Physics-Based Simulation of Sequences with Foreshocks, Aftershocks and Multiple Main Shocks in Italy
Abstract
:1. Introduction
2. The Algorithm for Identification of Multiple Events
- There is a minimum magnitude threshold for the first event of the group (hereafter called “pivot”);
- The magnitude of any other main shocks of the sequence must lay in a predefined neighborhood of the pivot’s magnitude;
- The events’ time differences must be less than a threshold time, which is a function of event magnitudes (subject to criteria #1 and #2);
- For any event, a magnitude dependent distance (a radius) is defined and the distance between the epicentres must be smaller than a proper function of those radii.
- The first step starts with the selection of the next pivot event and the definition of a pool of eligible events (if they exist). They are found using criterion #3;
- The second phase is a thorough analysis of all useful couples taken from the pool, checked for fulfillment of criteria #1, #2 and #4;
- The last step is the construction of the graph, its traversal for the multiplets group search, its eventual output in the output buffer, and the flagging of used events to not reuse them after the next pivot search.
3. Seismotectonic Model
4. Simulation of the Seismicity
- The strength–reduction coefficient (S–R); this coefficient controls the growth of an initiated rupture, reducing the strength that must be exceeded for rupturing new elements of the expanding rupture, as a proxy of weakening mechanism;
- The aspect–ratio coefficient (A–R); this coefficient limits the progress of strength reduction if the ruptured area exceeds a given number of times the square of the width of the rupturing fault system, discouraging rupture propagation over very long distances.
5. Long- and Short-Term Features of the Simulated Seismicity
6. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Rhoades, D.A.; Evison, F.F. Long-range earthquake forecasting with every earthquake a precursor according to scale. Pure Appl. Geophys. 2004, 161, 47–72. [Google Scholar] [CrossRef]
- Rhoades, D.A.; Evison, F.F. Test of the EEPAS forecasting model on the Japan earthquake catalog. Pure Appl. Geophys. 2005, 162, 1271–1290. [Google Scholar] [CrossRef]
- Rhoades, D.; Evison, F. The EEPAS forecasting model and the probability of moderate-to-large earthquakes in central Japan. Tectonophysics 2006, 417, 119–130. [Google Scholar] [CrossRef]
- Evison, F.; Rhoades, D. The precursory earthquake swarm in New Zealand: Hypothesis tests. N. Z. J. Geol. Geophys. 1997, 40, 537–547. [Google Scholar] [CrossRef]
- Gardner, J.; Knopoff, L. Is the sequence of earthquakes in Southern California, with aftershocks removed, Poissonian? Bull. Seismol. Soc. Am. 1974, 64, 1363–1367. [Google Scholar] [CrossRef]
- Gentili, S.; Di Giovambattista, R. Forecasting strong aftershocks in earthquake clusters from northeastern Italy and western Slovenia. Phys. Earth Planet. Inter. 2020, 303, 106483. [Google Scholar] [CrossRef]
- Console, R.; Murru, M.; Vannoli, P.; Carluccio, R.; Taroni, M.; Falcone, G. Physics-based simulation of sequences with multiple main shocks in Central Italy. Geophys. J. Int. 2020, 223, 526–542. [Google Scholar] [CrossRef]
- Console, R.; Vannoli, P.; Carluccio, R. The seismicity of the Central Apennines (Italy) studied by means of a physics-based earthquake simulator. Geophys. J. Int. 2018, 212, 916–929. [Google Scholar] [CrossRef] [Green Version]
- DISS Working Group. Database of Individual Seismogenic Sources (DISS), Version 3.3.0: A Compilation of Potential Sources for Earthquakes Larger Than M 5.5 in Italy and Surrounding Areas. Available online: https://doi.org/10.13127/diss3.3.0 (accessed on 16 December 2021).
- Rovida, A.; Locati, M.; Camassi, R.; Lolli, B.; Gasperini, P.; Antonucci, A. The Italian Earthquake Catalogue CPTI15—Version 3.0; Istituto Nazionale di Geofisica e Vulcanologia (INGV): Rome, Italy, 2021.
