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Abstract: Colonoscopy is an effective method for detecting polyps to prevent colon cancer. Existing
studies have achieved satisfactory polyp detection performance by aggregating low-level boundary
and high-level region information in convolutional neural networks (CNNs) for precise polyp segmen-
tation in colonoscopy images. However, multi-level aggregation provides limited polyp segmentation
owing to the distribution discrepancy that occurs when integrating different layer representations. To
address this problem, previous studies have employed complementary low- and high- level represen-
tations. In contrast to existing methods, we focus on propagating complementary information such
that the complementary low-level explicit boundary with abstracted high-level representations dimin-
ishes the discrepancy. This study proposes COMMA, which propagates complementary multi-level
aggregation to reduce distribution discrepancies. COMMA comprises a complementary masking
module (CMM) and a boundary propagation module (BPM) as a multi-decoder. The CMM masks
the low-level boundary noises through the abstracted high-level representation and leverages the
masked information at both levels. Similarly, the BPM incorporates the lowest- and highest-level
representations to obtain explicit boundary information and propagates the boundary to the CMMs
to improve polyp detection. CMMs can discriminate polyps more elaborately than prior CMMs based
on boundary and complementary representations. Moreover, we propose a hybrid loss function to
mitigate class imbalance and noisy annotations in polyp segmentation. To evaluate the COMMA
performance, we conducted experiments on five benchmark datasets using five metrics. The results
proved that the proposed network outperforms state-of-the-art methods in terms of all datasets.
Specifically, COMMA improved mIoU performance by 0.043 on average for all datasets compared to
the existing state-of-the-art methods.

Keywords: colorectal cancer; colonoscopy; polyp segmentation; deep learning; convolutional
neural network

1. Introduction

Colorectal cancer (CRC), which is one of the most common cancers globally, usually
begins as a polyp in the colon mucosa, and approximately one-quarter of untreated polyps
can develop into colon cancer [1]. Early polyp detection is a significant task in preventing
CRC, and colonoscopy is used extensively as a standard polyp detection method [2–4].
Although colonoscopy is an effective method for detecting polyps at the early stages, polyp
detection using colonoscopy images is a challenging task owing to the ambiguous image
context. As polyps are usually small and their boundaries are low in contrast to their
surroundings, polyps can easily be mistaken for wrinkles or other intestinal structures,
leading to inaccurate segmentation and over-segmentation. Therefore, discrimination of
the precise polyp region from an ambiguous context is critical for improving early polyp
detection and preventing CRC.

Based on the need for elaborate segmentation, early studies utilized handcrafted fea-
tures with a classifier [5,6]. However, the handcrafted approaches suffer from unsatisfactory
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performance because they cannot cover both intra- and inter-class variations [7]. Recent
studies have proposed deep learning-based approaches, including fully convolutional
networks (FCNs) [8] and U-Net [9]. Moreover, as alternative approach, Mask R-CNN [10]
based models have also been proposed for precise polyp segmentation [11]. In contrast
to existing CNN-based networks, PNS-Net [12] introduced a normalized self-attention
network that dynamically operated the receptive field of the network. Along with the net-
work architecture, a recent approach [13] considered excluding the effect of colors because
polyp images are gathered under varying conditions. By alleviating discrepancies in color
distribution, they improved the generalization performance of the network.

The U-Net comprises encoder-decoder structures that aggregate multiple encoder rep-
resentations at the decoder to overcome the insufficient representations of the handcrafted
approaches. Although the encoder-decoder structure improves the polyp segmentation per-
formance, this structure exhibits a distribution discrepancy between the low- and high-level
representations when aggregating multi-level features. Because the low-level representation
contains sufficient boundary information with background noise, whereas the high-level
feature presents abstracted region information [14–16]. To overcome the drawbacks of
both representations, each level requires the elimination of noise and an emphasis on
boundary information. Without the denoising and refining fine information, the multi-level
aggregation discrepancy occurs and it generates rough boundaries with noise in the predic-
tion map, which limits the model performance. To reduce this discrepancy, U-Net++ [17]
proposed multiple convolution layers on the skip pathways between the encoder and
decoder features. A previous study [18] improved on existing U-Net++-based architecture
by applying conditional random field and test-time augmentation to the ResUNet++ [19]
for precise polyp segmentation. Focusing more on the multi-level aggregation problem,
previous studies [20,21] organized the network including selective feature extraction and
aggregation using multiple kernel sizes. In addition, Enhanced U-Net [22] introduced at-
tention modules designed to extract distinct features from the highest-level representation
with different patch sizes and to refine the encoder features by utilizing the distinct features.
Similarly, SANet [13] proposed fusing both low- and high-level representations to detect
fine polyps by excluding background noise in low-level representations with abstracted
high-level information. These existing studies contributed to diminishing the multi-level
distribution discrepancy; however, they did not propagate complementary low- and high-
level aggregation to decoder structure to clarify polyp representation. Based on the lack
of research on the propagation of complementary multi-level aggregated information, we
studied the relationship between low- and high-level representations and focused on the
propagation of complementary information.

Another approach is the use of boundary information to compensate for insufficient
polyp representation. Psi-Net [23] addressed a joint training strategy using polyp region
and boundary detection tasks. Moreover, SFANet [20] incorporated boundary-sensitive loss
with boundary deep supervision maps [24] to detect polyp boundaries more elaborately.
In terms of boundary refinement, MSBNet [25] utilized a low-level representation with
a Gaussian kernel to enhance boundary information at the highest representation. An-
other study [26] organized multiple boundary attention modules designed to discriminate
boundary information using encoder and decoder representations adjacent to each other
at each decoder. In PraNet [27], which improved the model efficiency and outperformed
existing studies, a parallel reverse attention method with partial decoders was employed
to incorporate the polyp area and boundary features [15,28]. Although PraNet considered
the region and boundaries, the reverse attention method could not sufficiently discriminate
the boundary from the background. Because the boundary is obtained by aggregating the
high-level encoder outputs, which present the abstracted region information, the reversed
region contains insufficient boundaries compared to low-level outputs. In previous studies,
the explicit boundary information can be propagated across the decoders to detect the
polyp boundaries more elaborately, although the boundary was either used independently
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in a single decoder or not proliferated. Therefore, we focused on propagating the explicit
boundary by employing a multi-decoder structure.

