Composting Strategy Instead of Waste-to-Energy in the Urban Context—A Case Study from Ho Chi Minh City, Vietnam
Abstract
:1. Introduction
2. Literature Review
3. Materials and Methods
3.1. Composition of Waste in Ho Chi Minh City (HCMC)
3.2. Application of the Analytical Hierarchy Process (AHP) Methodology
- The issue is broken down into its constituent parts, according to the study.
- Hierarchy denotes a relationship between the mentioned components and the primary target.
- Method denotes the processing of data and decisions to obtain the desired result.
3.3. Application of the Analytical Hierarchy Process (AHP) and Super Decision Software to Choose a Sustainable Scenario for Municipal Solid Waste Management in HCM City
4. Results
5. Discussion
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Appendix A. Results Chart of the Super Decisions Software Node Comparisons
References
- Dhokhikah, Y.; Trihadiningrum, Y. Solid Waste Management in Asian Developing Countries: Challenges and Opportunities. J. Appl. Environ. Biol. Sci. 2012, 2, 329–335. [Google Scholar]
- Rawat, M.; Ramanathan, A.; Kuriakose, T. Characterisation of Municipal Solid Waste Compost (MSWC) from Selected Indian Cities—A Case Study for Its Sustainable Utilisation. JEP 2013, 04, 163–171. [Google Scholar] [CrossRef] [Green Version]
- Toledo, M.; Siles, J.A.; Gutiérrez, M.C.; Martín, M.A. Monitoring of the Composting Process of Different Agroindustrial Waste: Influence of the Operational Variables on the Odorous Impact. Waste Manag. 2018, 76, 266–274. [Google Scholar] [CrossRef] [PubMed]
- Ayilara, M.; Olanrewaju, O.; Babalola, O.; Odeyemi, O. Waste Management through Composting: Challenges and Potentials. Sustainability 2020, 12, 4456. [Google Scholar] [CrossRef]
- Fathi, H. Municipal Solid Waste Characterization and It Is Assessment for Potential Compost Production: A Case Study in Zanjan City, Iran. AJAF 2014, 2, 39. [Google Scholar] [CrossRef] [Green Version]
- Shyamala, D.C.; Belagali, S.L. Studies on Variations in Physico-Chemical and Biological Characteristics at Different Maturity Stages of Municipal Solid Waste Compost. Int. J. Environ. Sci. 2012, 2, 1984–1997. [Google Scholar]
- Cai, Q.-Y.; Mo, C.-H.; Wu, Q.-T.; Zeng, Q.-Y.; Katsoyiannis, A. Concentration and Speciation of Heavy Metals in Six Different Sewage Sludge-Composts. J. Hazard. Mater. 2007, 147, 1063–1072. [Google Scholar] [CrossRef]
- Bai, J.; Shen, H.; Dong, S. Study on Eco-Utilization and Treatments of Highway Greening Waste. Procedia Environ. Sci. 2010, 2, 25–31. [Google Scholar] [CrossRef] [Green Version]
- Yu, H.; Xie, B.; Khan, R.; Shen, G. The Changes in Carbon, Nitrogen Components and Humic Substances during Organic-Inorganic Aerobic Co-Composting. Bioresour. Technol. 2019, 271, 228–235. [Google Scholar] [CrossRef]
- Rama, L.; Vasanthy, M. Market Waste Management Using Compost Technology. Int. J. Plant Anim. Environ. Sci. 2014, 4, 57–61. [Google Scholar]
- Ahmad, R.; Jilani, G.; Arshad, M.; Zahir, Z.A.; Khalid, A. Bio-Conversion of Organic Wastes for Their Recycling in Agriculture: An Overview of Perspectives and Prospects. Ann. Microbiol. 2007, 57, 471–479. [Google Scholar] [CrossRef]
- Kaza, S.; Yao, L.C.; Bhada-Tata, P.; Van Woerden, F. What a Waste 2.0: A Global Snapshot of Solid Waste Management to 2050; Urban Development, World Bank: Washington, DC, USA, 2018. [Google Scholar]
- Luchsinger, G. Shaping the Future: How Changing Demographics Can Power Human Development, Asia-Pacific Human Development Report; Printcraft Company Limited: Dhaka, Bangladesh, 2016. [Google Scholar]
