances of the 10 template in case of the joint compression.

0

2000

4000

6000

8000

Proposed Bzip2 LZMA PPMd Proposed General Joint

Decompression Lookup PPMd on proposed

Log entry retrieval speeds in case of joint use and 100 
templates

Figure 42. The times needed to recover all instances of the 100 template in case of the joint compression.

It can be seen that the decompression time increases with the time taken by the PPMd
to decompress the dictionaries and the compressed file generated by our algorithm, but
it can still quickly recover the entries corresponding to the randomly selected templates.
There is no difference in the space required to lookup the entries.

5.2.8. Experiment 8: The Comparison of the Compression Rates Achieved by the Proposed
Algorithm and Logzip

It is also important to compare the compression rates of the proposed method and
other algorithms that use the same approach. Like our algorithm, Logzip [19] also utilizes
hidden structures (templates) to reduce the size of a file. It also uses the general compressor
Bzip2 to further decrease the size. In this experiment, we compare the achieved compression
rates in the case of the previously mentioned datasets, A, B, and C. The results can be seen
in Figure 43.
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Figure 43. The compression rates achieved by our method and Logzip on datasets A B and C.

Our method has a compression rate that is approximately 1% higher than Logzip’s.
In contrast with Logzip, our algorithm does not incorporate the use of general algorithms.
With the joint use, our method could achieve higher rates as explained in Section 5.2.5.

5.2.9. Experiment 9: Investigating the Memory Usage of the Proposed Algorithm
and Logzip

Memory usage is a significant aspect of a compressor, so we investigated the average
and maximum memory usages of the proposed algorithm and Logzip [19]. We also
measured the duration of time that the compressors used the memory for. Dataset A
was used to conduct the experiment. The computer which was used to perform the
measurements had 16 GB of DDR4 RAM. The results are shown in Figure 44.
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Figure 44. The memory usage of the proposed method and Logzip.

It can be seen that our algorithm uses 44% less memory on average, and the maximum
memory used is 2.9 times less than in the case of Logzip. This could be explained by the
loading method of the messages. While our algorithm reads lines after each other (similar
to when messages come in a stream), Logzip loads the whole file into a dataframe that is
located in the memory. Furthermore, Logzip consumes the memory for four times as long
as the proposed algorithm. It can be noticed that the memory usage scales with the size of
the input. The available memory has to be at least 2.2 times the input size.
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5.2.10. Experiment 10: Generating Log Messages with Different Distributions and
Evaluating the Compression Rates

In the final experiment, we investigated whether our enhanced algorithm had high
compression rates even in the case of distributions other than the power law. We created
four datasets, which were different in size and distribution. While generating the “random”
datasets, each template had a 5% probability to be created by the sampling algorithm. We
created a file that consisted of 1 million entries and a file that consisted of 50 million entries
based on this principle. The generation of the other two datasets was similar, except that, in
this case, normal distribution was used instead of equal 5% probabilities. The distribution
of the templates in the case of the generated files can be seen in Figures 45–48.

Figure 45. The template distribution of the 1 million randomly generated messages dataset.

Figure 46. The template distribution of the 50 million randomly generated messages dataset.



Appl. Sci. 2022, 12, 2044 29 of 32

Figure 47. The template distribution of the 1 million messages dataset generated based on normal
distribution.

Figure 48. The template distribution of the 50 million messages dataset generated based on normal
distribution.

After the creation of the custom datasets, we measured the compression rates of our
enhanced algorithm. The results are shown in Figure 49.

It can be seen that our algorithm is capable of achieving high compression rates
regardless of the distribution of the templates. In the case of all the datasets, at least a 94%
compression rate was achieved, which indicates the compressing capacity of our algorithm.
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Figure 49. The compression rates achieved by our method on the generated datasets.

6. Discussion and Conclusions

In this paper, we evaluated the compression capacity of an enhanced version of the
algorithm that we proposed in [21]. The original algorithm uses template miners to identify
the templates. Based on the templates, a dictionary is created where each ID represents an
event type. The log lines are then represented using the corresponding ID and parameter
list. Using this approach, we were able to achieve around 67% compression rates. To
improve this performance, we introduced several enhancements to the algorithm in this
paper. First, the templates were ordered based on the number of their occurrences. Smaller
IDs were assigned to the more frequent templates. As a second step, we created a dictionary
for the templates in a similar manner. This resulted in encoded log messages that only
contained numbers. Finally, Huffman coding was used to further compress the file.

To analyze the performance of the enhanced algorithm, we conducted several experi-
ments. The experimental results showed that each enhancement improved the compression
capacity. The joint use of the parameter dictionary and Huffman coding achieved an av-
erage of 92% compression rate, which is 25% more than the original algorithm. In terms
of speed, we consider our algorithm to be fast, since it only takes seconds to compress
and decompress the investigated log files. We also compared our algorithm with gen-
eral compressors. While general compressors are faster and achieve better compression
rates, around 98%, they are not well suited for statistical applications. With the use of
our algorithm, statistical questions such as ‘What is the distribution of the templates?’
or ‘What is the frequency of the different parameters of a message type?’ can easily be
answered. The instances of given templates can also be found faster than in the case of
general compressors.

Based on our experiment we would suggest the joint use of our algorithm and general
compressors, since it improves the compression rates and functions as a wrapper for the
created templates and the encoded file.

We only evaluated the performance on static log files, it would be beneficial to measure
the compression rate, speed, and memory usage in the case of stream-like data. It would be
also interesting to compare the performance of our method with the performance of other
general compressors. We also want to investigate the connection between the compression
rate and the k-th order empirical entropy.
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