In medical image segmentation tasks, binary cross entropy (BCE) and IoU losses are
commonly used to deal with local and global structural awareness. The BCE and IoU
losses cause a class imbalance problem because they treat all pixels with equal impor-
tance. To reduce this problem, weighted BCE (wBCE) and IoU (wIoU) losses have been
proposed in previous studies on salient object detection tasks [29]. In polyp segmentation,
PraNet [27] demonstrated state-of-the-art performance by adopting wBCE and wIoU losses.
In addition, we consider an L1 distance loss, which can handle noisy annotations [30,31]
often encountered in segmentation tasks. Thus, we combine the wBCE, wIoU, and L1 loss
functions to treat class imbalance and noisy label problems.

This study proposes a propagating complementary multi-level aggregation network
(COMMA), which comprises a complementary masking module (CMM) and boundary
propagation module (BPM) as the multi-decoder structure. The CMM clarifies the boundary
noise in the low-level through the abstracted high-level representation and propagates
the refined information to another decoder. The BPM generates an explicit boundary by
masking the lowest-level representation through the highest-level outputs. The boundary
is propagated to the CMMs in the next decoder to enhance the segmentation performance.
We also propose a hybrid loss function that allows the network to learn robustly on noisy
labels and assigns different importance to each pixel.

The main contributions of this study are as follows: First, we propose complemen-
tary multi-level aggregation, which contributes to reducing the multi-level distribution
discrepancy by applying the abstracted high-level representation as a mask to the low-level
boundary noises and propagating the complementary information. Second, the explicit
boundary propagation for the multi-decoder discriminates polyps in an ambiguous context
and enhances the segmentation performance. Third, we design a hybrid loss function
consisting of weighted BCE, weighted IoU, and L1 distance loss. The hybrid loss function
enables the model to focus on relatively important pixels and to be robust against noisy
annotations. Fourth, as a novel network, COMMA achieves state-of-the-art performance
with a significant improvement in the generalization performance.

The remainder of this study is as follows. Section 2 explains the proposed COMMA
architecture for polyp segmentation. Section 3 describes the experimental setup and
obtained results. Section 4 presents a discussion of the proposed method. Finally, Section 5
concludes this study and outlines future works.

2. Materials and Methods

In this section, we present COMMA, which is designed to reduce the multi-level distri-
bution discrepancy by propagating both refined levels and explicit boundary information.
Figure 1 represents the proposed COMMA architecture, consisting of an encoder block and
a decoder block containing the CMM and BPM. The encoder blocks consist of four stages
based on ResNet [32] and Res2Net [33], and the CMM extracts a complementary represen-
tation by aggregating the encoder output and the previous decoder output. The BPM in
the decoder combines the highest- and lowest-level features to extract explicit boundary
information. Furthermore, to proliferate distinct information, we employ multi-decoder
structures consisting of CMMs and BPM.
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Figure 1. Overall architecture of proposed COMMA.

2.1. Complementary Masking Module

Based on the relationship between the relatively low- and high-level representations,
the CMM masks the background noise at the low-level representation through the ab-
stracted high-level representation. After obtaining the denoised representation, we propa-
gate the complementary information to the decoder representation and the next decoder.
Here, we denote the i-th encoder block representation E(j)

i in the j-th skip connection path,

where i ∈ {1, 2, 3, 4} and j ∈ {1, 2}. D(j)
i indicates the i-th decoder block representation

in the j-th decoder, where i ∈ {3, 4} and j ∈ {1, 2}. In the CMM, the encoder output
E(j)

i ∈ RCi×Hi×Wi is masked by the decoder output D(j)
i+1 ∈ RCi+1×Hi+1×Wi+1 , as follows:

mask = σ(F (Up(D(j)
i+1))) ∈ R1×Hi×Wi

C = F (E(j)
i )⊗mask

(1)

Here, Up(·) and F (·) indicate the bilinear upsampling and post-activated convolutional
operations (i.e., Conv2D-Batch normalization-ReLU) [34], respectively. We apply a dual
post-activation convolutional operation to E(1)

4 for the first decoder representation D(1)
4 .

To exclude the background noise, we apply F (·) to the upsampled decoder representation
Up(D(j)

i+1) to obtain the mask that high-level representation is channel-wise aggregated.
Subsequently, we employ a sigmoid function σ to discriminate the mask information and
eliminate the background noise in E(j)

i through mask. Following the masking, a post-
activated convolutional operation is applied to complementary representation C to refine
the features in each path of low- and high-level. These features are fused with the original
CMM input features (E(j)

i and D(j)
i+1) to propagate the next CMM and decoder as follows:

E(j)
i = F (C) + E(j)

i , D(j)
i = F (C) + Up(D(j)

i+1) (2)

For an efficient computation, we include two CMMs in a single decoder. Then, to pro-
gressively improve and propagate the complementarity of the output propagated to the
next decoder CMM, we designed a cascading multi-decoder structure. We describe an
experiment in Section 3.4.1 in which we investigated the effects of progressive improvement
in complementarity. Finally, we obtain five deep supervision maps [24]: two decoder path
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outputs (DS1 and DS2) and three skip-connected path outputs (DS3, DS4, and DS5). Each
deep supervision map is upsampled to the ground truth size to compute the model loss.

