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Abstract: This paper is based on a shaking table test of 2 × 2 straight pile groups and 2 × 2 inclined
pile groups in non-liquefied sand and saturated sand with different thicknesses. Under the sine
wave with a certain peak acceleration and frequency, the lateral dynamic response characteristics,
the distribution law of the maximum bending moment envelope diagram, and the p–y curve of the
straight and inclined pile groups are studied. The results show that the bending moment of the
straight pile group is 3~4 times that of the inclined pile group at the bottom section of the pile in the
300 mm saturated sand. When the thickness of the saturated sand increases to 380 mm, the maximum
bending moment of the straight pile group is 6~7 times that of the inclined pile group at the bottom
section of the pile. Through the comparison of indicators, it shows that the inclined pile group can
have better bending resistance when subjected to the same lateral dynamic load.

Keywords: pile-group structure; pile caps; shaking table test; lateral seismic performance; bending
moment envelope

1. Introduction

As a common form of foundation, the research on the fabrication, installation and
vertical-bearing capacity of pile foundations is very rich [1,2]. However, pile foundations
are often subjected to irregular horizontal dynamic loads, such as vibrational loads caused
by ground motions and wind loads [3–7]. Therefore, the dynamic stability of these pile
foundations needs to be solved when they are subjected to lateral loads, such as seismic
forces. Different from the foundation in dry sand [8,9], the pile foundation is damaged
due to the liquefaction and failure of the foundation soil. Ground displacement caused
by large liquefaction causes serious damage to bridges’ structural infrastructure, lifeline
facilities and other infrastructure [10–12]. This results in the destruction of a large number
of superstructures, which is not uncommon during many earthquakes. Some examples
include the Landers M7.3 earthquake [13], the Colima M7.8 earthquake [14], the Tohoku-Oki
M9.0 earthquake [15], and the Wenchuan M8.0 earthquake [16,17].

According to the research findings, many studies have been conducted to determine
the failure mechanism of pile foundations under the action of an earthquake. The research
on geotechnical related problems through different methods is also more and more exten-
sive [18]. Therefore, the shaking table test has become a tool for identifying and quantifying
the failure mechanism of pile foundations under the action of earthquakes [19–22]. Mo-
tamed [23] supported that mitigating the sheet pile of the floating type or fixed-end type
and anchoring the quay wall to a new pile row could provide an adequate seismic perfor-
mance by conducting a series of shaking table model tests. Li [24] built a two-dimensional
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nonlinear dynamic finite element model through a large-scale shaking table test on the
E-Defense vibration platform and studied the efficiency of a two-dimensional effective
stress analysis pile and soil system in predicting the liquefaction-induced lateral spreading
behavior. Ebeido [25] studied the influence of pile lateral expansion caused by liquefaction
on pile response by four large vibration table tests of a laminated box. Wang [26] con-
structed a reinforced concrete bridge model composed of a single pier supported by a 2 × 2
pile group, studied the anti-seismic performance of pile-bearing bridges under different
erosion conditions through a 1 g shaking table test, and revealed the failure mechanism of
pile-bearing bridges under different erosion conditions. The above research mainly focuses
on the bearing capacity and dynamic response of the straight pile and inclined pile, but
there are few research studies on the failure mechanism of pile foundations caused by the
dynamic interaction of liquefied-soil–pile-superstructure in the earthquake. In practical en-
gineering, the inclined pile plays an important role in resisting the horizontal force caused
by wind and wave loads and earth pressure. However, due to the complex dynamic bearing
characteristics of the inclined piles, the research content is mainly the force-deformation
characteristics, the bending moment distribution and the p–y curve of the inclined pile
on the non-liquefied foundation [27–29]. There are few experimental studies on the dy-
namic response characteristics of the inclined piles, the relationship between the pile–soil
interaction force, and the displacement in the liquefied soil layer. At present, the failure
mechanism and dynamic behavior of inclined piles before and after soil liquefaction are
not well explained. Moreover, the result of a comparative study on the lateral dynamic
characteristics of the inclined pile and the straight pile in the liquefied soil under the action
of an earthquake is less. The difference between the mechanical failure mechanism of the
inclined pile and the straight pile in the liquefaction process of soil is also a key problem to
be solved.

