The Simulated Effect of Adding Solder Layers on Reactive Multilayer Films Used for Joining Processes
Abstract
:1. Introduction
2. Materials and Methods
3. Results
3.1. Thermal Simulation Results with Solder and Silicon Included
3.2. Thermal Simulation Results without Solder and Silicon
4. Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Seok, S.; Kim, J.; Lahti, M. A Study on the Effect of Wire Bonding Interconnects of BCB Capped CPW to CPW on LTCC Substrate. Microw. Opt. Technol. Lett. 2014, 56, 1378–1381. [Google Scholar] [CrossRef]
- Uhlig, P. LTCC Technology for Planar Microwave Antenna Systems. Ph.D. Thesis, Universität Duisburg-Essen and Dresden, Dresden, Germany, 2018. [Google Scholar]
- Wilde, J. B4. 1-Trends in Assembly and Packaging of Sensors. Proc. Sens. 2009, I, 205–210. [Google Scholar]
- Lee, C.K.; Ahn, J.K.; Lee, C.R.; Kim, D.; Baek, B.J. Thermal Analysis of LED Lamp with LTCC-COB Package. Microelectron. Int. 2013, 30, 3–9. [Google Scholar]
- Welker, T. Methoden Und Technologien Zur Optimierung Der Entwärmung Aktiver Und Passiver Komponenten Auf Keramischen Mehrlagensubstraten; TU Ilmenau Universitätsbibliothek: Ilmenau, Germany, 2018. [Google Scholar]
- Uhlig, P.; Günner, C.; Holzwarth, S.; Kassner, J.; Kulke, R.; Lauer, A.; Rittweger, M. LTCC Short Range Radar Sensor for Automotive Applications at 24 GHz. In Proceedings of the IMAPS 2004—37th Annual Symposium on Microelectronics, Long Beach, CA, USA, 14–18 November 2004; pp. 1–5. [Google Scholar]
- Wörhoff, K.; Prak, A.; Postma, F.; Leinse, A.; Wu, K.; Peters, T.J.; Tichem, M.; Amaning-Appiah, B.; Renukappa, V.; Vollrath, G. Photonic Hybrid Assembly through Flexible Waveguides. In Proceedings of the Silicon Photonics and Photonic Integrated Circuits V, International Society for Optics and Photonics, Brussels, Belgium, 3–7 April 2016; Volume 9891, p. 98911P. [Google Scholar]
- De Torres, H.B.; Rensch, C.; Fischer, M.; Schober, A.; Hoffmann, M.; Müller, J. Thick Film Flow Sensor for Biological Microsystems. Sens. Actuators Phys. 2010, 160, 109–115. [Google Scholar] [CrossRef]
- Fournier, Y.; Maeder, T.; Boutinard-Rouelle, G.; Barras, A.; Craquelin, N.; Ryser, P. Integrated LTCC Pressure/Flow/Temperature Multisensor for Compressed Air Diagnostics. Sensors 2010, 10, 11156–11173. [Google Scholar] [CrossRef] [PubMed]
- Johannessen, E.; Krushinitskaya, O.; Sokolov, A.; Häfliger, P.; Hoogerwerf, A.; Hinderling, C.; Kautio, K.; Lenkkeri, J.; Strömmer, E.; Kondratyev, V. Toward an Injectable Continuous Osmotic Glucose Sensor. J. Diabetes Sci. Technol. 2010, 4, 882–892. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ciosek, P.; Zawadzki, K.; Lopacińska, J.; Skolimowski, M.; Bembnowicz, P.; Golonka, L.J.; Brzózka, Z.; Wróblewski, W. Monitoring of Cell Cultures with LTCC Microelectrode Array. Anal. Bioanal. Chem. 2009, 393, 2029–2038. [Google Scholar] [CrossRef]
- Golonka, L.; Bembnowicz, P.; Jurkow, D.; Malecha, K.; Roguszczak, H.; Tadaszak, R. Low Temperature Co-Fired Ceramics (LTCC) Microsystems. Opt. Appl. 2011, 41, 383–388. [Google Scholar]
- Fournier, Y. 3D Structuration Techniques of LTCC for Microsystems Applications; EPFL: Lausanne, Switzerland, 2010. [Google Scholar]