- Laohalidanond, K.; Chaiyawong, P.; Kerdsuwan, S. Municipal Solid Waste Characteristics and Green and Clean Energy Recovery in Asian Megacities. Energy Procedia 2015, 79, 391–396. [Google Scholar] [CrossRef] [Green Version]
- Tv, R.; Aithal, B.H.; Sanna, D.D. Insights to Urban Dynamics through Landscape Spatial Pattern Analysis. Int. J. Appl. Earth Obs. Geoinf. 2012, 18, 329–343. [Google Scholar] [CrossRef]
- Ramachandra, T.V.; Bharath, H.A.; Kulkarni, G.; Han, S.S. Municipal Solid Waste: Generation, Composition and GHG Emissions in Bangalore, India. Renew. Sustain. Energy Rev. 2018, 82, 1122–1136. [Google Scholar] [CrossRef]
- Ramachandra, T.V. Integrated Management of Municipal Solid Waste. In Environmental Security: Human & Animal Health, Chapter 30; IBDC Publishers: Lucknow, India, 2011. [Google Scholar]
- Hoornweg, D.; Bhada-Tata, P. What a Waste: A Global Review of Solid Waste Management; Urban Development Series; Knowledge Papers; World Bank: Washington, DC, USA, 2012. [Google Scholar]
- Aleluia, J.; Ferrão, P. Characterization of Urban Waste Management Practices in Developing Asian Countries: A New Analytical Framework Based on Waste Characteristics and Urban Dimension. Waste Manag. 2016, 58, 415–429. [Google Scholar] [CrossRef] [PubMed]
- Wilson, D.C.; Rodic-Wiersma, L.; Scheinberg, A. Comparative Analysis of Solid Waste Management in Cities around the World; Waste and Resource Management-Putting Strategy into Practice; Stratford-upon-Avon: Warwickshire, UK, 2010. [Google Scholar]
- Wilson, D.C.; Rodic, L.; Scheinberg, A.; Velis, C.A.; Alabaster, G. Comparative Analysis of Solid Waste Management in 20 Cities. Waste Manag. Res. 2012, 30, 237–254. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Karamouz, M.; Zahraie, B.; Kerachian, R.; Jaafarzadeh, N.; Mahjouri, N. Developing a Master Plan for Hospital Solid Waste Management: A Case Study. Waste Manag. 2007, 27, 626–638. [Google Scholar] [CrossRef] [PubMed]
- Moeinaddini, M.; Khorasani, N.; Danehkar, A.; Darvishsefat, A.A.; Zienalyan, M. Siting MSW Landfill Using Weighted Linear Combination and Analytical Hierarchy Process (AHP) Methodology in GIS Environment (Case Study: Karaj). Waste Manag. 2010, 30, 912–920. [Google Scholar] [CrossRef]
- Thanki, S.; Govindan, K.; Thakkar, J. An Investigation on Lean-Green Implementation Practices in Indian SMEs Using Analytical Hierarchy Process (AHP) Approach. J. Clean. Prod. 2016, 135, 284–298. [Google Scholar] [CrossRef]
- Daneshfar, M.A.; Ardjmand, M. Selecting a Suitable Model for Collecting, Transferring, and Recycling Drilling Wastes Produced in the Operational Areas of the Iranian Offshore Oil Company (IOOC) Using Analytical Hierarchy Process (AHP). J. Environ. Manag. 2020, 259, 109791. [Google Scholar] [CrossRef]
- Ismail, A.R.; Alias, A.H.; Sulaiman, W.R.W.; Jaafar, M.Z.; Ismail, I. Drilling Fluid Waste Management in Drilling for Oil and Gas Wells. Chem. Eng. Trans. 2017, 56, 1351–1356. [Google Scholar] [CrossRef]
- Abdel-Shafy, H.I.; Mansour, M.S.M. Solid Waste Issue: Sources, Composition, Disposal, Recycling, and Valorization. Egypt. J. Pet. 2018, 27, 1275–1290. [Google Scholar] [CrossRef]
- Nixon, J.D.; Dey, P.K.; Ghosh, S.K.; Davies, P.A. Evaluation of Options for Energy Recovery from Municipal Solid Waste in India Using the Hierarchical Analytical Network Process. Energy 2013, 59, 215–223. [Google Scholar] [CrossRef]
