The Behavior of Hybrid Fiber-Reinforced Concrete Elements: A New Stress-Strain Model Using an Evolutionary Approach
Abstract
:1. Introduction
2. Research Significance
3. Work Methodology
3.1. Experimental Program
3.1.1. Testing Materials
3.1.2. Sample Preparation and Testing
3.2. Optimization Model of Stress-Strain Relationship for HFRC
3.2.1. PSO Algorithm
3.2.2. Objective Function
3.2.3. Convergence Criteria
3.2.4. Proposed Analytical Model and Data Processing
4. Results and Discussion
4.1. Experimental Results
4.2. Building of Stress-Strain Relationship Model
4.2.1. Development of the Proposed Models
- Predicted and actual values have a very strong correlation if the model’s, .
- Good correlation can be found between actual and predicted values when an R-squared model provides .
- When a model provides, , the correlation between the expected and the actual values is weak.
4.2.2. Error Evaluation of the Proposed Model
4.3. Building of Stress-Strain Relationship Model
5. Modeling of Hybrid Fiber-Reinforced Concrete Elements
5.1. Modeling of the Structural Elements
5.2. Model Description
5.3. Materials Constitutive Models
5.4. Validate the FE Models
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Hanoon, A.N.; Al Zand, A.W.; Yaseen, Z.M. Designing new hybrid artificial intelligence model for CFST beam flexural performance prediction. Eng. Comput. 2021, 1–27. [Google Scholar] [CrossRef]
- Mahmod, M.; Hanoon, A.N.; Abed, H.J. Flexural behavior of self-compacting concrete beams strengthened with steel fiber reinforcement. J. Build. Eng. 2018, 16, 228–237. [Google Scholar] [CrossRef]
- Odaa, S.A.; Hason, M.M.; Sharba, A.A.K. Self-compacting concrete beams reinforced with steel fiber under flexural loads: A ductility index evaluation. Mater. Today Proc. 2021, 42, 2259–2267. [Google Scholar] [CrossRef]
- Thomas, J.; Ramaswamy, A. Mechanical Properties of Steel Fiber-Reinforced Concrete. J. Mater. Civ. Eng. 2007, 19, 385–392. [Google Scholar] [CrossRef]
- Akcay, B.; Tasdemir, M.A. Mechanical behaviour and fibre dispersion of hybrid steel fibre reinforced self-compacting concrete. Constr. Build. Mater. 2012, 28, 287–293. [Google Scholar] [CrossRef]
- AbdulHameed, A.A.; Said, A.I. CFRP Laminates Reinforcing Performance of Short-Span Wedge-Blocks Segmental Beams. Fibers 2020, 8, 6. [Google Scholar] [CrossRef] [Green Version]
- Al-Zuhairi, A.H.; Al-Ahmed, A.H.A.; Hanoon, A.N.; Abdulhameed, A.A. Structural Behavior of Reinforced Hybrid Concrete Columns under Biaxial Loading. Lat. Am. J. Solids Struct. 2021, 18. [Google Scholar] [CrossRef]
- Almusallam, T.; Siddiqui, N.; Iqbal, R.A.; Abbas, H. Response of hybrid-fiber reinforced concrete slabs to hard projectile impact. Int. J. Impact Eng. 2013, 58, 17–30. [Google Scholar] [CrossRef]
- Abbas, H.; Almusallam, T.; Al-Salloum, Y. Improving the Impact Resistance of Reinforced Concrete. Adv. Mater. Res. 2014, 919–921, 1924–1929. [Google Scholar] [CrossRef]
- Bajaj, V.; Singh, S.P.; Singh, A.P.; Kaushik, S.K. Flexural fatigue analysis of hybrid fibre-reinforced concrete. Mag. Concr. Res. 2012, 64, 361–373. [Google Scholar] [CrossRef]
- ACI-Committee. Design Considerations for Steel Fiber Reinforced Concrete. ACI Struct. J. 1988, 85. [Google Scholar] [CrossRef]
