Microwave-Assisted Extraction of Fatty Acids from Cultured and Commercial Phytoplankton Species
Abstract
:1. Introduction
2. Materials and Methods
2.1. Chemicals and Standards
2.2. Cultures and Commercial Samples
2.3. Traditional Extraction (TE) of Lipids and Fatty Acids
2.4. Gas Chromatography–Mass Spectrometry
2.5. Microwave-Assisted In Situ Extraction and Transesterification
2.6. X-ray Spectroscopy
2.7. Statistical Analysis
3. Results
3.1. Lipids and Fatty Acids
3.2. X-ray Spectroscopy
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Patil, P.D.; Gude, V.G.; Mannarswamy, A.; Cooke, P.; Munson-McGee, S.; Nirmalakhandan, N.; Lammers, P.; Deng, S. Optimization of Microwave-Assisted Transesterification of Dry Algal Biomass Using Response Surface Methodology. Bioresour. Technol. 2011, 102, 1399–1405. [Google Scholar] [CrossRef] [PubMed]
- Velasquez-Orta, S.B.; Lee, J.G.M.; Harvey, A. Alkaline in Situ Transesterification of Chlorella vulgaris. Fuel 2012, 94, 544–550. [Google Scholar] [CrossRef]
- Tsigie, Y.A.; Huynh, L.H.; Ismadji, S.; Engida, A.M.; Ju, Y.-H. In Situ Biodiesel Production from Wet Chlorella vulgaris under Subcritical Condition. Chem. Eng. J. 2012, 213, 104–108. [Google Scholar] [CrossRef] [Green Version]
- Huang, D.; Zhou, H.; Lin, L. Biodiesel: An Alternative to Conventional Fuel. Energy Procedia 2012, 16, 1874–1885. [Google Scholar] [CrossRef] [Green Version]
- Kapoore, R.V.; Butler, T.O.; Pandhal, J.; Vaidyanathan, S. Microwave-Assisted Extraction for Microalgae: From Biofuels to Biorefinery. Biology 2018, 7, 18. [Google Scholar] [CrossRef] [Green Version]
- Mata, T.M.; Martins, A.A.; Caetano, N.S. Microalgae for Biodiesel Production and Other Applications: A Review. Renew. Sustain. Energy Rev. 2010, 14, 217–232. [Google Scholar] [CrossRef] [Green Version]
- Delucchi, M.A. A Lifecycle Emissions Model(lem): Lifecycle Emissions from Transportation Fuels, Motor Vehicles, Transportation Modes, Electricity Use, Heating and Cooking Fuels, and Materials. 2003, p. 445. Available online: https://escholarship.org/uc/item/9vr8s1bb#main (accessed on 24 October 2021).
- Li, Y.; Horsman, M.; Wu, N.; Lan, C.Q.; Dubois-Calero, N. Biofuels from Microalgae. Biotechnol. Prog. 2008, 24, 815–820. [Google Scholar] [CrossRef]
- Wang, B.; Li, Y.; Wu, N.; Lan, C.Q. CO2 Bio-Mitigation Using Microalgae. Appl. Microbiol. Biotechnol. 2008, 79, 707–718. [Google Scholar] [CrossRef]
- Martínez, N.; Callejas, N.; Morais, E.G.; Vieira Costa, J.A.; Jachmanián, I.; Vieitez, I. Obtaining Biodiesel from Microalgae Oil Using Ultrasound-Assisted in-Situ Alkaline Transesterification. Fuel 2017, 202, 512–519. [Google Scholar] [CrossRef]
- Li, Y.; Horsman, M.; Wang, B.; Wu, N.; Lan, C.Q. Effects of Nitrogen Sources on Cell Growth and Lipid Accumulation of Green Alga Neochloris oleoabundans. Appl. Microbiol. Biotechnol. 2008, 81, 629–636. [Google Scholar] [CrossRef]
