
����������
�������

Citation: Lee, G.; Kim, J. Improving

Human Activity Recognition for

Sparse Radar Point Clouds: A Graph

Neural Network Model with

Pre-Trained 3D Human-Joint

Coordinates. Appl. Sci. 2022, 12, 2168.

https://doi.org/10.3390/

app12042168

Academic Editors: Jongweon Kim

and Yongseok Lee

Received: 24 January 2022

Accepted: 17 February 2022

Published: 18 February 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

applied  
sciences

Article

Improving Human Activity Recognition for Sparse Radar Point
Clouds: A Graph Neural Network Model with Pre-Trained 3D
Human-Joint Coordinates
Gawon Lee and Jihie Kim *

Department of Artificial Intelligence, Dongguk University Seoul, 30 Pildong-ro 1 Gil, Seoul 04620, Korea;
rainrain16@dgu.edu
* Correspondence: jihie.kim@dgu.edu

Abstract: Many devices have been used to detect human action, including wearable devices, cameras,
lidars, and radars. However, some people, such as the elderly and young children, may not know
how to use wearable devices effectively. Cameras have the disadvantage of invading privacy, and
lidar is rather expensive. In contrast, radar, which is widely used commercially, is easily accessible
and relatively cheap. However, due to the limitations of radio waves, radar data are sparse and
not easy to use for human activity recognition. In this study, we present a novel human activity
recognition model that consists of a pre-trained model and graph neural networks (GNNs). First,
we overcome the sparsity of the radar data. To achieve that, we use a model pre-trained with the
3D coordinates of radar data and Kinect data that represents the ground truth. With this pre-trained
model, we extract reliable features as 3D human joint coordinate estimates from sparse radar data.
Then, a GNN model is used to extract additional information in the spatio-temporal domain from
these joint coordinate estimates. Our approach was evaluated using the MMActivity dataset, which
includes five different human activities. Our system achieved an accuracy of 96%. The experimental
result demonstrates that our algorithm is more effective than five other baseline models.

Keywords: human activity detection; human activity recognition; mmWave radar; point clouds;
graph neural network

1. Introduction

Recently, human action detection has become increasingly important in a variety of
industries, such as healthcare for elders. A wide variety of devices for human activity
recognition have been proposed, including cameras, wearable devices, lidar, and radar.

Tufek et al. [1] recognized daily activities using wearable sensors, which were imple-
mented with accelerometers, gyroscopes, and wireless radio frequency modules. A three-layer
long short-term memory (LSTM) model with a data balancing algorithm was used on the UCI
HAR benchmark dataset, and the ETEXWELD dataset was collected. Although the model
achieved high accuracy rates, wearable devices must be worn on body parts, such as the chest,
during data collection, which can be quite cumbersome during actual use.

Li et al. [2] proposed vision-based fall detection methods that worked on recorded
videos or real-time video streams. Three algorithmic pipelines for multi-level tasks were
designed, where the pipelines consisted of the frame-level algorithm pipeline (FLAP), the
sequence-level algorithm pipeline (SLAP), and the video-level algorithm pipeline (VLAP),
and each pipeline focused on a different feature representation. For example, for the
sequence level fall detection (SLFD) task, the authors proposed a dynamic pose motion
(DPM) representation to capture a flexible motion extraction module. However, such
approaches that use cameras have the problem of privacy invasion.

Lidar and radar have often been compared in the study of human activity recognition.
Luo et al. [3] proposed using a 2D lidar to recognize human activities by classifying people’s
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motion trajectories. They used spatial transformation and Gaussian noise for trajectory
augmentation. Then, two neural networks, including an LSTM network and a temporal
convolutional network (TCN), were used on trajectory samples collected from a kitchen.
These two networks outperformed the hidden Markov model (HMM), dynamic time
warping (DTW), and support vector machine (SVM) by a wide margin.

Radar has several advantages over lidar. First, it is not strongly affected by weather
conditions. The radio waves used in radar have a small degree of absorption, so this
technology can work well even under bad weather conditions, whereas lidar is vulnerable
to weather, such as fog and snow. Second, miniaturization technology is also more highly
developed for radar than for lidar. Therefore, radar has been widely used in the defense
field, such as in fighter jets, which must operate even in bad weather.

