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Abstract: Fault imaging follows the processing and migration imaging of seismic data, which is very
important in oil and gas exploration and development. Conventional fault imaging methods are easily
influenced by seismic data and interpreters’ experience and have limited ability to identify complex
fault areas and micro-faults. Conventional convolutional neural network uniformly processes feature
maps of the same layer, resulting in the same receptive field of the neural network in the same
layer and relatively single local information obtained, which is not conducive to the imaging of
multi-scale faults. To solve this problem, our research proposes a modified U-Net architecture. Two
functional modules containing dilated convolution are added between the encoder and decoder to
enhance the network’s ability to select multi-scale information, enhance the consistency between the
receptive field and the target region of fault recognition, and finally improve the identification ability
of micro-faults. Training on synthetic seismic data and testing on real data were carried out using the
modified U-Net. The actual fault imaging shows that the proposed scheme has certain advantages.

Keywords: dilation rate; deep learning; data processing; receptive field

1. Introduction

Faults play a major role in lateral sealing of thin reservoirs and accumulation of the
remaining oil in conventional and unconventional reservoirs onshore in China [1]. Almost
all developed onshore oil and gas fields in China are distributed in rift basins which are
rich in oil and gas resources with highly developed and very complex fault systems [2–4].
At present, there are many kinds of fault recognition techniques with different principles,
but there are still great difficulties in fine fault imaging. This is because the rift basin
experienced a variety of external forces during its growth, and developed a variety of faults,
such as normal faults, normal oblique-slip faults, oblique faults, and strike–slip faults, etc.
According to their different combinations in plane and section, they also present many
forms such as broom shaped, comb shaped, goose row shaped, and parallel interlaced
in planes. In rift basins, the filling of sediments, the development and distribution of
sedimentary sequences, the formation, distribution and evolution of oil and gas reservoirs
(including the formation and effectiveness of traps, and the migration and accumulation
of oil and gas) are closely related to the distribution and activity of faults [5]. Therefore,
fine detection and characterization of faults in rift basins in China has become a key basic
geological problem for oil and gas exploration and development efforts and has become
the key topic of basin tectonic research [6].

Continuous and regular event breakpoints constitute faults in seismic imaging data.
However, because the accuracy, resolution and signal-to-noise ratio of seismic imaging
data cannot reach the theoretical limit and the geological situation is complicated, it is a
great challenge for petroleum engineers to describe the spatial distribution of faults from
seismic data. In the past, fault characterization has been regarded as an interpretative task,
followed by seismic data processing and imaging, because it requires extensive geological
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knowledge and experience. In recent years, researchers use convolutional neural network
to identify faults, focusing on the construction of network architecture, network parameter
debugging and optimization and model training. They are less and less constrained by
geological knowledge and personal experience, and the processing and mining of seismic
data are becoming more and more important. Therefore, it is very reasonable to attribute
fault identification via deep learning to the research field of seismic data processing and
imaging, and it is also the development trend in the future. Based on this concept, our
research employs seismic imaging data to realize the description of fault characteristics
through a new neural network model, that is, to realize fault imaging.

In the past 30 years, with the continuous development of computer hardware and
software, fault identification has made great progress in efficiency and accuracy. From the
perspective of method evolution, fault interpretation has experienced from the initial man-
ual interpretation to the emergence of various identification methods, such as coherence
method, curvature attribute method and ant colony algorithm, which describe faults by
calculating transverse discontinuities of seismic data. In the past five years, with the rapid
development of artificial intelligence [7–9], various fault identification methods based on
deep learning have gained remarkable achievements. In 2014, Zheng et al. [10] used deep
learning tools to conduct fault identification tests on prestack synthetic seismic records.
Araya-Polo et al. [11] applied machine learning and deep neural network algorithms to
automate fault recognition, which greatly improved the efficiency and stability of fault in-
terpretation. Waldeland et al. [12] and Guitton et al. [13] successively used a Convolutional
Neural networks (CNN) model to make progress in fault description. Xiong et al. [14] used
results of the skeletonized seismic coherent self-correction method as training samples to
train a CNN model to identify seismic faults. In 2019, Wu et al. [15] realized the identifica-
tion of small-scale faults by using U-Net network. Wu et al. [6] used a full-convolutional
neural network, FCN, to achieve a better characterization of faults. Among these networks,
the U-Net architecture is currently very popular, due to its shortcut operation which con-
catenates attribute maps from the low-level feature (shallow layer) to maps of high-level
feature (deep layer), and it can be seen as a special kind of CNN [16–18]. In addition, the
U-Net does not have strict requirements on the size of training sets, and smaller training
sets can also provide satisfactory results. However, most networks including the U-Net
uniformly process all feature maps of the same layer, resulting in the same receptive field of
the network in the same layer, thus obtaining relatively single local information. Moreover,
with the continuous down-sampling of the network and the convolution operation with
step size, the defect that only a single size information can be obtained at the same layer
becomes more and more obvious, resulting in the inaccurate identification of faults by the
neural network.

