Study on Linear and Nonlinear Thermal Buckling Mode and Instability Characteristics for Engine Rotating Thin-Walled Blade
Abstract
:1. Introduction
2. Materials and Methods
2.1. Vibration Characteristics in a High Temperature Environment
2.2. Thermal Buckling Equilibrium Equation of a Thin-Walled Blade
2.3. Modal Analysis of Thermal Buckling for the Blades
2.4. Critical Load Factors of Thermal Buckling
2.5. Blade Material Parameters and Temperature Distribution Interpolation
3. Results
3.1. The Linear Thermal Analysis of Blade
3.2. The Linear Thermal Buckling Modal Response
3.3. The Stress Distribution of Linear Thermal Buckling
3.4. The Non-Linear Thermal Buckling Modal Response
3.5. The Stress Distribution of Non-Linear Thermal Buckling
4. Discussion
4.1. The Deformation Comparison between the Linear and Non-Linear Thermal Buckling Response
4.2. The Stress Comparison between the Linear and Non-Linear Thermal Buckling Response
4.3. The Critical Load Factor of Linear and Nonlinear Thermal Buckling
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Men, X.H.; Zhang, T.Y.; Pan, Y.Z. Investigation on linear and nonlinear thermal buckling mode for high-speed thin-walled blade. In Proceedings of the 12th IEEE Global Reliability & Prognostics and Health Management Conference, Nanjing, China, 15–17 October 2021. [Google Scholar]
- Sahraei, A.; Mohareb, M. Lateral torsional buckling analysis of moment resisting plane frames. Thin-Walled Struct. 2018, 134, 233–254. [Google Scholar] [CrossRef]
- Li, P.; Xu, Y.T. Effect of boundary condition on dynamic response during thermal–Acoustic test. J. Vib. Eng. Technol. 2019, 7, 33–42. [Google Scholar] [CrossRef]
- Yang, Y.; Wu, C.W. Coupling analysis for the thermo-acoustic-vibration response of a thin-walled box with acoustic excitations. J. Vib. Eng. Technol. 2016, 4, 423–429. [Google Scholar]
- Abir, D.; Nardo, S.V. Thermal buckling of circular cylindrical shells under circumferential temperature gradients. J. Aerosp. Sci. 2012, 26, 803–808. [Google Scholar] [CrossRef]
- Sabzikar, B.M.; Slami, M.R. Thermal buckling of piezo-FGM shallow spherical shells. Meccanica 2013, 48, 887–899. [Google Scholar] [CrossRef]
- Anh, V.T.T.; Bich, D.H.; Duc, N.D. Nonlinear stability analysis of thin FGM annular spherical shells on elastic foundations under external pressure and thermal loads. Eur. J. Mech.—A/Solids 2014, 50, 28–38. [Google Scholar] [CrossRef]
- Gao, J.H.; Liu, S.G.; Feng, X.N.; Heng, J. Theoretical investigation of local buckling of plate-shell structures at elevated temperatures. Tuijin Jishu/J. Propuls. Technol. 2015, 36, 285–291. [Google Scholar]
- Wang, Y.L. Nonlinear random responses and fatigue prediction of elastically restrained laminated composite panels in thermo-acoustic environments. Compos. Struct. 2019, 229, 111391. [Google Scholar] [CrossRef]
- Zhao, T.Y.; Yuan, H.Q.; Li, B.B.; Li, Z.J.; Liu, L.M. Analytical solution for rotational rubbing plate under thermal shock. Appl. Math. Model. 2021, 89, 268–284. [Google Scholar]
- Chang, T.; Dai, T. Analysis of thermal buckling and secondary instability of post-buckled S-FGM plates with porosities based on a meshfree method. Compos. Struct. 2004, 64, 211–218. [Google Scholar]
- Liu, L.; Li, J.M.; Kardomateas, G.A. Nonlinear vibration of a composite plate to harmonic excitation with initial geometric imperfection in thermal environments. Compos. Struct 2019, 209, 401–423. [Google Scholar] [CrossRef]
- Spottswood, S.M.; Hollkamp, J.J.; Eason, T.G. Reduced-Order models for a shallow curved beam under combined loading. AIAA J. 2010, 48, 47–55. [Google Scholar] [CrossRef]
- Yu, T.T. Buckling isogeometric analysis of functionally graded plates under combined thermal and mechanical loads. Compos. Struct. 2017, 162, 54–69. [Google Scholar] [CrossRef]
- Yu, T.T. NURBS-based isogeometric analysis of buckling and free vibration problems for laminated composites plates with complicated cutouts using a new simple FSDT theory and level set method. Thin-Walled Struct. 2016, 101, 141–156. [Google Scholar] [CrossRef]
- Kabir, M.Z.; Tehrani, B.T. Closed-form solution for thermal, mechanical, and thermo-mechanical buckling and post-buckling of sma composite plates. Compos. Struct. 2017, 168, 535–548. [Google Scholar] [CrossRef]
- Golmakani, M.E.; Moravej, M. Dynamic relaxation method for nonlinear buckling analysis of moderately thick FG cylindrical panels with various boundary conditions. J. Mech. Sci. Technol. 2016, 30, 5565–5575. [Google Scholar] [CrossRef]