It is necessary to further explore the dynamic response characteristics of the straight
and inclined pile groups and the distribution law of the bending moment of the pile body.
The lateral dynamic response characteristics of the pile group–pile cap superstructure in
non-liquefied sand and saturated liquefied sand are focused under the input of a sine
wave. The research results analyze the advantages and disadvantages of the lateral bearing
performance of the straight pile group and inclined pile group, caused by additional lateral
deformation of liquefied soil under earthquake action, and reveal the dynamic interaction
mechanism between liquefied soil and the pile group. In addition, this paper explores
the influence of the thicknesses of saturated sand on the horizontal bearing capacity of
the pile group in order to evaluate the horizontal bearing capacity of the pile group more
reasonably and effectively, and provides a theoretical basis for the seismic design method
of the pile group foundation with different thicknesses of the liquefied soil layer in the
liquefaction site.

2. Test Introduction
2.1. The Shaking Table and Model Box

In this test, the shaking table is a new, electromagnetically driven, all-digital control,
one-dimensional shear vibration simulation table test system.

Figure 1 shows the main equipment of the shaking table and the TMR211 portable
multifunction acquisition instrument. The size of the shear box is 800 mm × 600 mm ×
500 mm. The small shear box selected in this test is made of steel, which is composed
of 10 layers of stacked frames. Rubber blocks are set between the layers so that each
layer can move relatively freely. In addition, a limit device is set outside the box, thus
effectively reducing the influence of the lateral displacement and the boundary effect in
the soil-dynamic seismic simulation test [30–32]. The rubber pad laid at the bottom of the
model box is approximately 50 mm. Due to the small size of the pile and model box, the
tips are inserted into the rubber pad to simulate the group bearing layer and play the role of
fixing piles. A silty clay layer covers the surface of the saturated sand. It is approximately
50 mm thick so that the entire pile foundation is in the layered soil model. In addition, the
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sand and water will not overflow in the process of vibration because of the covering silty
clay. The pore pressure will not decrease and will be closer to the actual situation.
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2.2. Model Soil, Model Pile, Cap and Superstructure Design

The soil sample was prepared by using Fujian standard sand with an obvious lique-
faction condition and phenomenon. The basic properties of the sand are listed in Table 1.
The basic properties of the overlaying clay layer are listed in Table 2. To reflect the state of
the sand in the natural environment as realistically as possible, the experimental model is
layered by the pluviation [33], which is divided into three layers. The thicknesses from the
bottom to top are 120, 140, and 120 mm. The grain grading curve of the sandy soil is shown
in Figure 2.

Table 1. Basic properties of the sand.

Specific
Gravity

Gs

Maximum Dry
Density

ρdmax(kg/m3)

Minimum Dry
Density

ρdmin(kg/m3)

Saturated
Severity

γsat(kN/m3)

Effective Unit
Weight

γ
′
(kN/m3)

2.644 1.72× 103 1.44× 103 24.21 14.41

Table 2. Basic properties of the clay layer.

Saturated Unit
Weight

γsat(kN/m3)

Buoyant Unit Weight
γ
′
(kN/m3)

Uniformity
Coefficient

Gu

Curvature
Coefficient

Gc

16 6 1.953 1.048

For the pile group system, the gravity distortion model is wholly considered by
increasing the weight. The test model pile uses hollow polymethyl methacrylate (PMMA)
to increase the weight by injecting fine iron sand into the hollow part. PMMA can simulate
the characteristics of a prestressed concrete pipe pile to the maximum extent. It is more
convenient to process, paste the grating and arrange the grating points. Considering the
influence of soil on the pile response, the material selection of pile model is mainly based on
the similarity of the bending stiffness. Therefore, PMMA is selected as the manufacturing
material of the model pipe pile. Domestic and foreign scholars have conducted significant
amounts of research on the optimal angle of inclined piles, combined with the construction
difficulty of inclined piles in actual engineering [34], suggesting that the inclination angle
of a pile foundation generally does not exceed 15◦. At the same time, as the pile inclination
increases, the resistance of inclined piles to the vertical and horizontal load has a tendency
to decrease. Considering the research results of predecessors and the difficulty in making
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the test components, the angle of the inclined pile group is chosen as 12◦. Hollow plexiglass
pipe piles are used for the 2 × 2 straight pile group, the 2 × 2 inclined pile group, and the
piles are arranged at equal intervals with a distance of 60 mm. The outer diameter is 30 mm,
the inner diameter is 20 mm, the sleeve thickness is 5 mm, the pile length is 720 mm, and
the Young’s modulus is 2.3 GPa. The side pile is 25 mm away from the edge of the pile cap,
and the size of the cap made of iron is 150 mm × 150 mm × 40 mm.
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Figure 2. Particle size distribution curve of the sand.