To address these issues, this paper introduces a new neural network model, which
takes U-Net as the basic network and uses inter-group channel dilated convolution module
(GCM) to connect each cross-connection layer between encoding path and decoding path,
and uses inter-group space dilated convolution module (GSM) to connect layers after
each deconvolution layer in decoding path. Both GCM and GSM use dilated convolution.
Dilated Convolution, also known as hole convolution or expanded convolution, is to inject
cavities into the standard convolution kernel to increase the reception field of the model.
In the CNN structure, convolution and pooling drive most layers, convolution performs
feature extraction, while pooling performs feature aggregation. For an image classification
task, this network structure has good feature extraction capability, among which the most
classical structure is VGGNet (a convolutional neural network was developed by the
University of Oxford’s Visual Geometry Group and Google DeepMind in 2014). However,
this structure has some problems for target detection and image segmentation. For example,
the size of receptive field is very important in target detection and image segmentation, and
the guarantee of receptive field depends on down-sampling. However, down-sampling
will make small targets difficult to detect. If down-sampling is not completed and the
number of convolutional layers is only increased, the computation of the network will
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increase. In addition, if pooling is not carried out for features, the final feature extraction
effect will also be affected, and there will be no change in the receptive field. In order
to solve these problems in CNN, this paper introduces dilated convolution to increase
the receptive field without sacrificing the size of the feature map. Compared with the
conventional convolution operation, dilation rate is added to the dilated convolution,
which refers to the number of intervals of points in the convolution kernel [19–21]. When
dilatation rate is 1, the dilated convolution will degenerate into conventional convolution.
The similarity between dilated convolution and conventional convolution lies in that the
size of convolution kernel is the same, that is, the number of parameters of neural network
remains unchanged [22,23]. The difference lies in that dilated convolution has a larger
receptive field and can preserve the structure of internal data [24,25].

2. Illustration of Dilated Convolution

We use a set of pictures to illustrate the principle of dilated convolution. Figure 1a is
the conventional convolution kernel, and the dilated convolution is obtained by adding
intervals to this basic convolution kernel. Figure 1b corresponds to the convolution of
3 × 3, with dilation rate of 2 and interval 1, that is, corresponding to 7 × 7 image blocks. It
can be understood that the kernel size becomes 7 × 7, but only 9 points have parameters,
and the rest have parameters of 0. Convolution calculation was performed for the 9 points
in Figure 1b and the corresponding pixels in the feature map, and the other positions were
skipped. Figure 1b,c are similar, except that the dilation rate is 4, which is equivalent to a
15 × 15 convolution kernel. As the convolution kernel becomes larger, the receptive field
becomes larger naturally.
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Figure 1. The dilated convolution with dilation rate of 1, 2 and 4, respectively. (a) dilation rate = 1;
(b) dilation rate = 2; (c) dilation rate = 4.

In practical application, when the same dilation rate is used for all convolutional
layers, a problem called grid effect will appear. Since the convolution calculation points on
the feature map are discontinuous, for example, if we repeatedly accumulate 3 × 3 kernel
of dilation rate 2, this problem will occur.

The blue square in Figure 2 is the convolution calculation points participating in the
calculation, and the depth of the color represents the calculation times. As can be seen,
since the dilation rates of the three convolutions are consistent, the calculation points of
the convolution will show a grid expansion outward, while some points will not become
calculation points. Such kernel discontinuities, that is, not all pixels are used for calcu-
lations, will result in the loss of continuity of information, which is very detrimental for
tasks such as pixel-level dense prediction. The solution is to discontinuously use dilated
convolution with the same dilation rate, but this is not comprehensive enough. If the
dilation rate is multiple, such as 2,4,8, then the problem still exists. Therefore, the best
way is to set the dilation rate of continuous dilated convolution as “jagged”, such as 1,2,3,
respectively, so that the distribution of convolution calculation points will become like
Figure 3 without discontinuity.
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3. The Architecture of the Modified U-Net