- Brent, A.; Rogers, D.; Ramabitsa-Siimane, T.; Rohwer, M.B. Application of the Analytical Hierarchy Process to Establish Health Care Waste Management Systems That Minimise Infection Risks in Developing Countries. Eur. J. Oper. Res. 2007, 181, 403–424. [Google Scholar] [CrossRef] [Green Version]
- Contreras, F.; Hanaki, K.; Aramaki, T.; Connors, S. Application of Analytical Hierarchy Process to Analyze Stakeholders Preferences for Municipal Solid Waste Management Plans, Boston, USA. Resour. Conserv. Recycl. 2008, 52, 979–991. [Google Scholar] [CrossRef]
- Abba, A.H.; Noor, Z.Z.; Yusuf, R.O.; Din, M.F.M.D.; Hassan, M.A.A. Assessing Environmental Impacts of Municipal Solid Waste of Johor by Analytical Hierarchy Process. Resour. Conserv. Recycl. 2013, 73, 188–196. [Google Scholar] [CrossRef]
- Kuo, T.C. Combination of Case-Based Reasoning and Analytical Hierarchy Process for Providing Intelligent Decision Support for Product Recycling Strategies. Expert Syst. Appl. 2010, 37, 5558–5563. [Google Scholar] [CrossRef]
- Kheybari, S.; Rezaie, F.M.; Naji, S.A.; Najafi, F. Evaluation of Energy Production Technologies from Biomass Using Analytical Hierarchy Process: The Case of Iran. J. Clean. Prod. 2019, 232, 257–265. [Google Scholar] [CrossRef]
- Khodaparast, M.; Rajabi, A.M.; Edalat, A. Municipal Solid Waste Landfill Siting by Using GIS and Analytical Hierarchy Process (AHP): A Case Study in Qom City, Iran. Environ. Earth Sci. 2018, 77, 52. [Google Scholar] [CrossRef]
- Abessi, O.; Saeedi, M. Hazardous Waste Landfill Siting Using GIS Technique and Analytical Hierarchy Process. Environ. Asia 2010, 3, 47–53. [Google Scholar] [CrossRef]
- Chabuk, A.; Al-Ansari, N.; Hussain, H.M.; Knutsson, S.; Pusch, R. Landfill Site Selection Using Geographic Information System and Analytical Hierarchy Process: A Case Study Al-Hillah Qadhaa, Babylon, Iraq. Waste Manag. Res. 2016, 34, 427–437. [Google Scholar] [CrossRef] [PubMed]
- Khoshand, A.; Kamalan, H.; Rezaei, H. Application of Analytical Hierarchy Process (AHP) to Assess Options of Energy Recovery from Municipal Solid Waste: A Case Study in Tehran, Iran. J. Mater. Cycles Waste Manag. 2018, 20, 1689–1700. [Google Scholar] [CrossRef]
- Li, Z.; Zhao, F. An Analytical Hierarchy Process-Based Study on the Factors Affecting Legislation on Plastic Bags in the USA. Waste Manag. Res. 2017, 35, 795–809. [Google Scholar] [CrossRef] [PubMed]
- Pun, K.F.; Hui, I.K. An Analytical Hierarchy Process Assessment of the ISO 14001 Environmental Management System. Integr. Mfg Syst. 2001, 12, 333–345. [Google Scholar] [CrossRef]
- Qdais, H.A.; Alshraideh, H. Selection of Management Option for Solid Waste from Olive Oil Industry Using the Analytical Hierarchy Process. J. Mater. Cycles Waste Manag. 2016, 18, 177–185. [Google Scholar] [CrossRef]
- Osra, F.A.; Kajjumba, G.W. Landfill Site Selection in Makkah Using Geographic Information System and Analytical Hierarchy Process. Waste Manag. Res. 2020, 38, 245–253. [Google Scholar] [CrossRef]
- Sodhi, H.S.; Singh, D.; Singh, B.J. An Investigation of Barriers to Waste Management Techniques Implemented in Indian Manufacturing Industries Using Analytical Hierarchy Process. WJSTSD 2020, 17, 58–70. [Google Scholar] [CrossRef]
- Otto-Zimmermann, K. Resilient Cities: Cities and Adaptation to Climate Change-Proceedings of the Global Forum 2010; Springer Science & Business Media: Berlin/Heidelberg, Germany, 2011. [Google Scholar]
- GSOVN. Population and Employment; GSOVN (General Statistics Office of Vietnam): Hanoi, Vietnam, 2020.