The pile layout is shown in Figure 3. The circular sleeve structure connects the pile
with the pile cap and welds it onto the pile cap. Therefore, the angle of the inclined pile will
not change. The inner diameter is slightly smaller than the outer diameter of the plexiglass
tube. The thickness of the round sleeve is 5 mm. During the test, the plexiglass tube is
inserted into the circular sleeve and fixed with a top screw. The superstructure is in the
form of a single column–mass block. The total mass of the cap, sleeve and superstructure is
approximately 12 kg.
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2.3. Sensor Monitoring and Placement

Many parameters need to be monitored during the test, such as the acceleration and
displacement of the table and pile, the pore water pressure of the saturated sand, the
deformation of the soil layer, the displacement of the pile body and other parameters.
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Therefore, the acceleration sensors, pore water pressure sensors, displacement sensors, fiber
Bragg grating (FBG) sensing systems, etc., are arranged in the test. FBG is widely used as a
sensor with stable performance [35]. Due to the symmetry of the pile group system, the
FBG sensing system is used to simultaneously measure the dynamic strain of the piles of
the left front pile and the right front pile, which ensures the accuracy and synchronization
of the test data. The grating points are set at positions of 4.5, 12.5, 20.5, 28.5, 36.5, 44.5, and
52.5 cm from the bottom of the pile, respectively. Five grating points with the same spacing
of 8 cm are arranged thereon for monitoring the soil displacement. The specific layout is
shown in Figure 4.
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2.4. Test Condition

This is a test of sinusoidal waves of straight and inclined piles in the 380 mm non-
liquefied soil (dry sand) and saturated sands 300 and 380 mm thick. The sine wave input
frequency is 3 Hz, and the peak acceleration is 0.15 g (g = 10 m/s2). The specific test
conditions are shown in Table 3.

Table 3. Overview of the test conditions.

Pile Type Model
Soil

Saturated
Sand
Layer

Thickness
(mm)

Waveform Frequency
(hz)

Peak Ac-
celeration

(g)

Vibration
Direction

straight
pile group

inclined
pile group

non-
liquefied

soil
0 sine wave 3 0.15

North-
south

pointing

straight
pile group

inclined
pile group

saturated
sands 300 sine wave 3 0.15

North-
south

pointing

straight
pile group

inclined
pile group

saturated
sands 380 sine wave 3 0.15

North-
south

pointing
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3. Comparative Analysis of the Lateral Dynamic Response of Pile Groups
3.1. Pore Water Pressure and Experimental Phenomena in Saturated Sand

Figure 5 shows the time histories of the pore water pressure in the 300 mm saturated
sand under a sine wave input. When the vibration begins, the pore water pressure rises
significantly. It rises to the maximum rapidly, within 5 s after the vibration starts. At this
moment, the soil has completely liquefied, accompanied by the rapid emission of gravel
and the phenomenon of sand blasting and water gushing. The external pore pressure
sensor of the pile is closer to the box, and the boundary effect caused by the vibration box
has an impact on the pore pressure in the process of vibration. The fluctuation of the outer
pore pressure ratio is more obvious. However, whether it is the outer or inner pore pressure
ratio, the overall trend is the same. The pore pressure reference line is approximately 1.0.
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The time histories for the acceleration in the 300 mm saturated sand are shown in
Figure 6. The soil acceleration also declines sharply after a short amplification. As the pore
pressure increases, the soil acceleration increases slightly and then decreases. The reason
is that the interaction between the accelerometer and the soil is reduced when the soil is
liquefied so that the accelerometer is suspended in the liquefied sand. The transmission
effect of the soil acceleration is deteriorated. Through the above arguments, it can be proven
that the soil has liquefied. The time histories for the acceleration in the 300 mm saturated
sand are similar to those in the 380 mm saturated sand.
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3.2. Comparison of the Lateral Dynamic Response between Straight Piles and Inclined Piles

This section concerns the lateral dynamic response characteristics of the straight group
and the inclined pile group for non-liquefied soil layers and two saturated sand layers with
different thicknesses, and the results of the comparison between the displacement of the
pile caps and the input acceleration of the vibrating table of the straight and inclined pile
group (shown in Figures 7–12). From the figures, it can be seen that when the same sine
wave is given as an input, the displacement and acceleration amplitudes of the straight and
inclined pile groups are enlarged. However, the amplification of the inclined piles under
the same conditions are smaller and more resistant to horizontal loads.
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Figure 8. Time–history comparison of the pile cap’s displacement in non-liquefied sand: (a) straight
pile group; (b) inclined pile group.
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Figure 9. Time–history comparison of the pile cap’s acceleration in the 300 mm saturated sand:
(a) straight pile group; (b) inclined pile group.
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Figure 10. Time–history comparison of pile cap’s displacement in the 300 mm saturated sand:
(a) straight pile group; (b) inclined pile group.
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Figure 11. Time–history comparison of the pile cap’s acceleration in the 380 mm saturated sand:
(a) straight pile group; (b) inclined pile group.