- Chee Loong, T.; Idris, A. Rapid Alkali Catalyzed Transesterification of Microalgae Lipids to Biodiesel Using Simultaneous Cooling and Microwave Heating and Its Optimization. Bioresour. Technol. 2014, 174, 311–315. [Google Scholar] [CrossRef] [PubMed]
- Berneira, L.M.; Rockembach, C.T.; da Silva, C.C.; de Freitas, S.C.; Rosa, B.N.; Pinto, E.; Anjos, F.M.; dos Santos, M.A.Z.; de Pereira, C.M.P. Employment of Thermal Analysis Applied to the Oxidative Stability Evaluation of Biodiesel Using Chalcone Analogues. J. Therm. Anal. Calorim. 2021, 146, 1473–1482. [Google Scholar] [CrossRef]
- Bortoli, S.; Oliveira-Silva, D.; Krüger, T.; Dörr, F.A.; Colepicolo, P.; Volmer, D.A.; Pinto, E. Growth and Microcystin Production of a Brazilian Microcystis aeruginosa Strain (LTPNA 02) under Different Nutrient Conditions. Revista Brasileira de Farmacognosia 2014, 24, 389–398. [Google Scholar] [CrossRef] [Green Version]
- Fernandes, K.A.; Pinto, E.; Ferraz, H.G.; Vereau, F. Availability of Guanitoxin in Water Samples Containing Sphaerospermopsis torques-reginae Cells Submitted to Dissolution Tests. Pharmaceuticals 2020, 13, 402. [Google Scholar] [CrossRef] [PubMed]
- Shirai, M.; Matumaru, K.; Ohotake, A.; Takamura, Y.; Aida, T.; Nakano, M. Development of a Solid Medium for Growth and Isolation of Axenic Microcystis Strains (Cyanobacteria). Appl. Environ. Microbiol. 1989, 55, 2569–2571. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bligh, E.G.; Dyer, W.J. A Rapid Method of Total Lipid Extraction and Purification. Can. J. Biochem. Physiol. 1959, 37, 911–917. [Google Scholar] [CrossRef]
- Kumari, N.; Singh, R.K. Bio-Diesel Production from Airborne Algae. Environ. Chall. 2021, 5, 100210. [Google Scholar] [CrossRef]
- Cancela, A.; Maceiras, R.; Urrejola, S.; Sanchez, A. Microwave-Assisted Transesterification of Macroalgae. Energies 2012, 5, 862–871. [Google Scholar] [CrossRef]
- Ichihara, K.; Fukubayashi, Y. Preparation of Fatty Acid Methyl Esters for gas-Liquid Chromatography. J. Lipid Res. 2010, 51, 635–640. [Google Scholar] [CrossRef] [Green Version]
- Fazril, I.; Shamsuddin, A.H.; Nomanbhay, S.; Kusomo, F.; Hanif, M.; Ahmad Zamri, M.F.M.; Akhiar, A.; Ismail, M.F. Microwave-Assisted in Situ Transesterification of Wet Microalgae for the Production of Biodiesel: Progress Review. IOP Conf. Ser. Earth Environ. Sci. 2020, 476, 012078. [Google Scholar] [CrossRef]
- Pacheco, B.S.; da Silva, C.C.; de Freitas, S.C.; Berneira, L.M.; da Silva, V.L.; Winkel, K.; Ferreira, L.B.; de Pereira, C.M.P. Employment of Alternative Raw Materials for Biodiesel Synthesis. In Increased Biodiesel Efficiency: Alternatives for Production, Stabilization, Characterization and Use of Coproduct; Trindade, M., Ed.; Springer International Publishing: Cham, Switzerland, 2018; pp. 33–55. ISBN 978-3-319-73552-8. [Google Scholar]
- Parial, D.; Patra, H.K.; Roychoudhury, P.; Dasgupta, A.K.; Pal, R. Gold Nanorod Production by Cyanobacteria—A Green Chemistry Approach. J. Appl. Phycol. 2012, 24, 55–60. [Google Scholar] [CrossRef]