2.2. Boundary Propagation Module

Explicit boundary information contributes to a more elaborate discrimination of polyps
in ambiguous contexts. Existing studies [25,26] generated edge information by ensembling
both low- and relatively high-level representations. They only utilized this information to
refine the highest-level feature or adjacent pair of encoder-decoder outputs, rather than
the entire network. In contrast to existing methods, the BPM is designed not only to de-
tect explicit boundary information but also to propagate the boundary to complementary
multi-level features by incorporating the lowest- and highest-level representations. Al-
though both levels exhibit a large distribution discrepancy, we overcome the discrepancy
with a property of each level to obtain a detailed boundary. The low-level encoder output
contains sufficient boundary information including background noise; in contrast, the high-
level output contains abstracted position information such that it exhibits ambiguous
boundaries [14–16]. Based on these properties, we consider both the lowest and highest
levels to maximize boundary detection performance. To verify the effectiveness of this
adoption, we conducted an ablation study related on the representation level for boundary
generation in Section 4.2.

We denoise the boundary noise at the lowest-level E(1)
1 through the highest-level

representation D(1)
4 to obtain a high-quality boundary, as follows:

X = F (E(1)
1 )⊗Up(D(1)

4 ))

B = σ(F (X))
(3)

A convolutional operation F (·) removing background noise [35,36] is applied to E(1)
1 . D(1)

4
for the effective aggregation of two different levels is directly rescaled to the same size
as E(1)

1 by the bilinear upsampling Up(·). Subsequently, we refine the fused feature X
using F (·) and employ a sigmoid function to discriminate the boundary representation
B. After generating the explicit boundary B, the BPM propagates downsampled B to
complementary representations E(2)

i , which are the CMM outputs of the first decoder,
to clarify the fine information, as follows:

E(2)
i = E(2)

i ⊗ Down(B) + E(2)
i , where i = 2, 3, 4 (4)

Here, Down(·) indicates bilinear downsampling to the same size as E(2)
i . We emphasize

boundary information in E(2)
i using resized B to each E(2)

i . By enhancing the fine features

at each E(2)
i , which is the input of the second decoder, the second decoder can more

easily detect ambiguous polyps compared to the first. That is, boundary propagation is
capable of learning a robust network against ambiguous edge information. To verify the
effectiveness of boundary propagation, we present experimental results depending on the
BPM application in Section 4.1. Finally, as demonstrated in existing studies [20,23,37], we
generate a boundary ground truth GTB to improve the boundary detection performance.
To support the explainability of the module, we visualize feature maps corresponding to
the BPM application state in Section 4.3.

2.3. Hybrid Loss Function

We employ hybrid loss to constrain the area, boundary, and noisy annotations in the
loss function as follows: L = α ∗Lw

BCE + β ∗Lw
IoU +γ ∗LL1. In medical image segmentation

tasks, binary cross entropy (BCE) and IoU losses are adopted extensively to impose local
and global constraints. The BCE and IoU losses consider all pixels to make equal contri-
butions [29]. That is, because colonoscopy images contain more background than polyp
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regions, a class imbalance problem can occur. To prevent this imbalance, we utilize the
weighted BCE (wBCE) and IoU (wIoU) losses, which focus on hard pixels, as demonstrated
in previous study [29]. The weighted loss uses λ to calculate the importance of each pixel,
and λij is calculated as follows:

λij =

∣∣∣∣∣∣∣
∑

h,w∈Aij

yh,w

∑
h,w∈Aij

1
− yij

∣∣∣∣∣∣∣ (5)

Here, Aij refers to the area surrounding the target pixel (i, j). The value of λij is larger
when it is placed at the boundaries of the polyp compared to the center of the polyp. Thus,
the weighted loss allows the network to focus on the boundary regions. For example, wBCE
loss is given by Equation (6). Here, y and ŷ indicate the ground truth and prediction of each
pixel, respectively. The notation c ∈ {0, 1} refers to binary classes. γ is a hyper-parameter
and is set to 5 as in previous study [29]. In wBCE, the importance of each pixel is assigned
using weight λij. As a result, the network can focus more on the local structures at the
boundaries than using the BCE.

Lw
BCE = −

H
∑
i

W
∑
j
(1 + γ · λij)

1
∑

c=0
(yclog(ŷc) + (1− yc)log(1− ŷc))

H
∑
i

W
∑
j
(1 + γ · λij)

(6)

In contrast, the wIoU loss detects the global structure of the polyp rather than individual
pixels based on the pixel importance λij.

Lw
IoU = 1−

H
∑
i

W
∑
j
(yijŷij)(1 + γ · λij)

H
∑
i

W
∑
j
(yij + ŷij − yijŷij)(1 + γ · λij)

(7)

Moreover, we consider the L1 distance loss to be robust to noisy labels [30,31], which often
occurs when annotating in segmentation tasks, so that the model converges robustly and
reliably on noisy annotations.

LL1 =
1

H ×W

H

∑
i

W

∑
j
|yij − ŷij| (8)

We provide the ablation studies exploring different combinations by calibrating the
loss weights (i.e., α, β, and γ) in Section 4.4.2. Moreover, existing study [27] revealed that
explicitly using the dependency of both region and boundary causes an overfitting problem;
however, we avoid this issue by applying independent boundary loss and data augmenta-
tions. Based on the hybrid loss, the final loss is calculated using the deep supervision maps
as follows:

L f inal =
5

∑
i=1
L(GT, DSi) + L(GTB, B) (9)

As we combine three different loss functions, we investigate the effectiveness of each and
their contributions to the performance improvement in Section 4.4.

3. Results

In this section, we demonstrate the five benchmark datasets, five evaluation metrics,
and experimental setups used for as well as the results of evaluating COMMA performance
compared to existing methods.