- Chen, R.X.; Mei, C. Finite element nonlinear random response of beams to acoustic and thermal loads applied simultaneously. In Proceedings of the 34th Structures, Structural Dynamics and Materials Conference, La Jolla, CA, USA, 19–22 April 1993. [Google Scholar]
- Kamarian, S.; Shakeri, M. Thermal buckling analysis and stacking sequence optimization of rectangular and skew shape memory alloy hybrid composite plates. Compos. Part B Eng. 2017, 116, 137–152. [Google Scholar] [CrossRef]
- Kandasamy, R.; Dimitri, R.; Tornabene, F. Numerical study on the free vibration and thermal buckling behavior of moderately thick functionally graded structures in thermal environments. Compos. Struct. 2016, 157, 207–221. [Google Scholar] [CrossRef]
- Sha, Y.D.; Wang, J. Vibration responses analysis and experimental verification of metallic thin-walled structures to thermal-acoustic loadings. Chin. J. Aeronaut. 2017, 30, 1919–1930. [Google Scholar] [CrossRef]
- Reddy, J.N. Nonlocal theories for bending, buckling and vibration of beams. Int. J. Eng. Sci. 2007, 45, 288–307. [Google Scholar] [CrossRef]
- Wu, D.F.; Wang, Y.W.; Shang, L.; Pu, Y.; Wang, H.T. Test research and numerical simulation on thermal modal of plate structure in 1200 °C high-temperature environments. Acta Aeronaut. Astronaut. Sin. 2016, 37, 1861–1875. [Google Scholar]
- Wang, G.F.; Feng, X.Q. Timoshenko beam model for buckling and vibration of nanowires with surface effects. J. Phys. D Appl. Phys. 2009, 42, 155411. [Google Scholar] [CrossRef]
- Zhao, Y.; Hua, Y.X.; Zhang, Z.N.; Chai, X.H. A new blade-casing rubbing modal based on hertz contact theory. J. Shanghai Jiao Tong Univ. 2019, 53, 660–664. [Google Scholar]
- Sha, Y.D.; Bai, W.J.; Zhao, F.T. Analysis of nonlinear vibration response characteristic of thermal buckling carbon/Silicon Carbide (C/SiC) Thin-walled Structure under Thermal-acoustic Loadings. Sci. Technol. Eng. 2016, 16, 109–115. [Google Scholar]
- Cheng, X.S. Thermal bending of Rectangular Thin Plate with two opposite edges clamped, one edge simply supported and one edge free. KSCE J. Civ. Eng. 2016, 20, 333–342. [Google Scholar] [CrossRef]
- Przekop, A.; Rizzi, S.A. Dynamic snap-through response of thin-walled structures by a reduced order method. AIAA J. 2006, 45, 68–75. [Google Scholar]
- Liu, W.; Su, X.Y.; An, Y.R.; Huang, K.F. Local buckling prediction for large wind turbine blades. Tech. Sci. Press 2011, 25, 177–193. [Google Scholar]
- Li, C.W.; Li, H.Y.; Wang, C.; Zhang, Z.P.; Sun, Q. A study of influencing factors on frequencies and mode shapes of aeroengine turbine blades. J. Air Force Eng. Univ. (Nat. Sci. Ed.) 2014, 15, 5–9. [Google Scholar]
- Ai, S.M. Study of Effects of Temperature Field on Aero engine Rotor System Dynamic Characteristics. Master’s thesis, Shen Yang Aerospace University, Shenyang, China, 2012. [Google Scholar]
- Sushila, R.; Agrawal, A.K.; Rastogi, V. Failure analysis of a first stage IN738 gas turbine blade tip cracking in a thermal power plant. Case Stud. Eng. Fail. Anal. 2017, 26, 1–10. [Google Scholar]
Parameter | 20 °C | 100 °C | 300 °C | 500 °C | 700 °C | 900 °C |
---|---|---|---|---|---|---|
elastic modulus E | 194 | 188 | 181 | 169 | 156 | 149 |
Poisson ratio μ | 0.22 | 0.20 | 0.20 | 0.19 | 0.19 | 0.18 |
thermal conductivity λ | — | — | 8.79 | 10.47 | 14.24 | 18.42 |
thermal expansion α | — | 1.23 | 1.29 | 1.34 | 1.41 | 1.51 |
Node radius (mm) | 25 | 60 | 100 | 125 | 155 | 175 | 200 |
Temperature (°C) | 200 | 500 | 750 | 920 | 918 | 900 | 838 |
Order | 1 | 2 | 3 | 4 |
---|---|---|---|---|
1.6067 | 2.5933 | 2.9089 | 3.2833 | |
1.3316 | 2.1233 | 2.2631 | 2.6947 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Men, X.; Pan, Y.; Jiang, Z.; Zhang, T.; Zhao, H.; Fu, X. Study on Linear and Nonlinear Thermal Buckling Mode and Instability Characteristics for Engine Rotating Thin-Walled Blade. Appl. Sci. 2022, 12, 2437. https://doi.org/10.3390/app12052437
Men X, Pan Y, Jiang Z, Zhang T, Zhao H, Fu X. Study on Linear and Nonlinear Thermal Buckling Mode and Instability Characteristics for Engine Rotating Thin-Walled Blade. Applied Sciences. 2022; 12(5):2437. https://doi.org/10.3390/app12052437
Chicago/Turabian StyleMen, Xiuhua, Yongzhi Pan, Zhenfeng Jiang, Tianyi Zhang, Huiying Zhao, and Xiuli Fu. 2022. "Study on Linear and Nonlinear Thermal Buckling Mode and Instability Characteristics for Engine Rotating Thin-Walled Blade" Applied Sciences 12, no. 5: 2437. https://doi.org/10.3390/app12052437
APA StyleMen, X., Pan, Y., Jiang, Z., Zhang, T., Zhao, H., & Fu, X. (2022). Study on Linear and Nonlinear Thermal Buckling Mode and Instability Characteristics for Engine Rotating Thin-Walled Blade. Applied Sciences, 12(5), 2437. https://doi.org/10.3390/app12052437