One disadvantage of radar is that it produces rather sparse data, because the radio
waves emitted by radar have weak straightness. In addition to wavelength problems,
inherent noise is also a cause of the sparsity in radar data [4]. Accordingly, many studies
have investigated ways to effectively combine radar with camera sensors to perform more
accurate detection and object identification than is possible using radar alone. With the
impressive growth of machine learning and deep learning techniques, new methods for
processing sparse radar data have been proposed.

Singh et al. [5] selected voxelization to pre-process radar data and achieved greater
than 90% accuracy with deep learning classifiers. Sengupta et al. [6] also adopted a
voxelization method, and in order to predict skeletal key points, mmPose-NLP (Natural
Language Processing) architecture, which employed extracted features from the voxelized
data, was presented.

Excluding voxelization, artificial sampling and grouping methods for radar data
have also been considered. An et al. [7] collected the following five radar data ele-
ments: the spatial coordinates of the point (x, y, z), Doppler velocity, and signal intensity.
They transformed raw radar data into a 3D five-channel stacked feature map instead of
using voxelization. These feature maps were fed to a simple convolution neural network
(CNN) model called MARS to predict 19 human joints. The 2D form can also be used.
Alujaim et al. [8] measured seven different human motions using a 2D planar phased array.
The motions were processed using a deep convolutional neural network (DCNN) and
achieved above 90% accuracy on both the training and validation datasets. Sun et al. [9]
attempted to produce dense and smooth point clouds. They resampled the number of
points in a frame to achieve a fixed number of points in each frame. The Agglomerative
Hierarchical Clustering (AHC) was used for upsampling, while the K-means algorithm
was used for downsampling. In the AHC algorithm, each cluster’s centroid was added to
the point cloud as a new point until reaching a fixed number of points in an experiment.
On the other hand, the K-means algorithm made the fixed number of points (K) per frame
and selected the centroids of the clusters as the data points in the point cloud. However,
in this method, there is a problem that duplicate values occur when the number of point
clouds in the collected data is less than half of the fixed number of points.

In this paper, we introduce a new model to solve these challenges without using a
combination of radar and other sensors or converting radar data into regular voxels.

First, we address the sparsity of radar data. Most previous studies have proposed
voxelization-based approaches. However, the voxelization process involves high computa-
tional cost. Furthermore, to improve the generality of the proposed model, a new method
that only requires the 3D coordinates of radar data and demands low computation is
proposed. Other data, such as Doppler and intensity data, do not need to be pre-processed,
and therefore do not incur a high computational cost. We develop a pre-trained model that
represents 25 human body joints to map point clouds to Kinect data [7]. The pre-trained
model is used to extract 3D human joint coordinate estimates from radar data. Second,
considering each joint point as a vertex of a graph, and the line connecting the adjacent
joints as an edge in the graph, we propose a classification model based on graph neural
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networks (GNNs) [10] using these estimates. The main contributions of this paper are
as follows:

1. We propose a novel human activity recognition model that uses estimated 3D human
joint coordinate data from sparse radar data with low computational cost, rather than
other complex pre-processing methods, such as voxelization.

2. We design a spatial-temporal graph convolutional network (ST-GCN)-based model to
predict human activities by optimized spatio-temporal feature extraction.

3. We demonstrate improved performance by our model on the task of human activity
recognition. Our model achieves 96% accuracy, which is better than the accuracy of
the existing baseline models [5].

This paper is organized as follows. Section 2 describes relevant previous work.
Section 3 introduces the dataset used in this research and explains our proposed model.
The performance results are discussed in Section 4. Finally, Section 5 provides the conclu-
sions drawn from the presented approach and describes our future work.

2. Related Work

Many studies have been conducted using mmWave radar to detect human action.
Most of these studies have focused on pre-processing data to improve the classification.
Because the format of the data received by radar differs depending on the experimental
setting [11,12] or the data collection tool used, the pre-processing method is not unified.