Appl. Sci. 2022, 12, 2114 7 of 17

3.1. Dataset

We validated the proposed COMMA using five datasets. Kvasir-SEG [38] is the
largest dataset, containing 1000 challenging images for polyp segmentation. We divided
Kvasir into 80%, 10%, and 10% for the training, validation, and testing images, respectively,
following the experimental settings of the existing study [27]. CVC-ClinicDB (CVC-612) [39]
contains 612 images in which the boundaries are low in contrast to their surroundings.
In the same manner, we used 550 images (90%) for training and validation and 62 images
(10%) for testing. To enable a fair comparison, all test sets were equivalent to those in
previous study [27]. CVC-ColonDB [40], ETIS [41], and EndoScene (CVC-T, CVC-300) [42]
were used to evaluate the generalization performance, because these small datasets contain
380, 196, and 60 images, respectively.

3.2. Experimental Setup
3.2.1. Evaluation Metrics

To validate the performance of the proposed model, we employed the mean Dice
and mean IoU metrics, which are widely used in medical image segmentation tasks.
Furthermore, we evaluated three additional metrics (i.e., Sm, Em, and MAE) that are
commonly used in salient object detection tasks [15,37,43]. The S-measure [44], which
evaluates structural similarities, is calculated as follows: Sm = α× So + (1− α)× Sr. So
and Sr indicate the object- and region-aware structural similarity, respectively, and we set
α = 0.5. The E-measure [45] considers the difference between the prediction and ground
truth in terms of both the global and pixel levels. The MAE is computed by the average of
the pixel-wise absolute values.

3.2.2. Implementation Details

For a fair comparison, we followed the experimental settings of the existing study [27].
The study concatenated both Kvasir and CVC-ClinicDB datasets. Afterward, they separated
training, validation, and test sets to 80%:10%:10%, respectively. We applied a flip, blur,
brightness, and distortion series for data augmentation to improve the model generalization
effect. An Adam optimizer with a learning rate of 1 ×10−4 and weight decay of 1 ×10−4

was employed. We calibrated the learning rate with an increment of 0.1, by monitoring
the validation loss if the validation loss did not reduce after 10 epochs. Moreover, an early
stopping strategy was applied if the validation loss did not decrease for 20 epochs. We set
the batch size to 32 and the maximum epochs to 200, and the input images were resized to
384 × 384. ResNet-50 [32] and Res2Net-50 [33] were employed as backbone networks by
initializing the pre-trained on ImageNet datasets. We used a AMD-RYZEN R9 5900X CPU
and single RTX 3090 GPU in this experiment, and COMMA was implemented using the
PyTorch framework.

3.3. Experimental Results
3.3.1. Comparison with State-of-the-Art Methods

We compared the proposed network with eight existing methods [9,17,19,20,22,25,
27,46]. For unbiased comparison, we compared the proposed method to the state-of-the-
arts [9,17,19,20,22,25,27,46] using the prediction maps pre-computed by the existing
study [27] and the scores obtained from the published papers [19,22,25]. As demonstrated
in Table 1, COMMA achieved state-of-the-art performance on five evaluation metrics
compared to previous methods. ResNet-50, as a backbone encoder, showed outstand-
ing performance on the CVC-ClinicDB, whereas Res2Net50 outperformed the existing
methods on the Kvasir dataset. In terms of the generalization performance, as shown in
Table 2, COMMA exhibited significant improvement on the three unseen datasets (i.e., CVC-
ColonDB, ETIS, and CVC-T). Compared to the state-of-the-art method, PraNet (32.55 M),
which is the previous outstanding approach, COMMA required fewer learning parameters
(31.1 M), but the segmentation performance was improved. As we obtained network
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robustness by leveraging the explicit boundary propagation and large samples with data
augmentation, COMMA could detect unknown polyps more elaborately.

Table 1. Comparison of COMMA performance with existing state-of-the-art methods on CVC-
ClinicDB and Kvasir datasets, where n/a indicates an inaccessible prediction map, and * and †
indicate that the ResNet and Res2Net backbone encoders were employed, respectively.

Model
CVC-ClinicDB Kvasir

mDice mIoU Sm Em MAE mDice mIoU Sm Em MAE

U-Net [9] 0.823 0.760 0.890 0.953 0.019 0.818 0.750 0.858 0.893 0.055
U-Net++ [17] 0.794 0.733 0.873 0.931 0.022 0.821 0.747 0.862 0.909 0.048

ResUNet-mod [46] 0.779 0.455 n/a n/a n/a 0.791 0.429 n/a n/a n/a
ResUNet++ [19] 0.796 0.796 n/a n/a n/a 0.813 0.793 n/a n/a n/a

SFA [20] 0.702 0.611 0.793 0.885 0.042 0.725 0.614 0.781 0.849 0.075
PraNet † [27] 0.899 0.853 0.937 0.979 0.009 0.897 0.844 0.915 0.948 0.030

COMMA * 0.916 0.871 0.947 0.979 0.008 0.904 0.860 0.925 0.963 0.024
COMMA † 0.933 0.891 0.956 0.985 0.007 0.901 0.852 0.919 0.951 0.027

Table 2. Comparison of COMMA generalization performance with state-of-the-art methods on
CVC-ColonDB, ETIS, and CVC-T datasets. * and † indicate that the ResNet and Res2Net backbone
encoders were employed, respectively.