- Pondrelli, S.; Visini, F.; Rovida, A.; D’Amico, V.; Pace, B.; Meletti, C. Style of faulting of expected earthquakes in Italy as an input for seismic hazard modeling. Nat. Hazards Earth Syst. Sci. 2020, 20, 3577–3592. [Google Scholar] [CrossRef]
- Mariucci, M.T.; Montone, P. Database of Italian present-day stress indicators, IPSI 1.4. Sci. Data 2020, 7, 1–11. [Google Scholar] [CrossRef]
- Devoti, R.; d’Agostino, N.; Serpelloni, E.; Pietrantonio, G.; Riguzzi, F.; Avallone, A.; Cavaliere, A.; Cheloni, D.; Cecere, G.; d’Ambrosio, C.; et al. A combined velocity field of the Mediterranean region. Ann. Geophys. 2017, 60, S0215. [Google Scholar] [CrossRef] [Green Version]
- Vannoli, P.; Burrato, P.; Fracassi, U.; Valensise, G. A fresh look at the seismotectonics of the Abruzzi (Central Apennines) following the 6 April 2009 L’Aquila earthquake (Mw 6.3). Ital. J. Geosci. 2012, 131, 309–329. [Google Scholar] [CrossRef]
- Michele, M.; Chiaraluce, L.; Di Stefano, R.; Waldhauser, F. Fine-scale structure of the 2016–2017 Central Italy seismic sequence from data recorded at the Italian National Network. J. Geophys. Res. Solid Earth 2020, 125, e2019JB018440. [Google Scholar] [CrossRef]
- Basili, R.; Valensise, G.; Vannoli, P.; Burrato, P.; Fracassi, U.; Mariano, S.; Tiberti, M.M.; Boschi, E. The Database of Individual Seismogenic Sources (DISS), version 3: Summarizing 20 years of research on Italy’s earthquake geology. Tectonophysics 2008, 453, 20–43. [Google Scholar] [CrossRef]
- Bonini, L.; Basili, R.; Burrato, P.; Cannelli, V.; Fracassi, U.; Maesano, F.E.; Melini, D.; Tarabusi, G.; Tiberti, M.M.; Vannoli, P.; et al. Testing different tectonic models for the source of the Mw 6.5, 30 October 2016, Norcia earthquake (central Italy): A youthful normal fault, or negative inversion of an old thrust? Tectonics 2019, 38, 990–1017. [Google Scholar] [CrossRef] [Green Version]
- Di Bucci, D.; Buttinelli, M.; D’Ambrogi, C.; Scrocca, D.; Anzidei, M.; Basili, R.; Bigi, S.; Bignami, C.; Bonini, L.; Bonomo, R.; et al. RETRACE-3D project: A multidisciplinary collaboration to build a crustal model for the 2016–2018 central Italy seismic sequence. Boll. Geofis. Teor. Appl. 2021, 62, 1–18. [Google Scholar] [CrossRef]
- Vannoli, P.; Vannucci, G.; Bernardi, F.; Palombo, B.; Ferrari, G. The source of the 30 October 1930 Mw 5.8 Senigallia (Central Italy) earthquake: A convergent solution from instrumental, macroseismic, and geological data. Bull. Seismol. Soc. Am. 2015, 105, 1548–1561. [Google Scholar] [CrossRef]
- Vannoli, P.; Burrato, P.; Valensise, G. The seismotectonics of the Po Plain (northern Italy): Tectonic diversity in a blind faulting domain. Pure Appl. Geophys. 2015, 172, 1105–1142. [Google Scholar] [CrossRef] [Green Version]
- Zampieri, D.; Vannoli, P.; Burrato, P. Geodynamic and seismotectonic model of a long-lived transverse structure: The Schio-Vicenza Fault System (NE Italy). Solid Earth Discuss. 2021, 12, 1967–1986. [Google Scholar] [CrossRef]
- Console, R.; Carluccio, R.; Murru, M.; Papadimitriou, E.; Karakostas, V. Physics-Based Simulation of Spatiotemporal Patterns of Earthquakes in the Corinth Gulf, Greece, Fault System. Bull. Seismol. Soc. Am. 2022, 112-1, 98–117. [Google Scholar] [CrossRef]