- Chin, M.S.; Mansur, M.A.; Wee, T.H. Effects of Shape, Size, and Casting Direction of Specimens on Stress-Strain Curves of High-Strength Concrete. ACI Mater. J. 1997, 94, 209–219. [Google Scholar] [CrossRef]
- ACI-Committee. State of the Art Report on High-Strength Concrete. ACI J. Proc. 1984, 81. [Google Scholar] [CrossRef]
- Al-Quraishi, H.; Lafta, M.J.; Abdulridha, A.A. Direct Shear Behavior of Fiber Reinforced Concrete Elements. J. Eng. 2018, 24, 231–248. [Google Scholar]
- Mehrabi, P.; Shariati, M.; Kabirifar, K.; Jarrah, M.; Rasekh, H.; Trung, N.T.; Shariati, A.; Jahandari, S. Effect of pumice powder and nano-clay on the strength and permeability of fiber-reinforced pervious concrete incorporating recycled concrete aggregate. Constr. Build. Mater. 2021, 287, 122652. [Google Scholar] [CrossRef]
- Toghroli, A.; Mehrabi, P.; Shariati, M.; Trung, N.T.; Jahandari, S.; Rasekh, H. Evaluating the use of recycled concrete aggregate and pozzolanic additives in fiber-reinforced pervious concrete with industrial and recycled fibers. Constr. Build. Mater. 2020, 252, 118997. [Google Scholar] [CrossRef]
- Sinaei, H. Numerical investigation on exterior reinforced concrete Beam-Column joint strengthened by composite fiber reinforced polymer (CFRP). Int. J. Phys. Sci. 2011, 6, 6572–6579. [Google Scholar] [CrossRef]
- Shariati, M.; Armaghani, D.J.; Khandelwal, M.; Zhou, J.; Khorami, M. Assessment of Longstanding Effects of Fly Ash and Silica Fume on the Compressive Strength of Concrete Using Extreme Learning Machine and Artificial Neural Network. J. Adv. Eng. Comput. 2021, 5, 50–75. [Google Scholar] [CrossRef]
- Davoodnabi, S.M.; Mirhosseini, S.M.; Shariati, M. Analyzing shear strength of steel-concrete composite beam with angle connectors at elevated temperature using finite element method. Steel Compos. Struct. 2021, 40, 853–868. [Google Scholar] [CrossRef]
- Shariati, M.; Mafipour, M.S.; Mehrabi, P.; Ahmadi, M.; Wakil, K.; Trung, N.T.; Toghroli, A. Prediction of concrete strength in presence of furnace slag and fly ash using Hybrid ANN-GA (Artificial Neural Network-Genetic Algorithm). Smart Struct. Syst. 2020, 25, 183–195. [Google Scholar] [CrossRef]
- Armaghani, D.J.; Mirzaei, F.; Shariati, M.; Trung, N.T.; Shariati, M.; Trnavac, D. Hybrid ANN-based techniques in predicting cohesion of sandy-soil combined with fiber. Geomech. Eng. 2020, 20, 191–205. [Google Scholar] [CrossRef]
- Lee, S.-C.; Oh, J.-H.; Cho, J.-Y. Compressive Behavior of Fiber-Reinforced Concrete with End-Hooked Steel Fibers. Materials 2015, 8, 1442–1458. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chalioris, C.E.; Panagiotopoulos, T.A. Flexural analysis of steel fibre-reinforced concrete members. Comput. Concr. 2018, 22, 11–25. [Google Scholar] [CrossRef]
- Choi, W.-C.; Jung, K.-Y.; Jang, S.-J.; Yun, H.-D. The Influence of Steel Fiber Tensile Strengths and Aspect Ratios on the Fracture Properties of High-Strength Concrete. Materials 2019, 12, 2105. [Google Scholar] [CrossRef] [Green Version]
- Voutetaki, M.E.; Naoum, M.C.; Papadopoulos, N.A.; Chalioris, C.E. Cracking Diagnosis in Fiber-Reinforced Concrete with Synthetic Fibers Using Piezoelectric Transducers. Fibers 2022, 10, 5. [Google Scholar] [CrossRef]