Dataset Model mDice mIoU Sm Em MAE

ColonDB

U-Net [9] 0.504 0.440 0.710 0.781 0.059
U-Net++ [17] 0.482 0.412 0.693 0.764 0.061

SFA [20] 0.457 0.341 0.628 0.753 0.094
PraNet † [27] 0.711 0.644 0.820 0.872 0.043
E: U-Net [22] 0.740 0.663 - - -
MSBNet [25] 0.741 - 0.826 0.875 0.040

COMMA * 0.712 0.645 0.823 0.864 0.045
COMMA † 0.754 0.689 0.849 0.897 0.037

ETIS

U-Net [9] 0.399 0.340 0.684 0.740 0.036
U-Net++ [17] 0.401 0.348 0.683 0.776 0.035

SFA [20] 0.298 0.221 0.557 0.632 0.109
PraNet † [27] 0.628 0.571 0.794 0.841 0.031
E: U-Net [22] 0.651 0.582 - - -
MSBNet [25] 0.606 - 0.772 0.841 0.023

COMMA * 0.709 0.643 0.845 0.887 0.018
COMMA † 0.711 0.648 0.844 0.887 0.015

CVC-T

U-Net [9] 0.711 0.631 0.843 0.875 0.022
U-Net++ [17] 0.708 0.629 0.839 0.898 0.018

SFA [20] 0.468 0.334 0.641 0.817 0.065
PraNet † [27] 0.871 0.801 0.925 0.972 0.010
E: U-Net [22] 0.886 0.813 - - -
MSBNet [25] 0.866 - 0.917 0.966 0.010

COMMA * 0.871 0.801 0.924 0.980 0.011
COMMA † 0.906 0.843 0.945 0.988 0.006

3.3.2. Qualitative Comparison

As illustrated in Figure 2, we randomly sampled polyp images from each dataset
to validate the COMMA performance through the prediction maps. The images in the
first and third rows were necessarily difficult cases because they included small polyps in
the low-brightness areas. Although U-Net, U-Net++, and PraNet did not predict polyp
areas, the proposed method detected polyp areas with some noise. This may be helpful
to clinicians performing colonoscopy by improving polyp segmentation, where reducing
false negatives is important. The images in the second and fifth rows show a low color
contrast with the surrounding tissue. As as result of similar issues, previous methods tend
to overestimate the surrounding tissue as a polyp, whereas the proposed method accurately
predicted polyps. In the fourth-row image, which contains a large-scale polyp, the existing
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methods could not detect polyp regions with boundaries elaborately; in contrast, the pro-
posed method was able to discriminate the polyp regions and boundaries. As a result,
COMMA segregated the polyps in low-contrast and varied-size contexts by leveraging
explicit boundaries and complementary representation.

Figure 2. Qualitative comparison with existing methods.

3.3.3. Inference Analysis

As listed in Table 3, we compared the proposed method with the PraNet with respect to
inference times. All execution times were measured under the model declaration and data
I/O times. To provide an unbiased comparison, we used the code and hyper-parameters
released by the authors [27]. For the same batch size, COMMA required fewer parameters,
was 1.39× faster, and performed significantly better than PraNet. Furthermore, we changed
the batch size to eight and found that the average FPS was 74.70, which is sufficient for
real-time operation.

Table 3. Inference analysis of four datasets in the same environment. FPS refers to the number of
frames processed per second.

Models Batch. #Params
CVC-ClinicDB Kvasir ColonDB ETIS

Mean FPS
mDice MAE FPS mDice MAE FPS mDice MAE FPS mDice MAE FPS

PraNet 1 32.55 M 0.899 0.009 32.99 0.897 0.030 31.71 0.711 0.043 37.10 0.628 0.031 19.56 30.34
COMMA 1 31.10 M 0.933 0.007 42.32 0.901 0.027 31.90 0.754 0.037 51.96 0.711 0.015 42.31 42.12
COMMA 8 31.10 M 0.933 0.007 71.30 0.901 0.027 46.47 0.754 0.037 110.00 0.711 0.015 71.07 74.70

3.4. Further Experiments
3.4.1. Effectiveness of Multi-Decoder Structure

We also conducted experiments on the effectiveness of the number of decoders in
multi-decoder structures. As listed in Table 4, we observed that the multi-decoder structures
are more effective in obtaining detailed polyp regions than the single-decoder structure.
In the multi-decoder structures, while all the number of decoders from two to five are
effective, two decoders achieve slightly better performance with fewer learning parameters,
justifying this selection as the basis of the number of decoders.
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Table 4. Comparison of COMMA performance based on the decoder structures.

Dataset #Decoder (d) #Params mDice mIoU Sm Em MAE

CVC-ClinicDB

1 28.43 M 0.919 0.875 0.944 0.978 0.0072
2 31.10 M 0.933 0.891 0.956 0.985 0.0066
3 33.76 M 0.925 0.882 0.945 0.981 0.0074
4 36.42 M 0.931 0.889 0.953 0.982 0.0068
5 39.09 M 0.921 0.878 0.950 0.979 0.0074

Kvasir

1 28.43 M 0.870 0.823 0.898 0.920 0.032
2 31.10 M 0.901 0.852 0.919 0.951 0.027
3 33.76 M 0.898 0.849 0.919 0.953 0.028
4 36.42 M 0.897 0.848 0.918 0.957 0.028
5 39.09 M 0.901 0.851 0.919 0.950 0.027

ColonDB

1 28.43 M 0.701 0.665 0.817 0.844 0.051
2 31.10 M 0.754 0.689 0.849 0.897 0.037
3 33.76 M 0.762 0.697 0.852 0.874 0.039
4 36.42 M 0.756 0.689 0.850 0.875 0.035
5 39.09 M 0.753 0.689 0.846 0.876 0.039

ETIS

1 28.43 M 0.677 0.621 0.831 0.880 0.0160
2 31.10 M 0.711 0.648 0.844 0.887 0.0151
3 33.76 M 0.708 0.644 0.844 0.878 0.0176
4 36.42 M 0.711 0.649 0.844 0.893 0.0164
5 39.09 M 0.694 0.633 0.836 0.874 0.0167

CVC-T

1 28.43 M 0.850 0.793 0.894 0.957 0.012
2 31.10 M 0.906 0.843 0.945 0.988 0.006
3 33.76 M 0.892 0.826 0.935 0.987 0.007
4 36.42 M 0.870 0.803 0.927 0.964 0.008
5 39.09 M 0.888 0.822 0.936 0.977 0.009