Singh et al. [5] used a TI IWR1443 mmWave radar and collected radar data using a
robot operating system (ROS) package [13] as follows: the number of point clouds, spatial
coordinates of the points (x, y, z), range, velocity, Doppler bin, bearing, and intensity.
They selected voxelization to pre-process these data, and each sample had the dimensions
60 × 10 × 32 × 32 (depth = 10). These dimensions were decided empirically by testing
the model performance. After voxelization, five classifiers were evaluated: SVM, multi-
layer perceptron (MLP), LSTM, and CNN combined with LSTM. Overall, all proposed
machine learning approaches showed a high performance of up to 90.47%. However,
the dimensionality of each input sample (60 × 10 × 32 × 32 = 614,400) meant that the
voxelization method resulted in significant increases in the memory requirements.

Sengupta et al. [6] also pre-processed radar data in a voxelized form. One differ-
ence from [5] is that Sengupta et al. regarded this process as equivalent to the tokeniza-
tion of natural language processing (NLP). After extracting features from the voxelized
data, skeletal key points were predicted using a proposed mmPose-NLP architecture.
They compared these predictions with the ground truth obtained from Kinect. However,
the problem of high computation cost remains, because the process takes two steps: vox-
elization of the radar point cloud data, and conversion back to real-world 3D coordinates
using a voxel dictionary.

An et al. [7] used TI IWR1443 Boost mmWave radar and a MATLAB runtime imple-
mentation from TI [14] for data acquisition. The raw radar data were transformed, without
voxelization, into a 3D five-channel stacked feature map by the pre-processing method
proposed. The channels of the feature map consisted of the spatial coordinates (x, y, z),
Doppler velocity, and signal intensity. Because the authors fixed the number of point clouds
to 64 per frame, 64 rows were converted to an 8 × 8 square matrix in the row-major order.
These feature maps were regarded as images commonly used in CNNs. They were then
fed to a simple CNN model called MARS, which predicted 19 human joints. In contrast
to previous studies, there was no complicated pre-processing [15–17] or large model that
caused an increase in the number of parameters. Therefore, the computational cost was
relatively low.

Instead of 3D, a 2D form also could be used. Human motion detection using a 2D
planar array was proposed in [8]. Seven human motions, including bowing, kicking,
punching, walking, running, sitting down, and standing, were measured using a 2D planar
phased-array FMCW radar. A DCNN was used to process the array and capture the time-
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varying signatures of the point clouds. The training accuracy was 100%, and the validation
accuracy was 80%.

This previous work shows that human activity recognition by radar must focus on
obtaining reliable data from a radar. Most of the methods involved voxelization, but more
simple methods without voxelization, as used in [7,8], have also been suggested.

As described in [6,7,18], once radar data are converted to a human joint position, there
are many classification models that could be applied. Because each joint corresponds to
a vertex of a graph, and the bone connecting adjacent joints corresponds to an edge, this
human joint (or skeleton) form can be regarded as a graph structure. Thus, human activity
recognition can be implemented using a GNN-based model [10].

Yan et al. [19] proposed the ST-GCN to recognize human activities through skeleton
data. ST-GCN allowed the same human joints to be connected along the time axis, so
that the graph structure included temporal information in addition to spatial information.
Using this approach, the relationship between skeleton joints within one activity was
automatically learned, which helped to classify human activity. To verify the necessity of
features in the spatio-temporal domain, a basic GCN-based model [20] was tested, and the
results are compared in Section 4.

3. Methodology

In this section, we introduce a human activity recognition model that used 3D human
joint coordinate estimates from sparse radar data. First, we demonstrate how the sparsity
of radar data was addressed. Due to the limitations of radio wavelength and inherent noise,
radar data were sparse. We focus on this problem first.

Another problem authors consider is that data formats are related to the data collection
tools used. Therefore, many prior studies designed a pre-processing method to fit each
type of dataset.

Considering these two problems, we developed a more general method that used only
the 3D coordinates of radar data, called point clouds, and so can be used for any dataset.
Using this process, reliable features were extracted from sparse radar data. Second, we
presented an ST-GCN-based model. To extract additional features in the spatio-temporal
domain from joint coordinate estimates, we fed these joint estimates to an ST-GCN [19].
The entire architecture is illustrated in Figure 1.

Figure 1. Our proposed model consists of a pre-trained model and ST-GCN. The pre-trained model,
which is based on two consecutive convolution layers and two consecutive fully connected layers,
extracts reliable features from the sparse point cloud data. These reliable features are obtained in the
form of 25 human joints. The ST-GCN based model extracts additional features in the spatio-temporal
domain from joint coordinate estimates and classifies human activities.