- Chalioris, C.E. Steel fibrous RC beams subjected to cyclic deformations under predominant shear. Eng. Struct. 2013, 49, 104–118. [Google Scholar] [CrossRef]
- Shariati, M.; Mafipour, M.S.; Haido, J.H.; Yousif, S.T.; Toghroli, A.; Trung, N.T.; Shariati, A. Identification of the most influencing parameters on the properties of corroded concrete beams using an Adaptive Neuro-Fuzzy Inference System (ANFIS). Steel Compos. Struct. 2020, 34, 155. [Google Scholar] [CrossRef]
- Shariati, M.; Mafipour, M.S.; Ghahremani, B.; Azarhomayun, F.; Ahmadi, M.; Trung, N.T.; Shariati, A. A novel hybrid extreme learning machine–grey wolf optimizer (ELM-GWO) model to predict compressive strength of concrete with partial replacements for cement. Eng. Comput. 2020, 1–23. [Google Scholar] [CrossRef]
- AbdulHameed, A.A.; Said, A.I. Experimental Investigation of the Behavior of Self-Form Segmental Concrete Masonry Arches. Fibers 2019, 7, 58. [Google Scholar] [CrossRef] [Green Version]
- Abbas, E.; AlZuhairi, A.H. Effect of Maximum Size of Aggregate on the Behavior of Reinforced Concrete Beams Analyzed using Meso Scale Modeling. J. Eng. 2020, 26, 143–155. [Google Scholar] [CrossRef]
- Hason, M.M.; Hanoon, A.N.; Al Zand, A.W.; AbdulHameed, A.A.; Al-Sulttani, A.O. Torsional Strengthening of Reinforced Concrete Beams with Externally-Bonded Fibre Reinforced Polymer: An Energy Absorption Evaluation. Civ. Eng. J. 2020, 6, 69–85. [Google Scholar] [CrossRef]
- ASTM C150/C150M-19a; Standard Specification for Portland Cement. ASTM International: West Conshohocken, PA, USA, 2019.
- ASTM-C192; Standard Practice for Making and Curing Concrete Test Specimens in the Laboratory Annual Book of ASTM Standards 4.02. ASTM International: West Conshohocken, PA, USA, 2003.
- Hason, M.M.; Hanoon, A.N.; Abdulhameed, A.A. Particle Swarm Optimization Technique Based Prediction of Peak Ground Acceleration of Iraq’s Tectonic Regions. J. King Saud Univ. Eng. Sci. 2021. [Google Scholar] [CrossRef]
- Kennedy, J.; Eberhart, R.C.; Shi, Y. Chapter seven—The Particle Swarm. In Swarm Intelligence; Kennedy, J., Eberhart, R.C., Shi, Y., Eds.; Morgan Kaufmann: San Francisco, CA, USA, 2001; pp. 287–325. [Google Scholar]
- Bratton, D.; Kennedy, J. Defining a Standard for Particle Swarm Optimization. In Proceedings of the 2007 IEEE Swarm Intelligence Symposium, Honolulu, HI, USA, 1–5 April 2007; pp. 120–127. [Google Scholar] [CrossRef]
- Hanoon, A.N.; Jaafar, M.S.; Hejazi, F.; Aziz, F.N.A.A. Energy absorption evaluation of reinforced concrete beams under various loading rates based on particle swarm optimization technique. Eng. Optim. 2016, 49, 1483–1501. [Google Scholar] [CrossRef]
- Hanoon, A.N.; Jaafar, M.; Hejazi, F.; Aziz, F.N.A. Strut-and-tie model for externally bonded CFRP-strengthened reinforced concrete deep beams based on particle swarm optimization algorithm: CFRP debonding and rupture. Constr. Build. Mater. 2017, 147, 428–447. [Google Scholar] [CrossRef]
- Al-Sulttani, A.O.; Ahsan, A.; Hanoon, A.N.; Rahman, A.; Daud, N.; Idrus, S. Hourly yield prediction of a double-slope solar still hybrid with rubber scrapers in low-latitude areas based on the particle swarm optimization technique. Appl. Energy 2017, 203, 280–303. [Google Scholar] [CrossRef]