- Console, R.; Nardi, A.; Carluccio, R.; Murru, M.; Falcone, G.; Parsons, T. A physics-based earthquake simulator; its application to seismic hazard assessment in Calabria (Southern Italy) region. Acta Geophys. 2017, 65, 243–257. [Google Scholar] [CrossRef]
- Hanks, T.C.; Kanamori, H. A moment magnitude scale. J. Geophys. Res. Solid Earth 1979, 84, 2348–2350. [Google Scholar] [CrossRef]
- Montuori, C.; Murru, M.; Falcone, G. Spatial variation of the b-value observed for the periods preceding and following the 24 August 2016, Amatrice earthquake (ML 6.0)(central Italy). Annals Geophys. 2016, 59. [Google Scholar] [CrossRef]
- Papadopoulos, G.A.; Minadakis, G.; Orfanogiannaki, K. Short-term foreshocks; earthquake prediction. In AGU Geophysical Monograph Series Book, 1st ed.; American Geophysical Union: Washington, DC, USA, 2018; pp. 127–147. [Google Scholar]
- Gulia, L.; Wiemer, S. Real-time discrimination of earthquake foreshocks; aftershocks. Nature 2019, 574, 193–199. [Google Scholar] [CrossRef]
Criterion | Derived by | Formula | Our Choice | |
---|---|---|---|---|
1 | Threshold magnitude for the first event (named pivot) () | Expert Judgment | ||
2 | Magnitude difference with the pivot () | Expert Judgment | ||
3 | Time difference between the occurrence of main shocks () | Empirical Relationship (Gardner and Knopoff [5]) | () | n/a |
4 | Spatial distance between hypocenters () | Empirical Relationship (Gardner and Knopoff [5]) + Expert Judgment | chosen from: (a) (b) (c) ) | (c) |
# | Date | Locality | Kin | Causative Fault | C1st | Csum | |
---|---|---|---|---|---|---|---|
1 | 14 Jan 1703 | Valnerina | 6.92 | N * | Two main neighboring systems of extensional faults separated by the Olevano–Antrodoco–Sibillini regional tectonic structure | Y | Y |
2 | 2 Feb 1703 | Aquilano | 6.67 | N * | Y | Y | |
3 | 4 Apr 1781 | Faentino | 6.12 | T * | Two distinct fault systems with different current kinematics (two segments of the Pedeapenninic thrust front and a segment of the easternmost normal fault system of the northern Apennines) | N | Y |
4 | 3 Jun 1781 | Cagliese | 6.51 | N * | N | Y | |
5 | 17 Jul 1781 | Faentino | 5.61 | T * | N | N | |
6 | 17 May 1916 | Riminese | 5.82 | T * | The faults responsible for the 1916 sequence are compressive faults close together and located along the coast or immediately offshore. The fault responsible for the 1917 earthquake is an extensional fault located along the backbone of the northern Apennines | Y | Y |
7 | 15 Aug 1916 | Riminese | 5.34 | T * | Y | Y | |
8 | 15 Aug 1916 | Riminese | 5.35 | T * | Y | Y | |
9 | 16 Aug 1916 | Riminese | 5.82 | T * | Y | Y | |
10 | 16 Aug 1916 | Riminese | 5.46 | T * | Y | Y | |
11 | 26 Apr 1917 | Alta Valtiberina | 5.99 | N * | N | Y | |
12 | 10 Nov 1918 | Appennino forlivese | 5.96 | n/a | Distinct extensional fault systems along the backbone of the northern Apennines | Y | Y |
13 | 29 Jun 1919 | Mugello | 6.38 | N * | Y | Y | |
14 | 6 Sep 1920 | Garfagnana | 5.61 | N * | N | Y | |
15 | 7 Sep 1920 | Garfagnana | 6.53 | N * | N | N | |