3.4.2. Individual Learning

In the experiments, we trained a total dataset that merged CVC-ClinicDB and Kvasir
datasets to obtain the leverage effect of a large distribution. We compared the results of
training using CVC-ClinicDB and Kvasir as training datasets to investigate whether the
benefits of the total dataset help to improve performance. As listed in Table 5, we observed
that using the total dataset training strategy outperformed individual dataset training on
three datasets (i.e., CVC-ClinicDB, ETIS, and CVC-T). The mean dice scores were 1.4–5.6%
higher than when individually trained. However, using the total dataset training strategy
slightly worsens the performance on the Kvasir dataset, whereas it performed similarly
on the ColonDB dataset. This suggests that the data distribution of the CVC-ClinicDB
dataset included in the total dataset is different from that of the Kvasir dataset. Therefore,
noise was added to the distribution of the Kvasir dataset, resulting in a slight performance
degradation. Nevertheless, we note that using a joint dataset training strategy is robust in
terms of the generalization performance.

Table 5. Leverage effectiveness in large samples. † and * indicate that CVC-ClinicDB and Kvasir were
used as training datasets, respectively.

Dataset Model mDice mIoU Sm Em MAE

CVC-ClinicDB
PraNet 0.899 0.853 0.937 0.979 0.009

COMMA † 0.919 0.877 0.948 0.984 0.007
COMMA 0.933 0.891 0.956 0.985 0.007

Kvasir
PraNet 0.897 0.844 0.915 0.948 0.030

COMMA * 0.913 0.867 0.929 0.965 0.024
COMMA 0.901 0.852 0.919 0.951 0.027
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Table 5. Cont.

Dataset Model mDice mIoU Sm Em MAE

ColonDB

PraNet 0.711 0.644 0.820 0.872 0.043
COMMA † 0.757 0.690 0.849 0.893 0.038
COMMA * 0.676 0.609 0.803 0.858 0.045
COMMA 0.754 0.689 0.849 0.897 0.037

ETIS

PraNet 0.628 0.571 0.794 0.841 0.031
COMMA † 0.671 0.593 0.820 0.830 0.036
COMMA * 0.689 0.616 0.829 0.863 0.023
COMMA 0.711 0.648 0.844 0.887 0.015

CVC-T

PraNet 0.871 0.801 0.925 0.972 0.010
COMMA † 0.850 0.785 0.914 0.960 0.014
COMMA * 0.844 0.765 0.909 0.943 0.010
COMMA 0.906 0.843 0.945 0.988 0.006

3.4.3. Comparison of Interpolation Method of Up/Down-Sampling

In semantic segmentation, pixel interpolation is widely used when performing up/
down-sampling of images. Several interpolation methods have been developed, including
nearest, bilinear, and bicubic interpolation. We conducted an experiments to evaluate
performance of various interpolation methods. In Table 6, it is observed that the bilinear
method significantly outperformed the nearest and bicubic methods. Although the nearest
method is computationally faster than the other methods, it causes significant performance
degradation because the boundaries are not preserved. However, the cubic method, which
interpolates using the product of 16 adjacent pixel values and weights according to distance,
exhibited less image distortion than the nearest and bilinear methods. However, contrary
to expectations, bicubic interpolation performed better than the nearest, but overall worse
than bilinear in our experiments. Therefore, we used the bilinear method as the default
method based on the result of this experiment and previous studies [9,17,20,27].

Table 6. Comparison of COMMA performance based on the method of up/down-sampling interpo-
lation method.

Dataset Model mDice mIoU Sm Em MAE

CVC-ClinicDB
Nearest 0.901 0.842 0.929 0.978 0.009
Bilinear 0.933 0.891 0.956 0.985 0.007
Bicubic 0.920 0.876 0.943 0.979 0.008

Kvasir
Nearest 0.881 0.821 0.904 0.942 0.031
Bilinear 0.901 0.852 0.919 0.951 0.027
Bicubic 0.890 0.841 0.914 0.941 0.028

ColonDB
Nearest 0.750 0.672 0.842 0.883 0.037
Bilinear 0.754 0.689 0.849 0.897 0.037
Bicubic 0.753 0.687 0.846 0.885 0.038

ETIS
Nearest 0.681 0.604 0.821 0.846 0.014
Bilinear 0.711 0.648 0.844 0.887 0.015
Bicubic 0.699 0.637 0.837 0.846 0.013

CVC-T
Nearest 0.865 0.782 0.916 0.980 0.009
Bilinear 0.906 0.843 0.945 0.988 0.006
Bicubic 0.891 0.826 0.936 0.978 0.007

4. Discussion

As demonstrated in Section 2, we proposed three components, including CMM, BPM,
and a hybrid loss function, to improve the performance of polyp segmentation. To validate
the effectiveness of each component and show the model explainability, we conducted an
additional analysis related to the components. The remainder of the analysis considered
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the effectiveness of each module and BPM combinations, visualization of the proposed
module operation, and comparison of the proposed loss function and the existing single
loss functions.

4.1. Effectiveness of Proposed Modules

To validate the effectiveness of the proposed modules, we compared the performance
gain of the proposed modules. As listed in Table 7, we found that the performance gain
mainly originated from the CMM. Although the performance gain was observed when
the BPM was applied, in the second row of each dataset, the CMM significantly improved
the polyp detection performance. That is, the CMM contributed more to the performance
improvement than the BPM when applying an individual module. In terms of informa-
tion propagation, employing both modules could achieve an outstanding performance
compared to using an individual combination. This is because the proposed network
(Base + CMM + BPM) propagated the boundary information obtained from the BPM to the
second decoder structure (CMM). This structure could contribute to obtaining more refined
polyp regions than the individual combinations (Base + CMM and Base + BPM).

Table 7. Ablation studies for the combination of modules.