- Lavanya, D.; Udgata, S.K. Swarm intelligence based localization in wireless sensor networks. In International Workshop on Multi-disciplinary Trends in Artificial Intelligence; Springer: Berlin/Heidelberg, Germany, 2011. [Google Scholar]
- Carreira, D.J.; Chu, K.-H. Stress-strain relationship for plain concrete in compression. J. Proc. 1985, 82, 797–804. [Google Scholar] [CrossRef]
- Frank, I.E.; Todeschini, R. The Data Analysis Handbook. In Data Handling in Science and Technology; Frank, I.E., Todeschini, R., Eds.; Elsevier: Amsterdam, The Netherlands, 1994; pp. 1–352. [Google Scholar]
- Berry, E.; Hemmings, R.; Zhang, M.; Malhotra, V. Fourth International Conference on Fly Ash, Silica Fume, Slag, and Natural Pozzolans in Concrete: Supplemental Proceedings; Electric Power Research Inst.: Istanbul, Turkey, 1992. [Google Scholar]
- Smith, G.N. Probability and Statistics in Civil Engineering; Collins Professional and Technical Books; Nichols Publishing Company: New York, NY, USA, 1986; 244p. [Google Scholar]
- Taylor, K.E. Summarizing multiple aspects of model performance in a single diagram. J. Geophys. Res. Atmos. 2001, 106, 7183–7192. [Google Scholar] [CrossRef]
- Bagheri, M.; Bagheri, M.; Gandomi, A.H.; Golbraikh, A. Simple yet accurate prediction method for sublimation enthalpies of organic contaminants using their molecular structure. Thermochim. Acta 2012, 543, 96–106. [Google Scholar] [CrossRef]
- Golbraikh, A.; Tropsha, A. Beware of q2! J. Mol. Graph. Model. 2002, 20, 269–276. [Google Scholar] [CrossRef]
- Roy, P.P.; Roy, K. On Some Aspects of Variable Selection for Partial Least Squares Regression Models. QSAR Comb. Sci. 2008, 27, 302–313. [Google Scholar] [CrossRef]
- Raza, A.; Khan, Q.U.Z. Experimental and numerical behavior of hybrid-fiber-reinforced concrete compression members under concentric loading. SN Appl. Sci. 2020, 2, 701. [Google Scholar] [CrossRef] [Green Version]
- Al Zand, A.W.; Badaruzzaman, W.H.W.; Tawfeeq, W.M. New empirical methods for predicting flexural capacity and stiffness of CFST beam. J. Constr. Steel Res. 2020, 164, 105778. [Google Scholar] [CrossRef]
- Al Zand, A.W.; Ali, M.M.; Al-Ameri, R.; Badaruzzaman, W.H.W.; Tawfeeq, W.M.; Hosseinpour, E.; Yaseen, Z.M. Flexural Strength of Internally Stiffened Tubular Steel Beam Filled with Recycled Concrete Materials. Materials 2021, 14, 6334. [Google Scholar] [CrossRef] [PubMed]
- Hernoune, H.; Benabed, B.; Kanellopoulos, A.; Al-Zuhairi, A.H.; Guettala, A. Experimental and Numerical Study of Behaviour of Reinforced Masonry Walls with NSM CFRP Strips Subjected to Combined Loads. Buildings 2020, 10, 103. [Google Scholar] [CrossRef]
- Al-Zuhairi, A.H.; Taj, A.I. Finite Element Analysis of Concrete Beam under Flexural Stresses Using Meso-Scale Model. Civ. Eng. J. 2018, 4, 1288. [Google Scholar] [CrossRef] [Green Version]
- Hosseinpour, E.; Baharom, S.; Badaruzzaman, W.H.W.; Shariati, M.; Jalali, A. Direct shear behavior of concrete filled hollow steel tube shear connector for slim-floor steel beams. Steel Compos. Struct. 2018, 26, 485–499. [Google Scholar] [CrossRef]
