Experimental Study on the Impact of CO2 Treatment on Different Lithofacies in Shale Oil Reservoirs
Abstract
:1. Introduction
2. Materials and Methods
2.1. Sample Preparation
2.2. Experimental Apparatus and Methods
2.2.1. Experimental Apparatus
2.2.2. Experimental Methods
3. Results and Discussion
3.1. Lithofacies Analysis of Qingshankou Formation
3.2. Micromorphology Analysis on Different Lithofacial Types of Shale during CO2 Treatment
Al2Si2O5(OH)4 + SiO2 + 2H2O
3.3. Mineral Composition Analysis of Different Lithofacial Types of Shale during CO2 Treatment
3.4. Porosity and Permeability Analysis of Different Lithofacial Types of Shale during CO2 Treatment
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Wang, J.; Feng, L.; Steve, M.; Tang, X.; Gail, T.E.; Mikael, H. China’s unconventional oil: A review of its resources and outlook for long-term production. Energy 2015, 82, 31–42. [Google Scholar] [CrossRef]
- Zou, C.; Yang, Z.; Cui, J.; Zhu, R.; Hou, L.; Tao, S.; Yuan, X.; Wu, S.; Lin, S.; Wang, L.; et al. Formation mechanism, geological characteristics and development strategy of nonmarine shale oil in China. Pet. Explor. Dev. 2013, 40, 15–27. [Google Scholar] [CrossRef]
- Wu, T.; Pan, Z.; Liu, B.; Connell, L.D.; Sander, R.; Fu, X. Laboratory Characterization of Shale Oil Storage Behavior: A Comprehensive Review. Energy Fuels 2021, 35, 7305–7318. [Google Scholar] [CrossRef]
- Jin, L.; Hawthorne, S.; Sorensen, J.; Pekot, L.; Kurz, B.; Smith, S.; Heebink, L.; Herdegen, V.; Bosshart, N.; Torres, J.A.; et al. Advancing CO2 enhanced oil recovery and storage in unconventional oil play—Experimental studies on Bakken shales. Appl. Energy 2017, 208, 171–183. [Google Scholar] [CrossRef]
- Song, Z.; Song, Y.; Li, Y.; Bai, B.; Song, K.; Hou, J. A critical review of CO2 enhanced oil recovery in tight oil reservoirs of North America and China. Fuel 2020, 276, 118006. [Google Scholar] [CrossRef]
- Alam, M.M.; Hjuler, M.L.; Christensen, H.F.; Fabricius, I.L. Petrophysical and rock-mechanics effects of CO2 injection for enhanced oil recovery: Experimental study on chalk from South Arne field, North Sea. J. Pet. Sci. Eng. 2014, 122, 468–487. [Google Scholar] [CrossRef]
- Pankaj, P.; Mukisa, H.; Solovyeva, I.; Xue, H. Boosting oil recovery in naturally fractured shale using CO2 huff-n-puff. In Proceedings of the SPE Argentina Exploration and Production of Unconventional Resources Symposium, Neuquen, Argentina, 14–16 August 2018. [Google Scholar]
- Cho, Y.; Eker, E.; Uzun, I.; Yin, X.; Kazemi, H. Rock characterization in unconventional reservoirs: A comparative study of Bakken, Eagle Ford, and Niobrara Formations. In Proceedings of the SPE Low Perm Symposium, Colorado, CO, USA, 5–6 May 2016. [Google Scholar]
- Zou, C.; Zhu, R.; Wu, S.; Yang, Z.; Tao, Z.; Yuan, X.; Hou, L.; Yang, H.; Xu, C.; Li, D.; et al. Types, characteristics, genesis and prospects of conventional and unconventional hydrocarbon accumulations: Taking tight oil and tight gas in China as instance. Acta Pet. Sin. 2012, 33, 173–187. [Google Scholar]