- HCMC DONRE. Report on Solid Waste Management in Ho Chi Minh City; Ho Chi Minh City Department of Natural Resources and Environment (HCMC DONRE): Ho Chi Minh City, Vietnam, 2014.
- ThiKimOanh, L.; Bloemhof-Ruwaard, J.M.; van Buuren, J.C.; van der Vorst, J.G.; Rulkens, W.H. Modelling and Evaluating Municipal Solid Waste Management Strategies in a Mega-City: The Case of Ho Chi Minh City. Waste Manag. Res. 2015, 33, 370–380. [Google Scholar] [CrossRef]
- Verma, R.L.; Borongan, G.; Memon, M. Municipal Solid Waste Management in Ho Chi Minh City, Viet Nam, Current Practices and Future Recommendation. Procedia Environ. Sci. 2016, 35, 127–139. [Google Scholar] [CrossRef]
- Nguyen, T. Solid Waste Separation at Source: Necessary and Sufficient Condition for Waste Management in Ho Chi Minh. Van Lang University I. Int. J. Environ. Sci. Sustain. Dev. 2012, 1, 1–9. [Google Scholar]
- Schneider, P.; Anh, L.; Wagner, J.; Reichenbach, J.; Hebner, A. Solid Waste Management in Ho Chi Minh City, Vietnam: Moving towards a Circular Economy? Sustainability 2017, 9, 286. [Google Scholar] [CrossRef] [Green Version]
- Saaty, T.L. How to Make a Decision: The Analytic Hierarchy Process. Interfaces. JSTOR 1994, 24, 19–43. [Google Scholar]
- Saaty, T.L. Fundamentals of the Analytic Hierarchy Process. In The Analytic Hierarchy Process in Natural Resource and Environmental Decision Making; Schmoldt, D.L., Kangas, J., Mendoza, G.A., Pesonen, M., Eds.; Managing Forest Ecosystems; Springer: Dordrecht, The Netherlands, 2001; Volume 3, pp. 15–35. ISBN 978-90-481-5735-8. [Google Scholar]
- Saaty, T.L. Theory and Applications of the Analytic Network Process: Decision Making with Benefits, Opportunities, Costs, and Risks; RWS Publications: Pittsburgh, PA, USA, 2005. [Google Scholar]
- Saaty, T.L. Decision Making with the Analytic Hierarchy Process. Int. J. Serv. Sci. 2008, 1, 83–98. [Google Scholar] [CrossRef] [Green Version]
- Saaty, T.L.; Vargas, L.G. The Seven Pillars of the Analytic Hierarchy Process. In Models, Methods, Concepts & Applications of the Analytic Hierarchy Process; International Series in Operations Research & Management Science; Springer: Boston, MA, USA, 2012; Volume 175, pp. 23–40. ISBN 978-1-4614-3596-9. [Google Scholar]
- Bertolini, M.; Braglia, M.; Carmignani, G. Application of the AHP Methodology in Making a Proposal for a Public Work Contract. Int. J. Proj. Manag. 2006, 24, 422–430. [Google Scholar] [CrossRef]
- Sipahi, S.; Timor, M. The Analytic Hierarchy Process and Analytic Network Process: An Overview of Applications. Manag. Decis. 2010, 48, 775–808. [Google Scholar] [CrossRef]
- Vučijak, B.; Kurtagić, S.M.; Silajdžić, I. Multicriteria Decision Making in Selecting Best Solid Waste Management Scenario: A Municipal Case Study from Bosnia and Herzegovina. J. Clean. Prod. 2016, 130, 166–174. [Google Scholar] [CrossRef]
- Jovanovic, S.; Savic, S.; Jovicic, N.; Boskovic, G.; Djordjevic, Z. Using Multi-Criteria Decision Making for Selection of the Optimal Strategy for Municipal Solid Waste Management. Waste Manag Res 2016, 34, 884–895. [Google Scholar] [CrossRef] [PubMed]