Appl. Sci. 2022, 12, 2168 5 of 15

3.1. Datasets

MARS. First of all, we selected the MARS dataset [7] (MARS is available at
https://github.com/SizheAn/MARS, accessed on 25 October 2021). A MARS dataset
was collected using both an IWR1443 Boost mmWave radar and a Kinect V2 sensor. Each
participant engaged in one action listed in Table 1 for approximately two minutes. During
that time, both Kinect and radar were placed on the same table. MATLAB Runtime from
TI was used for the radar data acquisition. In the case of the Kinect V2 sensor, we used
MATLAB to process the Kinect data as the 3D coordinates of human joints. The total
number of participants was two, and the experimenters adjusted the sampling rate between
the IWR1443 Boost mmWave radar and the Kinect V2 in order to map the radar data to the
skeleton data by frame.

Table 1. The 10 activity types of the MARS dataset [7].

Number Activity

1 Left upper limb extension
2 Right upper limb extension
3 Both upper limbs extension
4 Left front lunge
5 Right front lunge
6 Squat
7 Left side lunge
8 Right side lunge
9 Left limb extension
10 Right limb extension

To the best of our knowledge, this is the first dataset that is provided in raw format
without any other pre-processing, such as voxelization. In this work, the ground truth was
the participant’s joint positions captured by the Kinect V2 sensor during the experiment.

MMActivity. MMActivity [5] provides only radar data collected from TI IWR1443 mmWave
radar. Five different activities detected using MMActivity are described in Table 2.
Two participants performed each activity in front of the radar for 20 s. In this experiment,
the sampling rate was adjusted to obtain 30 frames of data per second. Data, including the 3D
coordinates from the participants, range, Doppler bin, bearing, and intensity, were collected.
In one frame, 20–30 data items were observed. Data were collected using a robot operating
system (ROS) package [13] and it is available at https://github.com/nesl/RadHAR, accessed
on 30 October 2019).

Table 2. The 5 activity types of the MMActivity dataset [5].

Number Activity

1 Boxing
2 Jack
3 Jumping
4 Squats
5 Walk

3.2. Pre-Training for 3D Human Joint Coordinate Estimates

As mentioned in Section 1, the radar emits radio waves. The radar radiates the
transmission signal through the Tx antennas. This signal hits the object and returns back
through the Rx antennas. The radar chip then calculates the object’s 3D coordinates, which
are converted to a point cloud using a fast Fourier transform. Therefore, the 3D coordinates
are necessarily stored. We decided to create a model that used these 3D coordinates to
produce a more generally applicable model. We checked the raw 3D coordinates of the radar
data. However, they were too sparse to be used to classify human activity. This sparsity

https://github.com/SizheAn/MARS
https://github.com/nesl/RadHAR
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problem can occur depending on the movements, because radar usually does not generate
data for a static posture well. Thus, a new method that extracts more reliable features from
radar data using a pre-trained model was developed.

First, we needed to pre-process the MARS dataset [7]. In the MARS dataset, the x,
y, z, Doppler, and intensity were collected as radar data. Thus, we removed the Doppler
and intensity and empirically fixed the number of point clouds to 25 per frame. If there
were fewer than 25 points, the rest of the frame was padded with zeros. We then reshaped
a 5 × 5 × 3 matrix as shown in Figure 2, in which three channels represent x, y, and z.
This 5 × 5 × 3 matrix in one frame was paired with the Kinect data in the same frame.

Figure 2. Pre-processing of the MARS radar dataset. We empirically decided the dimension of the
input to be 25 × 3. Then, 25 rows were reshaped into a 5 × 5 × 3 matrix.

The pre-trained model that the authors [7] used consisted of 2 consecutive convolution
layers with 16 and 32 channels, and 2 consecutive fully connected layers with 512 neurons
and 75 neurons, as shown in Figure 1. Originally, because the final output of the pre-trained
model [7] contained 57 neurons, 19 human joint estimates were obtained. It was confirmed
that 6 joints were dropped from given raw dataset in the training, validation, and test sets,
even though the raw dataset included 25 joints. The differences between the 19 joints used
in [7] and the 25 joints are illustrated in Figure 3. As shown in Figure 3, the removed joints
were the six points as follows: left hand, right hand, a tip of the left hand, left thumb, a
tip of the right hand, and right thumb. To investigate the effectiveness of the 25 joints,
2 consecutive frames are visualized in Figure 4. The activity was a left upper limb extension
on the MARS dataset [7].