- Gupta, I.; Rai, C.; Sondergeld, C.; Devegowda, D. Rock typing in Eagle Ford, Barnett, and Woodford Formations. SPE Reserv. Eval. Eng. 2018, 21, 654–670. [Google Scholar] [CrossRef]
- Fakher, S.; Imqam, A. Application of carbon dioxide injection in shale oil reservoirs for increasing oil recovery and carbon dioxide storage. Fuel 2020, 265, 116944. [Google Scholar] [CrossRef]
- Jia, B.; Tsau, J.-S.; Barati, R. A review of the current progress of CO2 injection EOR and carbon storage in shale oil reservoirs. Fuel 2019, 236, 404–427. [Google Scholar] [CrossRef]
- Alvarez, J.O.; Saputra, I.W.R.; Schechter, D.S. The Impact of Surfactant Imbibition and Adsorption for Improving Oil Recovery in the Wolfcamp and Eagle Ford Reservoirs. SPE J. 2018, 23, 2103–2117. [Google Scholar] [CrossRef]
- Alvarez, J.O.; Saputra, I.W.R.; Schechter, D.S. Potential of Improving Oil Recovery with Surfactant Additives to Completion Fluids for the Bakken. Energy Fuels 2017, 31, 5982–5994. [Google Scholar] [CrossRef]
- Bikkina, P.; Wan, J.; Kim, Y.; Kneafsey, T.; Tokunaga, T. Influence of wettability and permeability heterogeneity on miscible CO2 flooding efficiency. Fuel 2016, 166, 219–226. [Google Scholar] [CrossRef] [Green Version]
- Cheng, C.; Ming, G. Investigation of cyclic CO2 huff-and-puff recovery in shale oil reservoirs using reservoir simulation and sensitivity analysis. Fuel 2017, 188, 102–111. [Google Scholar] [CrossRef]
- Liu, F.; Lu, P.; Griffith, C.; Hedges, S.W.; Soong, Y.; Hellevang, H.; Zhu, C. CO2–brine–caprock interaction: Reactivity experiments on Eau Claire shale and a review of relevant literature. Int. J. Greenh. Gas. Control 2012, 7, 153–167. [Google Scholar] [CrossRef] [Green Version]
- Yin, H.; Zhou, J.; Jiang, Y.; Xian, X.; Liu, Q. Physical and structural changes in shale associated with supercritical CO2 exposure. Fuel 2016, 184, 289–303. [Google Scholar] [CrossRef]
- Yu, W.; Lashgari, H.R.; Wu, K.; Sepehrnoori, K. CO2 injection for enhanced oil recovery in Bakken tight oil reservoirs. Fuel 2015, 159, 354–363. [Google Scholar] [CrossRef]
- Wei, B.; Zhang, X.; Liu, J.; Xu, X.; Pu, W.; Bai, M. Adsorptive behaviors of supercritical CO2 in tight porous media and triggered chemical reactions with rock minerals during CO2-EOR and -sequestration. Chem. Eng. J. 2020, 381, 122577. [Google Scholar] [CrossRef]
- Lahann, R.; Mastalerz, M.; Rupp, J.A.; Drobniak, A. Influence of CO2 on New Albany Shale composition and pore structure. Int. J. Coal Geol. 2013, 108, 2–9. [Google Scholar] [CrossRef]
- Lai, F.; Li, Z.; Fu, Y.; Adenutsi, C.D. Investigating the Effects of Pore-Structure Characteristics on Porosity and Absolute Permeability for Unconventional Reservoirs. Energy Fuels 2020, 35, 690–701. [Google Scholar] [CrossRef]
- Xu, T.; Apps, J.A.; Pruess, K. Mineral sequestration of carbon dioxide in a sandstone–shale system. Chem. Geol. 2005, 217, 295–318. [Google Scholar] [CrossRef]