- Wang, B.; Li, Y.; Zheng, J.; Hu, Y.; Wang, X.; Hu, B. Efficient Removal of U(VI) from Aqueous Solutions Using the Magnetic Biochar Derived from the Biomass of a Bloom-Forming Cyanobacterium (Microcystis aeruginosa). Chemosphere 2020, 254, 126898. [Google Scholar] [CrossRef] [PubMed]
- Xu, H.; Miao, X.; Wu, Q. High Quality Biodiesel Production from a Microalga Chlorella protothecoides by Heterotrophic Growth in Fermenters. J. Biotechnol. 2006, 126, 499–507. [Google Scholar] [CrossRef] [PubMed]
- Romano, I.; Bellitti, M.R.; Nicolaus, B.; Lama, L.; Manca, M.C.; Pagnotta, E.; Gambacorta, A. Lipid Profile: A Useful Chemotaxonomic Marker for Classification of a New Cyanobacterium in Spirulina Genus. Phytochemistry 2000, 54, 289–294. [Google Scholar] [CrossRef]
- Ben-Amotz, A.; Tornabene, T.G.; Thomas, W.H. Chemical Profile of Selected Species of Microalgae with Emphasis on Lipids. J. Phycol. 1985, 21, 72–81. [Google Scholar] [CrossRef]
- da Silva, C.C.; Pacheco, B.S.; de Freitas, S.C.; Berneira, L.M.; dos Santos, M.A.Z.; Pizzuti, L.; de Pereira, C.M.P. Hydroxychalcones: Synthetic Alternatives to Enhance Oxidative Stability of Biodiesel. In Increased Biodiesel Efficiency: Alternatives for Production, Stabilization, Characterization and Use of Coproduct; Trindade, M., Ed.; Springer International Publishing: Cham, Switzerland, 2018; pp. 81–110. ISBN 978-3-319-73552-8. [Google Scholar]
- Nayak, S.N.; Bhasin, C.P.; Nayak, M.G. A Review on Microwave-Assisted Transesterification Processes Using Various Catalytic and Non-Catalytic Systems. Renew. Energy 2019, 143, 1366–1387. [Google Scholar] [CrossRef]
- Sarsekeyeva, F.; Zayadan, B.K.; Usserbaeva, A.; Bedbenov, V.S.; Sinetova, M.A.; Los, D.A. Cyanofuels: Biofuels from Cyanobacteria. Reality and Perspectives. Photosynth. Res. 2015, 125, 329–340. [Google Scholar] [CrossRef]
- Passos, L.S.; Almeida, É.C.; de Pereira, C.M.P.; Casazza, A.A.; Converti, A.; Pinto, E. Chemical Characterization of Microcystis aeruginosa for Feed and Energy Uses. Energies 2021, 14, 3013. [Google Scholar] [CrossRef]
- Gülyurt, M.Ö.; Özçimen, D.; İnan, B. Biodiesel Production from Chlorella protothecoides Oil by Microwave-Assisted Transesterification. Int. J. Mol. Sci. 2016, 17, 579. [Google Scholar] [CrossRef] [Green Version]
- Sharma, A.K.; Sahoo, P.K.; Singhal, S.; Joshi, G. Exploration of Upstream and Downstream Process for Microwave Assisted Sustainable Biodiesel Production from Microalgae Chlorella vulgaris. Bioresour. Technol. 2016, 216, 793–800. [Google Scholar] [CrossRef]
- Choe, E.; Min, D.B. Comprehensive Food Science and Food Safety Reviews in Mechanisms and Factors for Edible Oil Oxidation. Compr. Rev. Food Sci. Food Saf. 2006, 5, 169–186. [Google Scholar] [CrossRef]
- Agência Nacional do Petróleo, Gás Natural e Biocombustíveis. Resolução ANP No 45 de 25/08/2014; Agência Nacional do Petróleo, Gás Natural e Biocombustíveis: Brasilia, Brazil, 2014. Available online: https://www.gov.br/anp/pt-br/canais_atendimento/imprensa/noticias-comunicados/anp-publica-resolucao-sobre-especificacao-do-biodiesel (accessed on 2 November 2021).