16 | 5 Sep 1950 | Gran Sasso | 5.69 | S * | The first two events, close to each other, most likely belong to the same transcurrent system (see text). The fault responsible for the third event is not known, and it could be a relatively deep source | Y | Y |
17 | 8 Aug 1951 | Gran Sasso | 5.25 | S * | Y | Y | |
18 | 1 Sep 1951 | Monti Sibillini | 5.25 | n/a | N | Y | |
19 | 26 Sep 1997 | Appennino umbro-marchigiano | 5.66 | N | SW-dipping low-angle normal fault system straddles the central Apennines. The three largest events of the sequence ruptured three adjacent normal fault segments | Y | Y |
20 | 26 Sep 1997 | Appennino umbro-marchigiano | 5.97 | N | Y | Y | |
21 | 3 Oct 1997 | Appennino umbro-marchigiano | 5.22 | N | Y | Y | |
22 | 6 Oct 1997 | Appennino umbro-marchigiano | 5.47 | N | Y | Y | |
23 | 12 Oct 1997 | Valnerina | 5.19 | N | Y | Y | |
24 | 14 Oct 1997 | Valnerina | 5.62 | N | Y | Y | |
25 | 26 Mar 1998 | Appennino umbro-marchigiano | 5.26 | N | Y | Y | |
26 | 20 May 2012 | Pianura emiliana | 6.09 | T | Two parallel fault systems along the most advanced and buried thrusts of the northern Apennines (see text) | Y | Y |
27 | 29 May 2012 | Pianura emiliana | 5.90 | T | Y | Y | |
28 | 24 Aug 2016 | Amatrice | 6.18 | N | Multiple fault systems exhibiting complex ruptures along the backbone of the central Apennines (see text) | Y | Y |
29 | 26 Oct 2016 | Visso | 6.07 | N | Y | Y | |
30 | 30 Oct 2016 | Norcia | 6.61 | N | Y | Y | |
31 | 18 Jan 2017 | Aquilano | 5.70 | N | Y | Y |
Free Parameters | S–R = 0.1 | S–R = 0.2 | S–R = 0.3 |
---|---|---|---|
A–R = 2 | 1.30 ± 0.07 | 1.10 ± 0.06 | 0.84 ± 0.05 |
A–R = 5 | 0.92 ± 0.05 | 0.71 ± 0.05 | 0.56 ± 0.04 |
A–R = 10 | 0.74 ± 0.05 | 0.65 ± 0.05 | 0.49 ± 0.04 |
Free Parameters | S–R = 0.1 | S–R = 0.2 | S–R = 0.3 |
---|---|---|---|
A–R = 2 | 1.83 ± 0.11 | 1.77 ± 0.13 | 1.56 ± 0.11 |
A–R = 5 | 2.10 ± 0.20 | 1.94 ± 0.21 | 1.88 ± 0.18 |
A–R = 10 | 2.00 ± 0.18 | 2.13 ± 0.24 | 1.96 ± 0.23 |
Seismic Features | CPTI15 | Simulation |
---|---|---|
Number of events of per year | 0.573 | 0.138 |
Seismic moment released per year (Nm) | ||
Number of multiplets in 370 years | 8 | 0.65 ± 0.05 |
Average number of multiplets in 370 years in the randomized catalogs | 4.63 ± 1.88 | 0.32 ± 0.03 |
Average ratio of the number of multiplets between the original and randomized catalogs | 2.17 ± 1.37 | 2.13 ± 0.24 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Console, R.; Vannoli, P.; Carluccio, R. Physics-Based Simulation of Sequences with Foreshocks, Aftershocks and Multiple Main Shocks in Italy. Appl. Sci. 2022, 12, 2062. https://doi.org/10.3390/app12042062
Console R, Vannoli P, Carluccio R. Physics-Based Simulation of Sequences with Foreshocks, Aftershocks and Multiple Main Shocks in Italy. Applied Sciences. 2022; 12(4):2062. https://doi.org/10.3390/app12042062
Chicago/Turabian StyleConsole, Rodolfo, Paola Vannoli, and Roberto Carluccio. 2022. "Physics-Based Simulation of Sequences with Foreshocks, Aftershocks and Multiple Main Shocks in Italy" Applied Sciences 12, no. 4: 2062. https://doi.org/10.3390/app12042062
APA StyleConsole, R., Vannoli, P., & Carluccio, R. (2022). Physics-Based Simulation of Sequences with Foreshocks, Aftershocks and Multiple Main Shocks in Italy. Applied Sciences, 12(4), 2062. https://doi.org/10.3390/app12042062