- Steefel, C.; DePaolo, D.; Lichtner, P. Reactive transport modeling: An essential tool and a new research approach for the Earth sciences. Earth Planet. Sci. Lett. 2005, 240, 539–558. [Google Scholar] [CrossRef]
- Zhang, W.; Yang, W.; Xie, L. Controls on organic matter accumulation in the Triassic Chang 7 lacustrine shale of the Ordos Basin, central China. Int. J. Coal Geol. 2017, 183, 38–51. [Google Scholar] [CrossRef]
- Zhao, W.; Hu, S.; Hou, L.; Tao, Y.; Xin, L. Types and resource potential of continental shale oil in China and its boundary with tight oil. Petrol. Explor. Dev. 2020, 47, 1–10. [Google Scholar] [CrossRef]
- Li, J.; Zhou, S.; Li, Y.; Ma, Y.; Yang, Y.; Li, C. Effect of organic matter on pore structure of mature lacustrine organic-rich shale: A case study of the Triassic Yanchang shale, Ordos Basin, China. Fuel 2016, 185, 421–431. [Google Scholar] [CrossRef]
- Jin, X.; Li, G.; Meng, S.; Wang, X.; Liu, C.; Tao, J.; Liu, H. Microscale comprehensive evaluation of continental shale oil recoverability. Pet. Explor. Dev. 2021, 48, 256–268. [Google Scholar] [CrossRef]
Ion | Na+ and K+ | Ca2+ | Mg2+ | Cl− | SO42− | HCO3− |
---|---|---|---|---|---|---|
concentration (mg/L) | 2320 | 39 | 5 | 1450 | 307 | 3420 |
Lithofacies | Treatment | Mineral Composition (%) | ||||
---|---|---|---|---|---|---|
Quartz | Feldspar | Clay | Carbonate | Other | ||
foliaceous shale | untreated | 26.6 | 11.2 | 52.9 | 6.1 | 3.2 |
CO2 treated | 34.3 | 6.8 | 50.2 | 3.3 | 5.4 | |
laminated felsic shale | untreated | 31.1 | 19.3 | 40.6 | 4.1 | 4.9 |
CO2 treated | 39.3 | 12.1 | 38.9 | 2.1 | 7.6 | |
laminated diamictic shale | untreated | 28.1 | 10.8 | 41.2 | 16.3 | 4.6 |
CO2 treated | 37.1 | 5.6 | 43.2 | 7.2 | 6.9 |
Sample | Diameter (cm) | Length (cm) | Porosity (%) | Permeability (mD) |
---|---|---|---|---|
Q1 | 2.50 | 5.02 | 8.11 | 0.0572 |
Q2 | 2.51 | 5.01 | 7.29 | 0.0443 |
Q3 | 2.51 | 4.99 | 6.17 | 0.0628 |
Q4 | 2.50 | 5.02 | 5.42 | 0.0767 |
Q5 | 2.52 | 5.01 | 5.77 | 0.0417 |
Q6 | 2.51 | 5.00 | 4.56 | 0.0421 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tao, J.; Meng, S.; Li, D.; Cao, G.; Gao, Y.; Liu, H. Experimental Study on the Impact of CO2 Treatment on Different Lithofacies in Shale Oil Reservoirs. Appl. Sci. 2022, 12, 2217. https://doi.org/10.3390/app12042217
Tao J, Meng S, Li D, Cao G, Gao Y, Liu H. Experimental Study on the Impact of CO2 Treatment on Different Lithofacies in Shale Oil Reservoirs. Applied Sciences. 2022; 12(4):2217. https://doi.org/10.3390/app12042217
Chicago/Turabian StyleTao, Jiaping, Siwei Meng, Dongxu Li, Gang Cao, Yang Gao, and He Liu. 2022. "Experimental Study on the Impact of CO2 Treatment on Different Lithofacies in Shale Oil Reservoirs" Applied Sciences 12, no. 4: 2217. https://doi.org/10.3390/app12042217
APA StyleTao, J., Meng, S., Li, D., Cao, G., Gao, Y., & Liu, H. (2022). Experimental Study on the Impact of CO2 Treatment on Different Lithofacies in Shale Oil Reservoirs. Applied Sciences, 12(4), 2217. https://doi.org/10.3390/app12042217