Table 4 shows that the acceleration and displacement amplification of the saturated
sand pile is larger than that of the non-liquefaction sand pile due to the sand liquefaction.
With the increase in the saturated sand thickness, the amplification of the saturated sand
pile also increases, but the increase in the inclined pile is small. The horizontal seismic
performance of the inclined pile is gradually revealed. Therefore, it is more advantageous
to use the inclined pile to reduce the displacement of buildings in the liquefied soil layer,
and the horizontal dynamic response of straight pile under the action of an earthquake is
more sensitive to the sand liquefaction.
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discussed. In view of the symmetry of the vibration process of a 2 × 2 straight pile group 
and a 2 × 2 inclined pile group structure on the one-dimensional vibration table, the two 
piles located in the front are selected as the research objects. The pile near the proximal 
end of the servo motor is called the No. 1 pile, and the other pile is the No. 2 pile, as 
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Table 4. Amplifications under input sinusoidal waves.

Test Conditions
Straight Pile Group Inclined Pile Group

Acceleration Displacement Acceleration Displacement

Non-liquefied
soil 1.13 1.09 1.05 1.04

300 mm
saturated sand 1.83 1.58 1.10 1.06

380 mm
saturated sand 2.18 1.91 1.14 1.08

4. Comparative Analysis of the Bending Moment of the Pile Body

In practical engineering, it is of great guiding significance to determine the most
unfavorable position of the bending moment of the pile under a seismic load [36]. By
drawing the enveloping diagram of the bending moment distribution at different cross-
section positions of piles under different working conditions, the most unfavorable position
of the bending moment can be found. Then, the influence of the thickness of the saturated
sand on the weak points and the seismic performance of the pile body can be discussed. In
view of the symmetry of the vibration process of a 2 × 2 straight pile group and a 2 × 2
inclined pile group structure on the one-dimensional vibration table, the two piles located
in the front are selected as the research objects. The pile near the proximal end of the servo
motor is called the No. 1 pile, and the other pile is the No. 2 pile, as shown in Figure 13.
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4.1. Principle of the Bending Moment Calculation

The key to solving the bending moment of the pile body lies in the pile body strain func-
tion under the pile foundation calculation theory. The optical and electrical signals obtained
in the acquisition system are converted into actual pile strain data in the solving process.

σ = Eε = E y
ρ

M =
∫
A

yσdA ⇒ M = EεIz
y

1
ρ = M

EIz

 (1)

where

σ = stress;
ε = strain;
M = bending moment on the cross section;
EIz = flexural rigidity of the pile;
y = lateral displacement of the pile.

4.2. Comparison of the Bending Moment between the Straight and Inclined Pile Group

The moment envelope of the straight and inclined pile group in non-liquefied sand is
analyzed, as shown in Figure 14. The bending moment of the middle part of the pile body
is small, but the bottom and top of the straight and the inclined pile groups have a large
bending moment; both of which have similar laws. However, according to the distribution
law of the overall bending moment, the maximum positive and negative bending moments
at each section of the inclined pile group are slightly different, while the bending moment
distribution of the straight pile group is obviously different. The bending moments at the
top of the straight and inclined pile groups are the same, but the bending moment of the
straight pile group at the bottom of the pile is obviously greater than that of the inclined
pile group. Therefore, the straight pile group may be more prone to damage under an
external load in the non-liquefied sand.
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non-liquefied sand: (a) No. 1 pile; (b) No. 2 pile.