- Wu, H.; Miao, X. Biodiesel Quality and Biochemical Changes of Microalgae Chlorella pyrenoidosa and Scenedesmus obliquus in Response to Nitrate Levels. Bioresour. Technol. 2014, 170, 421–427. [Google Scholar] [CrossRef] [PubMed]
Arthrospira sp. | Chlorella sp. | S. torques | |||
---|---|---|---|---|---|
Fatty Acid | MAE | MAE | MAE | TE | |
C10:0 | Capric acid | 0.11 ± 0.01 a | 0.20 ± 0.01 b | n.a. | n.a. |
C14:0 | Myristic acid | 0.93 ± 0.00 a | 1.46 ± 0.18 b | 2.44 ± 0.10 c | n.a. |
C15:0 | Pentadecanoic acid | 0.44 ± 0.00 a | 0.88 ± 0.06 b | n.a. | n.a. |
C16:0 | Palmitic acid | 37.41 ± 0.29 a | 18.30 ± 0.29 b | 34.85 ± 0.09 c | 54.36 ± 0.10 |
C16:1 | Palmitoleic acid | 10.77 ± 0.24 a | 11.86 ± 0.23 b | 8.92 ± 0.46 c | 11.17 ± 0.11 |
C17:0 | Heptadecanoic acid | 0.76 ± 0.02 a | 0.51 ± 0.04 b | n.a. | n.a. |
C17:1 | Heptadecaenoic acid | 0.78 ± 0.01 a | 1.86 ± 0.13 b | n.a. | n.a. |
C18:0 | Stearic acid | 2.13 ± 0.04 a,b | 1.55 ± 0.07 c | 2.87 ± 0.29 b | 12.59 ± 0.19 |
C18:1 | Oleic acid | 1.11 ± 0.04 a | 1.33 ± 0.04 b | 7.49 ± 0.15 c | 2.55 ± 0.09 |
C18:2 | Linoleic acid | 25.83 ± 0.17 a | 31.93 ± 0.47 b | 33.94 ± 0.26 c | 5.89 ± 0.11 |
C18:4 | Stearidonic acid | 0.19 ± 0.01 a | 0.82 ± 0.14 b | n.a. | n.a. |
C20:4 | Arachidonic acid | 0.19 ± 0.01 a | 0.62 ± 0.00 b | n.a. | n.a. |
C21:5 | Tetracosanolpentaenoic acid | 0.74 ± 0.00 a | 26.82 ± 1.19 b | n.a. | n.a. |
Phytol | 18.40 ± 0.16 a | 28.01 ± 2.38 b | 8.83 ± 0.28 c | n.a. | |
∑SFAs | 41.79 ± 0.35 a | 22.91 ± 0.40 b | 40.13 ± 0.28 c | 66.95 ± 0.16 | |
∑MUFAs | 12.66 ± 0.18 a | 15.05 ± 0.40 a | 16.20 ± 0.47 b | 13.72 ± 0.38 | |
∑PUFAs | 26.96 ± 0.18 a | 26.96 ± 0.18 a | 35.74 ± 0.25 b | 5.89 ± 0.26 |
Metal | Sample | ||
---|---|---|---|
Chlorella sp. | Arthrospira sp. | S. torques-reginae | |
Calcium | 35.79 | 22.07 | 31.25 |
Potassium | 21.44 | 37.80 | 26.42 |
Phosphorus | 15.35 | 10.30 | 12.03 |
Sulfur | 11.25 | 12.69 | 11.25 |
Iron | 11.04 | 6.25 | 8.26 |
Chlorine | 4.54 | 10.46 | 10.25 |
Others | 0.56 | 0.42 | 0.54 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Moretto, J.A.; de Souza, A.O.; Berneira, L.M.; Brigagão, L.G.G.; de Pereira, C.M.P.; Converti, A.; Pinto, E. Microwave-Assisted Extraction of Fatty Acids from Cultured and Commercial Phytoplankton Species. Appl. Sci. 2022, 12, 2407. https://doi.org/10.3390/app12052407
Moretto JA, de Souza AO, Berneira LM, Brigagão LGG, de Pereira CMP, Converti A, Pinto E. Microwave-Assisted Extraction of Fatty Acids from Cultured and Commercial Phytoplankton Species. Applied Sciences. 2022; 12(5):2407. https://doi.org/10.3390/app12052407
Chicago/Turabian StyleMoretto, Jéssica Aparecida, Alexander Ossanes de Souza, Lucas Moraes Berneira, Luiz Gustavo G. Brigagão, Claudio Martin Pereira de Pereira, Attilio Converti, and Ernani Pinto. 2022. "Microwave-Assisted Extraction of Fatty Acids from Cultured and Commercial Phytoplankton Species" Applied Sciences 12, no. 5: 2407. https://doi.org/10.3390/app12052407
APA StyleMoretto, J. A., de Souza, A. O., Berneira, L. M., Brigagão, L. G. G., de Pereira, C. M. P., Converti, A., & Pinto, E. (2022). Microwave-Assisted Extraction of Fatty Acids from Cultured and Commercial Phytoplankton Species. Applied Sciences, 12(5), 2407. https://doi.org/10.3390/app12052407