- Su, J.-P.; Chiueh, P.-T.; Hung, M.-L.; Ma, H.-W. Analyzing Policy Impact Potential for Municipal Solid Waste Management Decision-Making: A Case Study of Taiwan. Resour. Conserv. Recycl. 2007, 51, 418–434. [Google Scholar] [CrossRef]
- Herva, M.; Roca, E. Ranking Municipal Solid Waste Treatment Alternatives Based on Ecological Footprint and Multi-Criteria Analysis. Ecol. Indic. 2013, 25, 77–84. [Google Scholar] [CrossRef]
- Morrissey, A.J.; Browne, J. Waste Management Models and Their Application to Sustainable Waste Management. Waste Manag. 2004, 24, 297–308. [Google Scholar] [CrossRef]
- Jara-Samaniego, J.; Pérez-Murcia, M.D.; Bustamante, M.A.; Paredes, C.; Pérez-Espinosa, A.; Gavilanes-Terán, I.; López, M.; Marhuenda-Egea, F.C.; Brito, H.; Moral, R. Development of Organic Fertilizers from Food Market Waste and Urban Gardening by Composting in Ecuador. PLoS ONE 2017, 12, e0181621. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Behrooznia, L.; Sharifi, M.; Hosseinzadeh-Bandbafha, H. Comparative Life Cycle Environmental Impacts of Two Scenarios for Managing an Organic Fraction of Municipal Solid Waste in Rasht-Iran. J. Clean. Prod. 2020, 268, 122217. [Google Scholar] [CrossRef]
- Di Nola, M.F.; Escapa, M.; Ansah, J.P. Modelling Solid Waste Management Solutions: The Case of Campania, Italy. Waste Manag. 2018, 78, 717–729. [Google Scholar] [CrossRef] [PubMed]
- Shekdar, A.V. Sustainable Solid Waste Management: An Integrated Approach for Asian Countries. Waste Manag. 2009, 29, 1438–1448. [Google Scholar] [CrossRef]
- Guerrero, L.A.; Maas, G.; Hogland, W. Solid Waste Management Challenges for Cities in Developing Countries. Waste Manag. 2013, 33, 220–232. [Google Scholar] [CrossRef]
- Hoang, N.H.; Fogarassy, C. Sustainability Evaluation of Municipal Solid Waste Management System for Hanoi (Vietnam)—Why to Choose the ‘Waste-to-Energy’ Concept. Sustainability 2020, 12, 1085. [Google Scholar] [CrossRef] [Green Version]
- Arafat, H.A.; Jijakli, K.; Ahsan, A. Environmental Performance and Energy Recovery Potential of Five Processes for Municipal Solid Waste Treatment. J. Clean. Prod. 2015, 105, 233–240. [Google Scholar] [CrossRef]
- Cimpan, C.; Wenzel, H. Energy Implications of Mechanical and Mechanical–Biological Treatment Compared to Direct Waste-to-Energy. Waste Manag. 2013, 33, 1648–1658. [Google Scholar] [CrossRef]
- Kumar, A.; Samadder, S.R. A Review on Technological Options of Waste to Energy for Effective Management of Municipal Solid Waste. Waste Manag. 2017, 69, 407–422. [Google Scholar] [CrossRef]
- Makarichi, L.; Jutidamrongphan, W.; Techato, K. The Evolution of Waste-to-Energy Incineration: A Review. Renew. Sustain. Energy Rev. 2018, 91, 812–821. [Google Scholar] [CrossRef]
- Baxter, J.; Ho, Y.; Rollins, Y.; Maclaren, V. Attitudes toward Waste to Energy Facilities and Impacts on Diversion in Ontario, Canada. Waste Manag. 2016, 50, 75–85. [Google Scholar] [CrossRef] [PubMed]