Figure 15 shows the moment envelope of the straight and inclined pile groups in
the 300 mm saturated sand. The bending moment of the middle part of the pile body is
small, and the bottom and top of the straight and the inclined pile groups also have a
large bending moment, both of which also have similar laws. However, in terms of the
distribution law of the overall bending moment of the pile body, the bending moment
envelope diagram of the straight pile group is “X-shaped”, and that of the inclined pile
group is in the shape of a vase. Their bending moments are essentially similar in the middle
part of the pile body. At the top of pile, the bending moment of the inclined pile group
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is slightly larger than that of the straight pile group, while that of the straight pile group
bottom is obviously larger than that of the inclined pile group bottom. By a comprehensive
comparison of the No. 1 pile and No. 2 pile, the bending moment of the straight pile group
is 3~4 times of that of the inclined pile group at the bottom section of the pile.
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the 300 mm saturated sand: (a) No. 1 pile; (b) No. 2 pile.

Figure 16 shows the moment envelope of the straight and inclined pile groups in the
380 mm saturated sand. The upper half of the bending moment of the straight pile group is
generally larger than that of the inclined pile group, but the difference is not particularly
obvious. The change trend is essentially same, and the most obvious section is still located
at the bottom of the pile. The No. 2 pile is the most obvious. At the bottom section of the
No. 2 pile, the maximum bending moment of the straight pile group is 33.08 N·m, while
the inclined pile group is only 5.26 N·m. This shows that the inclined pile group has a
better bending resistance under the same lateral dynamic load.
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5. Comparative Analysis of the Pile Foundation Dynamic p–y Curve

The lateral dynamic response of the pile foundation is greatly affected by the working
condition of liquefied sand, and the p–y hysteretic curve plays a role in solving the problem
of a liquefied foundation. Through the comparison and analysis of the p–y hysteretic curves
of the pile–soil interaction, the bearing capacity characteristics of the straight and inclined
pile groups are obtained. The critical position and force characteristics of the pile group
during liquefaction are analyzed, which provides a theoretical basis for the seismic design
of inclined piles in the future.
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5.1. The Calculation Principle of the p–y Curve

Through the shaking table test, the advanced FBG data acquisition system is adopted
to collect the data of each point of the pile body with an input waveform and the data of the
flexible beam implantation under the condition of vibration. Through the analysis of the
data collected by FBG (the fiber Bragg grating), the lateral force of the pile, the displacement
of the pile body and soil is obtained.

The experimental dynamic p–y curves are derived from the bending moments along
the depth of the pile according to simple beam theory.

p =
d2M(z)

dz2 (2)

ypile =
x M(z)

EI
dz (3)

where

p = lateral resistance of the soil;
ypile = lateral displacement of the pile;
M(z) = bending moment at depth z;
EI = flexural rigidity of the pile;

z = distance along the pile.
The p–y hysteretic curve is the most intuitive expression of the pile–soil interaction

under the lateral dynamic loading of the pile body. The lateral forces and displacements
of the inclined pile groups are perpendicular to the pile body. To compare the inclined
pile groups with the straight pile groups, the lateral force is the horizontal force and the
displacement. The force P and the displacement Y of the inclined pile are required to be
vector decomposed to obtain the horizontal effect of the inclined pile for the p–y curve
drawing [37].

5.2. Comparison of p–y Curves between the Straight Pile Group and the Inclined Pile Group

This section mainly explores the p–y hysteretic curve rule of straight pile groups and
inclined pile groups in three working conditions. The grating point 0.205 m away from the
fixed end is selected for analysis. Figure 17 shows the pore pressure time–history diagram
corresponding to the upper and lower sets of the straight pile group. The lower layer
pressure gauge is 120 mm away from the bottom of the model box, and the upper layer
pressure gauge is 260 mm away from the bottom of the model box.
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Figure 17. Pore pressure time–history diagram. Figure 17. Pore pressure time–history diagram.