- Bittner, A.; Schmid, U. The Porosification of Fired LTCC Substrates by Applying a Wet Chemical Etching Procedure. J. Eur. Ceram. Soc. 2009, 29, 99–104. [Google Scholar] [CrossRef]
- Thelemann, T.; Fischer, M.; Groß, A.; Müller, J. LTCC-Based Fluidic Components for Chemical Applications. J. Microelectron. Electron. Packag. 2007, 4, 167–172. [Google Scholar] [CrossRef]
- Adams, D.P. Reactive Multilayers Fabricated by Vapor Deposition: A Critical Review. Thin Solid Films 2015, 576, 98–128. [Google Scholar] [CrossRef] [Green Version]
- Sen, S.; Lake, M.; Kroppen, N.; Farber, P.; Wilden, J.; Schaaf, P. Self-Propagating Exothermic Reaction Analysis in Ti/Al Reactive Films Using Experiments and Computational Fluid Dynamics Simulation. Appl. Surf. Sci. 2017, 396, 1490–1498. [Google Scholar] [CrossRef]
- Rogachev, A.S.; Mukasyan, A.S. Combustion of Heterogeneous Nanostructural Systems. Combust. Explos. Shock Waves 2010, 46, 243–266. [Google Scholar] [CrossRef]
- Rogachev, A.S. Exothermic Reaction Waves in Multilayer Nanofilms. Russ. Chem. Rev. 2008, 77, 21. [Google Scholar] [CrossRef]
- Raić, K.; Rudolf, R.; Ternik, P.; Žunič, Z.; Lazić, V.; Stamenković, D.; Tanasković, T.; Anžel, I. CFD Analysis of Exothermic Reactions in Al-Au Nano Multi-Layered Foils. Mater. Tehnol. 2011, 45, 335–338. [Google Scholar]
- Braeuer, J.; Besser, J.; Wiemer, M.; Gessner, T. A Novel Technique for MEMS Packaging: Reactive Bonding with Integrated Material Systems. Sens. Actuators Phys. 2012, 188, 212–219. [Google Scholar] [CrossRef]
- Bittner, A.; Ababneh, A.; Seidel, H.; Schmid, U. Influence of the Crystal Orientation on the Electrical Properties of AlN Thin Films on LTCC Substrates. Appl. Surf. Sci. 2010, 257, 1088–1091. [Google Scholar] [CrossRef]
- Jantunen, H.; Kangasvieri, T.; Vähäkangas, J.; Leppävuori, S. Design Aspects of Microwave Components with LTCC Technique. J. Eur. Ceram. Soc. 2003, 23, 2541–2548. [Google Scholar] [CrossRef]
- Matters-Kammerer, M.; Mackens, U.; Reimann, K.; Pietig, R.; Hennings, D.; Schreinemacher, B.; Mauczok, R.; Gruhlke, S.; Martiny, C. Material Properties and RF Applications of High k and Ferrite LTCC Ceramics. Microelectron. Reliab. 2006, 46, 134–143. [Google Scholar] [CrossRef]
- Grieseler, R.; Welker, T.; Müller, J.; Schaaf, P. Bonding of Low Temperature Co-Fired Ceramics to Copper and to Ceramic Blocks by Reactive Aluminum/Nickel Multilayers. Phys. Status Solidi A 2012, 209, 512–518. [Google Scholar] [CrossRef]
- Patterson, F.K.; Gantzhorn, J.E.; Daly, T.P.; Rellick, J.R.; Iwabuchi, M.; Kawasaki, S. Tape on Substrate, a New Systems Approach for Manufacturing Multilayer Hybrid Circuits. In Proceedings of the Japan IEMT Symposium, Sixth IEEE/CHMT International Electronic Manufacturing Technology Symposium, Nara, Japan, 26–28 April 1989; pp. 147–151. [Google Scholar]
- Liu, S.; Liu, Y. Modeling and Simulation for Microelectronic Packaging Assembly: Manufacturing, Reliability and Testing; John Wiley & Sons: Hoboken, NJ, USA, 2011. [Google Scholar]
- Madenci, E.; Guven, I. The Finite Element Method and Applications in Engineering Using ANSYS®; Springer: Berlin/Heidelberg, Germany, 2015. [Google Scholar]