Dataset Model mDice mIoU Sm Em MAE

CVC-ClinicDB

Base 0.898 0.850 0.933 0.967 0.010
Base + CMM 0.926 0.882 0.945 0.981 0.008
Base + BPM 0.911 0.863 0.940 0.972 0.008
Base + CMM + BPM 0.933 0.891 0.956 0.985 0.007

Kvasir

Base 0.882 0.831 0.906 0.945 0.032
Base + CMM 0.897 0.847 0.915 0.949 0.029
Base + BPM 0.890 0.836 0.912 0.950 0.034
Base + CMM + BPM 0.901 0.852 0.919 0.951 0.027

ColonDB

Base 0.676 0.615 0.806 0.810 0.043
Base + CMM 0.720 0.652 0.822 0.855 0.040
Base + BPM 0.671 0.609 0.803 0.813 0.044
Base + CMM + BPM 0.754 0.689 0.849 0.897 0.037

ETIS

Base 0.628 0.567 0.799 0.769 0.028
Base + CMM 0.675 0.609 0.832 0.872 0.021
Base + BPM 0.664 0.597 0.816 0.810 0.018
Base + CMM + BPM 0.711 0.648 0.844 0.887 0.015

CVC-T

Base 0.830 0.752 0.890 0.931 0.015
Base + CMM 0.887 0.819 0.936 0.985 0.008
Base + BPM 0.859 0.784 0.915 0.961 0.009
Base + CMM + BPM 0.906 0.843 0.945 0.988 0.006

4.2. Effectiveness of BPM Combinations

In BPM, explicit boundary information is obtained by combining the low-level feature
E(1)

1 , which has rich boundary information, and the highest-level feature D(1)
4 of the first

decoder. As presented in Table 8, experiments were conducted to investigate the effects of
different level features of the decoder (D(1)

1−4). Based on mDice and mIoU, the combination

with D(1)
4 , which is the highest-level representation, yielded much better performance on

the CVC-ClinicDB and CVC-T datasets than D(1)
2 and D(1)

3 , respectively. However, on the

Kvasir and ColonDB datasets, the combination with D(1)
2 and D(1)

3 performed best, respec-

tively. In MAE, we observe that the combination with D(1)
4 outperformed all the datasets.

This experiment suggests that D(1)
4 , which is the representation with the most abstraction,

extracts clean boundary information by removing the background noise of E(1)
1 . Moreover,

as in the previous methods [20,23], an experiment was performed to extract and propagate
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boundary information using an independent boundary decoder (row 4). We observe that
the independent boundary decoder performs similarly well on CVC-ClincDB and Kvasir
datasets, while its usage leads to a drop in the generalization performance (i.e., three un-
seen datasets). This suggests that using the independent boundary decoder with more
parameters may better represent the distribution of the training dataset (i.e., CVC-ClinicDB,
Kvasir) but is not good for generalization.

Table 8. Comparison of COMMA performance with regard to BPM combinations. † indicates that
the boundary information was extracted through an independent boundary decoder, as in previous
methods [20,23].

Dataset BPM Combination #Params mDice mIoU Sm Em MAE

CVC-ClinicDB

E(1)
1 , D(1)

2 31.10 M 0.927 0.884 0.944 0.983 0.0070
E(1)

1 , D(1)
3 31.10 M 0.930 0.889 0.949 0.984 0.0068

E(1)
1 , D(1)

4 31.10 M 0.933 0.891 0.956 0.985 0.0066
E(1)

1 , D † 33.32 M 0.928 0.885 0.954 0.982 0.0070

Kvasir

E(1)
1 , D(1)

2 31.10 M 0.905 0.855 0.924 0.955 0.027
E(1)

1 , D(1)
3 31.10 M 0.891 0.842 0.915 0.945 0.029

E(1)
1 , D(1)

4 31.10 M 0.901 0.852 0.919 0.951 0.027
E(1)

1 , D † 33.32 M 0.903 0.852 0.920 0.954 0.028

ColonDB

E(1)
1 , D(1)

2 31.10 M 0.762 0.697 0.852 0.883 0.037
E(1)

1 , D(1)
3 31.10 M 0.738 0.677 0.840 0.864 0.039

E(1)
1 , D(1)

4 31.10 M 0.754 0.689 0.849 0.897 0.037
E(1)

1 , D † 33.32 M 0.753 0.684 0.849 0.887 0.037

ETIS

E(1)
1 , D(1)

2 31.10 M 0.679 0.619 0.830 0.830 0.016
E(1)

1 , D(1)
3 31.10 M 0.714 0.656 0.845 0.858 0.015

E(1)
1 , D(1)

4 31.10 M 0.711 0.648 0.844 0.887 0.015
E(1)

1 , D † 33.32 M 0.697 0.629 0.840 0.851 0.024

CVC-T

E(1)
1 , D(1)

2 31.10 M 0.880 0.814 0.933 0.979 0.007
E(1)

1 , D(1)
3 31.10 M 0.898 0.835 0.939 0.981 0.007

E(1)
1 , D(1)

4 31.10 M 0.906 0.843 0.945 0.988 0.006
E(1)

1 , D † 33.32 M 0.869 0.800 0.926 0.984 0.011

4.3. CMM and BPM Visualization

We visualized feature maps obtained from the CMM and BPM operations to explain
complementary propagation.

4.3.1. Complementary Masking Visualization

To verify the effectiveness of the complementary multi-level aggregation, we sampled
random channels from the low- and high-level representations and compared them after
applying complementary information. In Figure 3-CMM, (a) and (b) denote relatively
low-level and high-level features, respectively, whereas (c) is the complementary informa-
tion masked by the high-level representation. We observed that the polyp regions were
enhanced, and the discrepancy was diminished between (a)–(b) and (d)–(e) when applying
the complementary information. The CMM in the first decoder propagated the refined
representations to the next CMM and the second decoder. Following the complementary
propagation, the second decoder could present the polyp regions under the discrepancy
reduced representations.
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Figure 3. Visualization of complementary masking and explicit boundary generation.