- Fei, F.; Wen, Z.; Huang, S.; De Clercq, D. Mechanical Biological Treatment of Municipal Solid Waste: Energy Efficiency, Environmental Impact and Economic Feasibility Analysis. J. Clean. Prod. 2018, 178, 731–739. [Google Scholar] [CrossRef]
- Prajapati, P.; Varjani, S.; Singhania, R.R.; Patel, A.K.; Awasthi, M.K.; Sindhu, R.; Zhang, Z.; Binod, P.; Awasthi, S.K.; Chaturvedi, P. Critical Review on Technological Advancements for Effective Waste Management of Municipal Solid Waste — Updates and Way Forward. Environ. Technol. Innov. 2021, 23, 101749. [Google Scholar] [CrossRef]
- Temeljotov Salaj, A.; Lindkvist, C.M. Urban Facility Management. Facilities 2021, 39, 525–537. [Google Scholar] [CrossRef]
- Babalola, M.A. A Multi-Criteria Decision Analysis of Waste Treatment Options for Food and Biodegradable Waste Management in Japan. Environments 2015, 2, 471–488. [Google Scholar] [CrossRef] [Green Version]
- Machado, C.R.; Hettiarachchi, H. Composting as a Municipal Solid Waste Management Strategy: Lessons Learned from Cajicá, Colombia. In Organic Waste Composting through Nexus Thinking; Hettiarachchi, H., Caucci, S., Schwärzel, K., Eds.; Springer International Publishing: Cham, Switzerland, 2020; pp. 17–38. ISBN 978-3-030-36282-9. [Google Scholar]
Intensity of Importance | Definition |
---|---|
1 | Equal importance/preference |
3 | Moderate importance/preference |
5 | Strong importance/preference |
7 | Very Strong importance/preference |
9 | Extreme importance/preference |
2, 4, 6, 8 | Intermediate values of the judgment |
C1 | Waste quantity | |
C2 | Compliance with standard/regulation of National Technology of Vietnam | |
C3 | Time-consuming for the entire process | |
C4 | Complexity and required skills | |
C5 | Demand for final products | |
C6 | Initial investment | |
C7 | Operating cost | |
C8 | Land requirement | |
C9 | Possible adverse impacts | Sub-Criteria S1: Odor |
Sub-Criteria S2: Municipal and industrial wastewater | ||
Sub-Criteria S3: Dust and air pollution | ||
C10 | Public acceptability |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fogarassy, C.; Hoang, N.H.; Nagy-Pércsi, K. Composting Strategy Instead of Waste-to-Energy in the Urban Context—A Case Study from Ho Chi Minh City, Vietnam. Appl. Sci. 2022, 12, 2218. https://doi.org/10.3390/app12042218
Fogarassy C, Hoang NH, Nagy-Pércsi K. Composting Strategy Instead of Waste-to-Energy in the Urban Context—A Case Study from Ho Chi Minh City, Vietnam. Applied Sciences. 2022; 12(4):2218. https://doi.org/10.3390/app12042218
Chicago/Turabian StyleFogarassy, Csaba, Nguyen Huu Hoang, and Kinga Nagy-Pércsi. 2022. "Composting Strategy Instead of Waste-to-Energy in the Urban Context—A Case Study from Ho Chi Minh City, Vietnam" Applied Sciences 12, no. 4: 2218. https://doi.org/10.3390/app12042218
APA StyleFogarassy, C., Hoang, N. H., & Nagy-Pércsi, K. (2022). Composting Strategy Instead of Waste-to-Energy in the Urban Context—A Case Study from Ho Chi Minh City, Vietnam. Applied Sciences, 12(4), 2218. https://doi.org/10.3390/app12042218