- Rzepka, S. FEM Für Die Mikroelektronik: Erfordernis, Theorie Und Anwendung Der Finiten Element-Methode Bei Der Belastungs-, Schwachstellen-Und Ausfallanalyse Mikroelektronischer Aufbauten Sven Rzepka. Ph.D. Thesis, Universität Duisburg-Essen and Dresden, Dresden, Germany, 2003. [Google Scholar]
- Qiu, X. Reactive Multilayer Foils and Their Applications in Joining. Master’s Thesis, Louisiana State University, Baton Rouge, LA, USA, 2007. [Google Scholar]
- Subramanian, J.S.; Rodgers, P.; Newson, J.; Rude, T.; He, Z.; Besnoin, E.; Weihs, T.P.; Eveloy, V.; Pecht, M. Room Temperature Soldering of Microelectronic Components for Enhanced Thermal Performance. In Proceedings of the Thermal, Mechanical and Multi-Physics Simulation and Experiments in Micro-Electronics and Micro-Systems, Berlin, Germany, 18–20 April 2005; pp. 681–686. [Google Scholar]
- Masser, R.; Braeuer, J.; Gessner, T. Modelling the Reaction Behavior in Reactive Multilayer Systems on Substrates Used for Wafer Bonding. J. Appl. Phys. 2014, 115, 244311. [Google Scholar] [CrossRef]
- Wang, J.; Besnoin, E.; Duckham, A.; Spey, S.J.; Reiss, M.E.; Knio, O.M.; Powers, M.; Whitener, M.; Weihs, T.P. Room-Temperature Soldering with Nanostructured Foils. Appl. Phys. Lett. 2003, 83, 3987–3989. [Google Scholar] [CrossRef]
- Amini-Manesh, N.; Basu, S.; Kumar, R. Modeling of a Reacting Nanofilm on a Composite Substrate. Energy 2011, 36, 1688–1697. [Google Scholar] [CrossRef]
- Yuile, A.; Wiese, S. CFD Simulations of Reactive Multi-Layer Usage in Joining Processes. In Proceedings of the 2020 21st International Conference on Thermal, Mechanical and Multi-Physics Simulation and Experiments in Microelectronics and Microsystems (EuroSimE), Cracow, Poland, 5–8 July 2020; pp. 1–5. [Google Scholar]
- Voller, V.R.; Brent, A.D.; Prakash, C. The Modelling of Heat, Mass and Solute Transport in Solidification Systems. Int. J. Heat Mass Transf. 1989, 32, 1719–1731. [Google Scholar] [CrossRef]
Silicon | LTCC | Solder | Platinum | Silver | |
---|---|---|---|---|---|
ρ kg/m³ | 2500 | 3100 | 7000 | 21,460 | 10,490 |
Cp J/kg.K | 710 | 600 | 230 | 132.04 | 234.28 |
K W/m.K | 100 | 3.3 | 63.2 | 71.538 | 419.97 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yuile, A.; Schulz, A.; Wiss, E.; Müller, J.; Wiese, S. The Simulated Effect of Adding Solder Layers on Reactive Multilayer Films Used for Joining Processes. Appl. Sci. 2022, 12, 2397. https://doi.org/10.3390/app12052397
Yuile A, Schulz A, Wiss E, Müller J, Wiese S. The Simulated Effect of Adding Solder Layers on Reactive Multilayer Films Used for Joining Processes. Applied Sciences. 2022; 12(5):2397. https://doi.org/10.3390/app12052397
Chicago/Turabian StyleYuile, Adam, Alexander Schulz, Erik Wiss, Jens Müller, and Steffen Wiese. 2022. "The Simulated Effect of Adding Solder Layers on Reactive Multilayer Films Used for Joining Processes" Applied Sciences 12, no. 5: 2397. https://doi.org/10.3390/app12052397
APA StyleYuile, A., Schulz, A., Wiss, E., Müller, J., & Wiese, S. (2022). The Simulated Effect of Adding Solder Layers on Reactive Multilayer Films Used for Joining Processes. Applied Sciences, 12(5), 2397. https://doi.org/10.3390/app12052397