Figure 18 shows that the p–y hysteresis curves have common features under the six
operating conditions. Three typical periods are taken for the rise in the pore pressure in
liquefied soil conditions. First, at the initial stage of vibration (5.00–5.34 s) the lateral force
and displacement increase rapidly from small to large, and no hysteresis loop is formed.
Second, when the vibration tends to be stable (6.00–6.34 s and 6.60–6.94 s) the p–y curve of
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the pile body has a similar stress and displacement hysteresis loop. At different moments
when the vibration is stably input, the force and displacement of the pile are slightly
reduced due to the compaction of the sand during the vibration process, but the p–y curves
are substantially coincident. From the analysis of different thicknesses of saturated sand
soil, regardless of whether it is the straight pile group or inclined pile group, an increase in
the saturated sand thickness results in the lateral force decreasing in the stable stage, but
the pile–soil relative displacement increases obviously. Additionally, the reduction of the
lateral force is obviously smaller than the increase in the pile–soil relative displacement.
From the analysis of the type of the pile foundation, the lateral force of the straight pile
group is obviously larger than that of the inclined pile group under the same acceleration
input, and the peak values of the pile–soil relative displacement of the straight pile group
is also larger than that of the inclined pile group. The hysteretic loop formed by them is an
eccentric ellipse, and the area enclosed by the straight pile group is larger than that of the
inclined pile group.
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In order to further compare and study the law of the p–y hysteretic curve of the
straight inclined pile group, Figure 19 shows the p–y hysteretic curve at 6.60–6.94 s in
the same coordinate system. The envelop area formed by the p–y hysteresis curve of the
straight and inclined pile groups in saturated sand is larger than that of non-liquefied soil.
It indicates that the energy consumption of the pile group in liquefied soil is higher than
that of non-liquefied soil. This is because the saturated sand becomes liquefied under the
input of the sine wave. The soil is suspended in water and then loses its bearing capacity.
The lateral bearing capacity is mainly borne by the pile group. However, the lateral bearing
capacity in non-liquefied soil is borne by the pile groups and sand, which results in a
significant increase in the energy consumption of pile groups in liquefied soil compared
with the non-liquefied soil. The envelop area formed by the p–y hysteresis curve of the pile
group in 380 mm saturated sand is larger than that in 300 mm saturated sand. It shows that
with the increase in saturated sand thickness, the lateral dynamic response of the pile group
becomes more significant, and the energy consumption of the pile also increases. At the
same time, the pile–soil relative displacement in 380 mm saturated sand is larger than that
between pile and soil in 300 mm saturated sand. It shows that the interaction between the
pile group and soil becomes more significant with the increase in saturated sand thickness.
The connection between the two vertices of the long axis in the p–y curve is defined as the
principal slope of the dynamic p–y curve, which can reflect the soil stiffness around pile.
With the increase in saturated sand, the principal slope of the p–y curve increases, and the
soil stiffness around the pile increases.
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6. Conclusions

In this paper, the lateral dynamic response characteristics of 2 × 2 straight piles and
2 × 2 inclined piles in non-liquefied sand soil and saturated liquefied sand soil were studied
using different thicknesses of 300 mm and 380 mm. According to the test results from
the different working conditions, the test data were used as the basis, and the relevant
theoretical calculation method of the pile foundation was adopted for analysis. The main
conclusions are as follows:

(1) The variation in the pore water pressure of the two saturated sands with different
thicknesses is approximately the same after liquefaction. After the vibration begins,
it rises rapidly to approximately 1.0. After the vibration ends, it slowly drops to the
level before the vibration. The macroscopic phenomena are similar.

(2) In non-liquefied sand, the difference between the multiplication of the acceleration
and displacement is small, but the inclined pile is slightly dominant. However,
after the liquefaction of saturated sand, the acceleration and displacement of the
straight pile group head are significantly enlarged compared with the output of the
vibrating table, obtaining values much larger than the amplification of the inclined
pile group. Compared with the straight pile foundation, the inclined pile foundation
can effectively reduce the amplification effect of acceleration and the lateral absolute
displacement response of the pile cap.

(3) Both the straight and inclined pile groups show that the bottom and top of the pile
have a large bending moment, and the bending moment of the middle part of the pile
body is small in the non-liquefied sand and liquefied sand, both of which have similar
laws. However, in terms of the distribution law of the overall bending moment, there
is no significant difference in the bending moment between the top and middle of
the pile, but the maximum bending moment at the bottom section of the straight pile
group is significantly larger than that of the inclined pile group. Therefore, the inclined
pile group has a better bending resistance under the same lateral dynamic load.

(4) During the rising period of the pore pressure, the lateral force and displacement of the
straight–sloping piles with different thicknesses decrease as the time increases, but the
p–y curve is close to coincidence. However, the straight pile group is larger than the
p–y hysteresis loop of the oblique pile group at the same thickness. In this experiment,
the inclined pile group has a significant reduction effect compared with the straight
pile on the resisting horizontal force, and it is more resistant to the lateral force.

(5) Through the comparative analysis of the bending moment and the p–y curve, this
paper explores the transverse dynamic response, bending state, and the force and
displacement of the straight and inclined pile groups under the sinusoidal wave input,
providing a theoretical basis for the seismic design method of the pile foundation of
the liquefied soil layer with different thicknesses in the liquefaction site.
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