However, for the data shown in Figure 4, distinguishing between the left activity and
the right activity was very difficult with 19 joints. In addition to this simple visual diagram,
the ablation study showed that the 25 joints give a more suitable feature representation
of human joints, so we decided to use the 25 joints to provide more detailed information
relevant to activity classification. Therefore, the number of neurons in the last layer was
modified to extract more features from the radar data. We identified the frame numbers
that were randomly selected in [7] and created new training, validation, and test sets that
included the 25 joints.

The model was pre-trained with this pre-processed data using a batch size of 64 for
110 epochs. The other parameters were the same as were used in [7], and Adam was
used as the optimizer with an initial learning rate of 0.001. After pre-training, we tested
the model’s performance using the point cloud data in MMActivity [5]. The x, y, and
z data sorted in frame order were converted to 3D human joint coordinate estimates.
The MMActivity [5] dataset did not collect reference data from the Kinect root-mean-
squared error sensor. Hence, the loss function metrics for evaluation, such as the MAE and
RMSE, could not be defined in this process. The reconstructed 25 joints in boxing, jack,
jumping, squats, and walk activities of the MMActivity dataset [5] are shown in Figure 5.
The left figure represents the point cloud generated by radar in each activity and the right
figure represents the 25 human joint coordinate estimates from the pre-trained model.
The successful reconstruction of 25 human joints from the point cloud was observed.
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Figure 3. Visualization of the differences between the 19 joints used in [7] and the 25 joints. (a) 19
human joints; (b) 25 human joints.

Figure 4. Examples of human joint graphs during left upper limb extension on the MARS dataset [7].
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Figure 5. Cont.
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Figure 5. Human joints created from point cloud data. On the (left) is raw point cloud data, and on
the (right) is output from the pre-trained model.

3.3. Proposed Human Activity Recognition Model

We propose a novel human activity recognition model that combines this pre-processing
method with GNNs. Human activity recognition was conducted using these joint estimates
as inputs to the GNNs. Two models were developed. One was a combination of 3D human
joint estimates and a GCN, and the other was a combination of 3D human joint estimates
and an ST-GCN.

3.3.1. Human Activity Recognition Model Based on GCN

Among the many models that work on graph data, the GCN is the most basic, powerful
type of neural network. The inspiration behind the GCN was the CNN. CNNs have two
important characteristics [21]. The first is weight sharing. In a CNN, learnable filters at
each layer scan a certain receptive field of the image. As the filter moves through the image,
the filter does not change, so every neighborhood of the image is processed by the same
learnable filter. This process is known as weight sharing. Second, because of the weight
sharing, the pixels of the activation map that is output by the convolutional layers are
correlated. In the GCN, the features of the nodes determine the classification of the graph.



Appl. Sci. 2022, 12, 2168 10 of 15

Therefore, the node features are updated with the same weight (weight sharing), as shown
in Equation (1):

H(l+1) = σ
(

D̃−
1
2 ÃD̃−

1
2 H(l)W(l)

)
(1)

According to [20], Ã = A + IN is the adjacency matrix of the undirected graph with
added self-connections. IN is the identity matrix, and the degree matrix D̃ii = ∑j Ãij. W(l) is
a layer-specific trainable weight matrix, and this same weight matrix is applied throughout
the H(l), where H(l) ∈ R(NxD) is the matrix of activations in the lth layer.

3.3.2. Human Activity Recognition Model Based on ST-GCN

ST-GCN shows good performance in general, and it considers spatial and temporal
dependencies. In the graph G = (V, E), V is the node set of joints, and E denotes both
spatial edges connecting the body joints in one frame and temporal edges connecting
each body joint over consecutive frames. We assume that the number of joints is N, the
number of frames is T, and V = {vti| t = 1, . . . , T, i = 1, . . . , N}. Based on [22] and using a
specific criterion, we group one root node and its neighbors into a partition set p. Then, a
spatial-temporal block is expressed as follows:

H(l+1) =
p

∑
p=0

Âp H(l)W(l)
p (2)

where Âp = D−
1
2

p ApD−
1
2

p , and the rest of the notations are the same as in a GCN. A 2D-
convolutional layer is also added.