4.3.2. Explicit Boundary Visualization

We have addressed the BPM generating explicit boundary information, and we visual-
ized the lowest- and highest-level representations to observe the boundary. In Figure 3-BPM,
(a), (d) and (b), (e) are the lowest- and highest-levels (i.e., E1 and D4), respectively. Each
feature was randomly sampled from the channel-wise representations. Based on the prop-
erties of both levels, because the highest-level presented abstracted region information, it
could be employed as a mask, which eliminated the background noise in the lowest-level
representation. As a result, we obtained the explicit boundary features, as indicated in (c)
and (f), following which the boundaries were propagated to the CMMs in the second de-
coder to clarify the polyp borderlines. By leveraging the explicit boundary and computing
the boundary loss, COMMA could discriminate ambiguous polyp contexts more precisely.

4.4. Analysis of Loss Functions
4.4.1. Comparison of Loss Functions

To investigate the effectiveness of each loss function in the proposed hybrid loss
function, a comparative experiment was performed between the hybrid loss function
and other single loss functions in Table 9. First, we compared the BCE, IoU, and L1 loss
functions and observed that IoU loss performed better than BCE loss on mean dice and
mean IoU, whereas BCE loss performed better than IoU loss on Sm and Em; however,
L1 loss outperformed in most evaluation metrics. Second, to verify the effectiveness of
the weighted loss function, BCE and weighted BCE were comapred along with IoU and
weighted IoU. The weighted loss functions significantly improved the overall performance.
This suggests that the weighted loss function allows the network to focus on the boundary
information, leading to improved performance. Third, we compared the weighted BCE and
the weighted IoU loss functions and found similar trends to the comparison of the BCE and
IoU loss functions. Based on the results of this experiment, we concluded that the weighted
IoU affected mDice and mIOU more than weighted BCE and L1, whereas weighted BCE
affected Sm and Em more. In addition, L1 loss, which exhibited the best MAE, helped the
model to make pixel-by-pixel predictions with high confidence. Although some single loss
functions outperformed the hybrid loss function on certain metrics, the proposed hybrid
loss function significantly outperformed the alternatives on most evaluation metrics.

Table 9. Comparison of the hybrid loss function and single loss functions.

Loss Function
Kvasir ColonDB

mDice mIoU Sm Em MAE mDice mIoU Sm Em MAE

BCE 0.868 0.805 0.913 0.948 0.036 0.703 0.632 0.841 0.862 0.042
IoU 0.886 0.838 0.902 0.937 0.038 0.729 0.664 0.829 0.848 0.045
L1 0.886 0.835 0.903 0.941 0.032 0.751 0.681 0.843 0.869 0.038

wBCE 0.876 0.815 0.915 0.945 0.033 0.731 0.658 0.852 0.878 0.042
wIoU 0.892 0.842 0.905 0.940 0.037 0.762 0.699 0.845 0.870 0.041

Hybrid (wBCE + wIoU + L1) 0.901 0.852 0.919 0.951 0.027 0.754 0.689 0.849 0.897 0.037
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4.4.2. Weighted Loss Combination

We examine the combinations of the proposed hybrid loss function to observe the
influence on local-global structure awareness and robustness against noisy annotations.
As shown in Table 10, we excluded the L1 loss (ver. 1), the overall performance decreases.
In ver. 2, which imposed more weights on the weighted BCE, mDice and mIoU increased
because the wBCE enabled the network to learn the local structure, but Sm and MAE were
unsatisfactory. In contrast, higher weights for the wIoU (ver. 3) showed better local-global
structure awareness (Sm) compared to other combinations, but this combination was unable
to handle noisy labels for stable convergence. Although some combinations outperformed
the equally weighted combinations in certain metrics (ver. 5), we adopted an equally
weighted combination because it showed a satisfactory generalization performance.

Table 10. Comparison of hybrid loss function combinations. α, β, and γ refer to the weights of Lw
BCE,

Lw
IoU , and LL1, respectively.

α / β / γ Ver.
CVC-ClinicDB ETIS

mDice mIoU Sm Em MAE mDice mIoU Sm Em MAE

1.0 / 1.0 / 0.0 (1) 0.929 0.886 0.956 0.984 0.008 0.700 0.639 0.839 0.880 0.020
1.0 / 0.5 / 0.5 (2) 0.933 0.892 0.945 0.981 0.008 0.712 0.649 0.833 0.863 0.018
0.5 / 1.0 / 0.5 (3) 0.926 0.884 0.959 0.986 0.009 0.689 0.630 0.844 0.886 0.021
0.5 / 0.5 / 1.0 (4) 0.925 0.883 0.947 0.980 0.007 0.682 0.624 0.835 0.860 0.017
1.0 / 1.0 / 1.0 (5) 0.933 0.891 0.956 0.985 0.007 0.711 0.648 0.844 0.887 0.015

5. Conclusions

This study has focused on the propagation of complementary multi-level aggrega-
tion to overcome multi-level distribution discrepancy. The proposed method, COMMA,
leverages refined low- and high-level representations in a multi-decoder structure to dis-
criminate polyps in ambiguous contexts. The decoder, which comprises a complementary
masking module (CMM) and boundary propagation module (BPM), refines the complemen-
tary features by masking the low-level representation through the high-level representation,
and propagates the complementary information to the next decoder. We also introduce a
hybrid loss function combining weighted BCE, weighted IoU, and L1 distance loss to ad-
dress class imbalance and noisy label problems. To verify the effectiveness of the proposed
approach, we evaluated COMMA compared to existing segmentation methods on five
benchmark datasets. COMMA achieved state-of-the-art performance, as well as significant
generalization performance. In future work, we intend to study complementary multi-level
aggregation to achieve greater memory efficiency and improve segmentation performance.
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