Chemical Composition, % | Portland Cement (PC) | FA | SF | |
---|---|---|---|---|
CEM I 42.5R | CEM I 52.5R | |||
SiO2 | 20.77 | 21.6 | 57.01 | 91.96 |
Al2O3 | 5.55 | 4.10 | 20.97 | 1.20 |
Fe2O3 | 3.35 | 0.26 | 4.15 | 0.84 |
MgO | 2.49 | 1.30 | 1.76 | 1.02 |
CaO | 61.4 | 65.7 | 9.78 | 0.62 |
Na2O | 0.19 | 0.19 | 2.23 | 0.67 |
K2O | 0.77 | 0.77 | 1.53 | 1.16 |
Loss on Ignition (LOI) | 2.2 | 3.20 | 1.25 | 1.86 |
Physical properties | ||||
Specific gravity | 3.15 | 3.15 | 2.2 | 2.3 |
Blaine fineness (m2/kg) | 325 | 460 | 290 | - |
Material | Length (mm) | Diameter (mm) | Tensile Strength (MPa) | Stiffness (Gpa) | Specific Gravity |
---|---|---|---|---|---|
P | 18 | 0.4 | 1000 | 29 | 1.3 |
S | 30 | 0.75 | 1100 | 200 | 7.8 |
Mixture No. | Cement I kg/m3 | Cement II kg/m3 | Fly Ash | Silica Fume kg/m3 | Water kg/m3 | PVA kg/m3 | Steel Fiber kg/m3 | Fine Agg. kg/m3 | Coarse Agg. kg/m3 | A/B Ratio |
---|---|---|---|---|---|---|---|---|---|---|
1 | 739 | 0 | 144 | 77 | 288 | 0 | 0 | 351 | 609 | 1 |
2 | 533 | 0 | 327 | 75 | 281 | 0 | 0 | 342 | 594 | 1 |
3 | 243 | 0 | 585 | 72 | 270 | 0 | 0 | 329 | 572 | 1 |
4 | 739 | 0 | 144 | 77 | 288 | 0 | 58.5 | 351 | 609 | 1 |
5 | 533 | 0 | 327 | 75 | 281 | 0 | 58.5 | 342 | 594 | 1 |
6 | 243 | 0 | 585 | 72 | 270 | 0 | 58.5 | 329 | 572 | 1 |
7 | 739 | 0 | 144 | 77 | 288 | 9.75 | 58.5 | 351 | 609 | 1 |
8 | 533 | 0 | 327 | 75 | 281 | 9.75 | 58.5 | 342 | 594 | 1 |
9 | 243 | 0 | 585 | 72 | 270 | 9.75 | 58.5 | 329 | 572 | 1 |
10 | 531 | 0 | 104 | 55 | 207 | 9.75 | 58.5 | 506 | 879 | 2 |
11 | 386 | 0 | 237 | 54 | 203 | 9.75 | 58.5 | 497 | 862 | 2 |
12 | 178 | 0 | 428 | 53 | 198 | 9.75 | 58.5 | 482 | 837 | 2 |
13 | 419 | 0 | 82 | 44 | 163 | 9.75 | 58.5 | 598 | 1038 | 3 |
14 | 302 | 0 | 186 | 42 | 159 | 9.75 | 58.5 | 593 | 1029 | 3 |
15 | 141 | 0 | 341 | 42 | 157 | 9.75 | 58.5 | 576 | 1000 | 3 |
16 | 0 | 739 | 144 | 77 | 288 | 0 | 0 | 351 | 609 | 1 |
17 | 0 | 533 | 327 | 75 | 281 | 0 | 0 | 342 | 594 | 1 |
18 | 0 | 243 | 585 | 72 | 270 | 0 | 0 | 329 | 572 | 1 |
19 | 0 | 739 | 144 | 77 | 288 | 0 | 58.5 | 351 | 609 | 1 |
20 | 0 | 533 | 327 | 75 | 281 | 0 | 58.5 | 342 | 594 | 1 |
21 | 0 | 243 | 585 | 72 | 270 | 0 | 58.5 | 329 | 572 | 1 |
22 | 0 | 739 | 144 | 77 | 288 | 9.75 | 58.5 | 351 | 609 | 1 |
23 | 0 | 533 | 327 | 75 | 281 | 9.75 | 58.5 | 342 | 594 | 1 |
24 | 0 | 243 | 585 | 72 | 270 | 9.75 | 58.5 | 329 | 572 | 1 |
25 | 0 | 531 | 104 | 55 | 207 | 9.75 | 58.5 | 506 | 879 | 2 |
26 | 0 | 386 | 237 | 54 | 203 | 9.75 | 58.5 | 497 | 862 | 2 |
27 | 0 | 178 | 428 | 53 | 198 | 9.75 | 58.5 | 482 | 837 | 2 |
28 | 0 | 419 | 82 | 44 | 163 | 9.75 | 58.5 | 598 | 1038 | 3 |
29 | 0 | 302 | 186 | 42 | 159 | 9.75 | 58.5 | 593 | 1029 | 3 |
30 | 0 | 141 | 341 | 42 | 157 | 9.75 | 58.5 | 576 | 1000 | 3 |
Description | Details |
---|---|
Particle count, N | Between 10 and 40 is a common range. The number can be extended to 50–100 for some challenging or specific problems. |
The dimension of particles, D | Optimum solution is decided by the problem at hand |
Inertia weight, w | As a rule of thumb, w = 0.7 is considered to be a good starting point [38]. It is also possible to make changes to it throughout subsequent rounds. |