4. Results
4.1. Results on MMActivity Dataset

Table 3 shows the total accuracy with baseline classifiers on the same dataset.

Table 3. Test accuracy on the MMActivity dataset [5].

Accuracy

SVM 63.74
MLP 80.34

Bi-directional LSTM 88.42
Time-distributed CNN + Bi-directional LSTM 90.47

ST-GCN using 3D joint coordinate estimates (ours) 96.55

We included the baseline model accuracy provided in a related study [5]. In the
baseline models, radar data were voxelized and fed into a set of classifiers, and each
sample had to maintain consistent dimensions during this process. The time-distributed
CNN + Bi-directional LSTM model, the best performer in the study [5], could capture
spatio-temporal features because the architecture consisted of three time-distributed CNNs
(convolution layer + convolution layer + maxpooling layer) followed by the Bi- directional
LSTM layer and an output layer. Our proposed model achieved 96.55% accuracy, 6.08%
higher than the accuracy from the time-distributed CNN + Bi-directional LSTM model.
The result indicates that 3D human joint coordinate extraction as part of data augmenta-
tion can yield reliable features for sparse radar data. Then, ST-GCN model was applied.
The results show that using the ST-GCN model is more appropriate than combining two
deep learning classifiers to extract spatio-temporal features. This is because the time series
classification problem, such as recognizing human activities, requires spatio-temporal fea-
tures. Additionally, 3D human joint coordinates are more about complex graph structure,
not a simple sequence structure. Hence, after extracting these joint coordinate estimates,
ST-GCN model can automatically learn the edges suitable for recognizing human activities
through these estimates.
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The confusion matrix for the visualization of classification performance is shown
in Figure 6. Note that boxing, jack, squats, and walking were classified 100% correctly.
Jumping, however, was somewhat confused with squats. This is because similar movements
are required for these two activities. For example, in the case of jumping, standing and
jumping are repeated in one place, similar to sitting down and getting up in a squat.
However, the other activities usually need to move around. As the confusion matrix reveals,
the accuracy of human activity recognition based on mmWave radar may be difficult to
capture for similar behavior, but generally shows good performance for distinguishing
different activities.

Figure 6. Confusion matrix of ST-GCN using 3D joint coordinate estimates.

Additional ablation studies were performed to demonstrate the necessity of each
component in the proposed model and justify the design choice adopted by the proposed
model. First, in Section 4.2, we compare 25 joints vs. 19 joints for distinguishing activity.
An experiment to support this point is presented. Second, in Section 4.3, the necessity of
patterns in the spatio-temporal domain is verified.

4.2. Ablation Study for Features from Sparse Radar Data

Ablation experiments were performed in order to evaluate the representations of the
human body and explore the effect of joint numbers. Different 3D human joint coordinate
estimates were generated by 19 and 25 joints, respectively. We trained both the ST-GCN
and GCN models with differing numbers of 3D human joint coordinate estimates, while
using the same hyperparameters and the training procedure described in Section 4.1.
The accuracy results are shown in Table 4. The weighted F1 score was also calculated to
take imbalanced data into account (boxing: 0.22, jack: 0.17, jumping: 0.19, squats: 0.17,
walk: 0.24 in the test dataset). The F1 score is a weighted average of precision and recall, as
shown in Equation (3):

F1 score =
2·Precision·Recall

Precision + Recall
(3)

where Precision is True Positive/(True Positive + False Positive), and Recall is True Posi-
tive/(True Positive + False Negative).

Table 4. Comparison of 3D human joint coordinate estimates on the MMActivity dataset [5].

Accuracy Weighted F1 Score

GCN using 3D joint coordinate estimates (19 joints) 44.82 0.372
ST-GCN using 3D joint coordinate estimates (19 joints) 81.03 0.800

GCN using 3D joint coordinate estimates (25 joints) 48.27 0.481
ST-GCN using 3D joint coordinate estimates (25 joints) 96.55 0.965
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The ST-GCN and GCN models achieved similar performances for both 19 and 25 joints.
Nevertheless, 25 joints led to a higher accuracy than did 19 joints. The confusion matrices
of the models below are shown in Figure 7. First, the GCN model that used 19 joints had
the worst performance except for walk, as described in Figure 7a. The ST-GCN model that
used 19 joints as described in Figure 7b still confused jumping as squats and could not
discriminate between boxing and walking. On the other hand, the GCN model that used
25 joints presented a more diverse distribution of the predicted labels, and its weighted F1
score was 0.109 higher than the GCN model that used 19 joints.

Figure 7. Confusion matrix of models used in the ablation study. (a) Confusion matrix of GCN
using 19 joints. (b) Confusion matrix of ST-GCN using 25 joints. (c) Confusion matrix of GCN using
25 joints. (d) Confusion matrix of GCN using raw data. (e) Confusion matrix of ST-GCN using
raw data.
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4.3. Ablation Study for Features from Spatio-Temporal Domain

Ablation experiments with and without spatio-temporal domain patterns were con-
ducted. Table 5 describes the results, and the results also reveal the necessity of patterns in
the spatio-temporal domain. For comparison with the model using raw data, the number
of point cloud data points in each frame was reduced to 25, and if there were fewer than
25 points, the rest of the frame was padded with zeros.

Table 5. Performance comparison with different features on the MMActivity dataset [5].

Accuracy Weighted F1 Score

GCN using raw data 46.55 0.471
ST-GCN using raw data 62.07 0.620

GCN using 3D joint coordinate estimates (25 joints) 48.27 0.481
ST-GCN using 3D joint coordinate estimates (ours) 96.55 0.965

Our proposed model achieved 96.55% accuracy, whereas an ST-GCN that used raw
data achieved 62.07% accuracy. In the case of models based on GCNS, 46.55% accuracy was
obtained using raw radar data. The GCN using joint coordinate estimates had an accuracy
score of 48.27%, which was only around 1.72% higher than the GCN using raw data model.
A notable point is that the classification produced by the GCN based model generally had
lower accuracy than ST-GCN based model, indicating that both the spatial and temporal
patterns from the data were critical to the classification process, as the temporal axis was
well ordered in the dataset. The confusion matrices of the above models are also illustrated
in Figure 7. The GCN model that used raw data (Figure 7d) showed the worst performance,
and the predicted labels ranged from boxing to walking. The ST-GCN model that used raw
data confused jack, jumping, and squats, but the weighted F1 score was 0.149 higher than
the GCN using raw data model. These results also imply that both spatial and temporal
patterns were critical even in the raw data.

5. Conclusions

This paper presents a human activity recognition model that uses point cloud data.
Our model is very general in that it does not need other data to be pre-processed to
overcome the sparsity of the radar data. Instead, our model uses 3D human joint coordinate
estimates predicted by a pre-trained model. Only the 3D coordinates of radar data were
used, and Kinect data was used as ground truth. With the model pre-trained using these
data pairs, reliable features from the sparse point cloud data were obtained in the form of
human joints. The first ablation study on both the 19 joints and 25 joints was conducted.
From this ablation study, 25 joints were shown as proper feature representations for human
activity representation. In addition, in the second ablation study, we compare the results
with raw data and the ones with extracted 3D human joints, where we found that 3D human
joint coordinates seemed to provide reliable features for sparse radar data. A GNN-based
model, such as the GCN or ST-GCN, was designed because human joint data could be
regarded as graph data having connectivity between bones. The second ablation study
shows the effectiveness of the necessity of 3D human joint estimates and the patterns
in the spatio-temporal domain from joint coordinate estimates. The entire schematic
representation is shown in Figure 8. Even with this simple structure, we evaluated the
performance of our method, and the classification accuracy was greater than 95%. Even
with this simple structure, the classification accuracy of our method was greater than 95%.
This paper proposes a classification model based on GNNs using 3D human joint coordinate
estimates. Our experiments show that the proposed approach can extract reliable features
from sparse radar data, and the GNN-based model can be used for classification. Although
the model needs some improvement for distinguishing similar activities, such as jumping
and squats, the proposed method presented in the paper can be used for tasks that are more
sensitive to dynamic physical activities, such as elderly falls, and detecting emergency
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situations. In the next step, for suitable real-time detection, we plan to investigate additional
data processing approaches to improve the model’s predictive ability.

Figure 8. Schematic representation of the proposed model.
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