Lower and upper bounds for each of the n design variables, | Optimum solutions are based on the problem to be optimized. In general, a variety of ranges can be used for different particle diameters. |
Cognitive and social characteristics | Usually and other numbers are acceptable as long as [40]. |
Description | Details |
---|---|
T-max is the maximum number of iterations that can be completed in a particular time period. | In combination with other PSO parameters, the complexity of the issue to be optimized (D, N) |
is the number of times the improvement of the objective function meets the convergence condition. | A convergence has occurred if the objective function’s improvement over the last iterations (including this one) is less than or equal to . |
The minimum improvement in the objective function’s value |
Parameters | Swarms Size | |||
---|---|---|---|---|
40 Swarms | 60 Swarms | 80 Swarms | 100 Swarms | |
1.5407 | 1.0783 | 0.7533 | 0.7560 | |
−0.0024 | −0.0001 | 0.0008 | 0.0008 | |
0.00003 | −0.0008 | −0.0007 | −0.0007 | |
1.0873 | 1.0873 | 1.0873 | 1.0873 | |
5.9940 | 6.8733 | 6.6133 | 5.9445 | |
9.1699 | 6.7863 | 8.4157 | 3.8006 | |
0.0310 | 0.2989 | 0.2234 | 0.0147 | |
0.8189 | 0.0531 | 0.6006 | 0.9368 | |
−38.4471 | −11.0016 | 21.0096 | −0.2854 | |
63.6051 | 11.0420 | −36.6410 | 80.3926 | |
37.4007 | 62.5102 | 1.0888 | 31.4167 | |
−47.4932 | 45.0255 | 48.2601 | −23.5096 | |
0.2754 | 3.5791 | 44.1699 | 61.9069 | |
7.1427 | −71.4840 | 39.3211 | −6.4045 | |
7.0842 | −43.5667 | 26.5333 | −4.3061 | |
−89.6652 | 1.5469 | 1.0000 | 0.0886 | |
−22.8279 | −12.7488 | 4.4237 | −17.8640 | |
1.065 | 0.952 | 1.004 | 0.963 | |
0.224 | 0.161 | 0.186 | 0.122 | |
% | 21.03 | 16.95 | 18.56 | 12.67 |
No. | Expression | Limitation | Model Suggestion |
---|---|---|---|
1 | 0.9997 | ||
2 | 1.0010 | ||
3 | 0.9989 | ||
4 | 0.7584 | ||
where, |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Abdulhameed, A.A.; Al-Zuhairi, A.H.; Al Zaidee, S.R.; Hanoon, A.N.; Al Zand, A.W.; Hason, M.M.; Abdulhameed, H.A. The Behavior of Hybrid Fiber-Reinforced Concrete Elements: A New Stress-Strain Model Using an Evolutionary Approach. Appl. Sci. 2022, 12, 2245. https://doi.org/10.3390/app12042245
Abdulhameed AA, Al-Zuhairi AH, Al Zaidee SR, Hanoon AN, Al Zand AW, Hason MM, Abdulhameed HA. The Behavior of Hybrid Fiber-Reinforced Concrete Elements: A New Stress-Strain Model Using an Evolutionary Approach. Applied Sciences. 2022; 12(4):2245. https://doi.org/10.3390/app12042245
Chicago/Turabian StyleAbdulhameed, Ali A., Alaa Hussein Al-Zuhairi, Salah R. Al Zaidee, Ammar N. Hanoon, Ahmed W. Al Zand, Mahir M. Hason, and Haider A. Abdulhameed. 2022. "The Behavior of Hybrid Fiber-Reinforced Concrete Elements: A New Stress-Strain Model Using an Evolutionary Approach" Applied Sciences 12, no. 4: 2245. https://doi.org/10.3390/app12042245
APA StyleAbdulhameed, A. A., Al-Zuhairi, A. H., Al Zaidee, S. R., Hanoon, A. N., Al Zand, A. W., Hason, M. M., & Abdulhameed, H. A. (2022). The Behavior of Hybrid Fiber-Reinforced Concrete Elements: A New Stress-Strain Model Using an Evolutionary Approach. Applied Sciences, 12(4), 2245. https://doi.org/10.3390/app12042245