The proposed neural network adopts a U-Net of a 4-layer structure as the basic
network. In the coding path, feature maps of each layer are connected to the corresponding
decoding layer by GCM, in which each layer adopts two 3 × 3 convolution layers and
maximum pooling layer for feature extraction. Then, in the decoding path, feature maps of
each layer are connected to the corresponding decoding layer by GSM. Each layer adopts a
3 × 3 convolution layer, up-sampling layer and 1 × 1 convolution layer to restore, and the
output layer adopts a 3 × 3 convolution layer and 1 × 1 convolution layer to output. In this
modified U-Net, the batch regularization (BN) and modified linear units (ReLU) are added
to all convolution layers to correct data distribution, except for the output layer. GCM
and GSM modules play a key role in the modified U-Net, and their operation mechanism
is similar. GCM module can divide the input feature map into four groups on average,
and then carry out the dilated convolution operation with dilation rates of 1, 2, 3 and
5, respectively. In addition, the module extracts and outputs the features of the input
feature map through pooling, convolution, batch regularization, activation, softmax and
other conventional operations, and finally obtains the channel information of all groups.
For the GSM module, it can divide the input feature map into three groups on average,
and each group carries out the dilated convolution operation with dilation rates of 1, 2
and 4, respectively. This module carries out feature extraction and output in sequence by
down-sampling, convolution, batch regularization, activation, up-sampling, convolution,
batch regularization, activation and softmax, and finally obtains the spatial information of
all groups.
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Figure 4 shows the structure of GCM in the modified U-Net. This module divides
the input feature map into four groups evenly, and each group performs dilated convo-
lution operations with dilation rates of 1, 2, 3, and 5. The size of the target area of fault
identification determines the value of the dilation rate. After dilated convolution, four
groups of feature maps with different scales are obtained. Besides, four groups of channel
information are returned by softmax, which were taken as weights and multiplied by four
groups of feature maps with different scales obtained via dilated convolutions to acquire
new feature maps. The receptive field corresponding to the group with the largest weight
contributed the most to the final network prediction. Finally, the four groups of new feature
maps are spliced together and then a residual operation is performed with the input feature
map to obtain the final prediction result. The GCM module uses the idea of grouping and
realizes the automatic selection of inter-group multi-scale information under the guidance
of channel information.
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Figure 5 shows the structure of GSM, which realizes the selection of multi-scale
information between groups in another way and enhances the consistency of receptive
field and target region recognition. In this module, the input feature map was divided into
three groups, and then three groups of feature maps with different scales are obtained by
the dilated convolution with dilation rates of 1, 2 and 4. At the same time, three feature
maps with spatial weights are cropped from the input feature map through a series of
conventional operations. In these operations, the purpose of down-sampling is to obtain
more global information, the purpose of up-sampling is to restore the size of feature maps,
and the purpose of softmax is to enable the module to automatically select multi-scale
information. Three feature maps with spatial weights are multiplied by three feature maps
of different scales obtained by dilated convolution to get three new feature maps. Finally,
after splicing the three groups of new feature maps, a residual operation is performed
with the input feature map to acquire the final prediction results. In summary, under the
guidance of spatial information, the GSM module can select multi-scale information among
a group of feature maps.
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Figure 5. The architecture of GSM.

The proposed neural network is based on the U-Net network and has two functional
modules, the GCM and GSM, which can finely describe faults of different scales. Its
architecture is shown in Figure 6. Due to the powerful multi-scale information selection
ability of GCM and GSM modules, this paper only uses a 4-layer U-Net based on a coding–
decoding structure as the basic network. In the coding path, only two 3 × 3 convolution
and maximum pooling are used to quickly obtain feature maps with different resolutions.
In the decoding path, multiple simple decoding blocks are used to quickly and effectively
recover feature maps with high resolution. In this neural network, the data distribution
after convolution is corrected by BN and ReLU, and the GCM module is placed at the
connection layer of the network to automatically select multi-scale information, which
makes up for the lack of transmitting single information to the decoder by the encoder of
conventional U-Net. At the same time, the GSM module between groups is placed in the
path of decoder to realize the function of multi-scale information selection, which makes
up for the disadvantage of losing global information in up-sampling process.
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4. Loss Function

The neural network will produce deviation between prediction and reality during
training, and the deviation value is represented by loss function. During the training, the
stochastic gradient descent (SGD) algorithm is used to update the network parameters and
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reduce the value of the loss function, so that the prediction and the actual convergence
gradually, tend to be consistent [26]. The final result of neural network output is fault
probability body, where 1 represents fault and 0 represents non-fault. In this study, fault
recognition is regarded as a binary segmentation task. In the fault probability body, the
most part is non-fault, and the least part (less than 10%) has a value of 1. There are strong
data imbalance and uneven fault distribution area. In this case, the binary cross entropy loss
(BCE) function is most often used [6,27]. Dice loss function is commonly used to serve the
segmentation and recognition tasks of small-scale targets in medical research [28]. In this
research, BCE and Dice are combined to solve problems such as data imbalance, uneven
fault distribution area and insufficient accuracy in fault identification. The expression of
the combined loss function is as follows:

LBCE = − 1
N

N
∑
i
(gi log(pi) + (1− gi) log(1− pi))

LDice = 1−
2

N
∑
i

pi gi+ε

N
∑
i

pi+
N
∑
i

gi+ε

L = λLBCE + LDice

where N is the total number of pixels in the input image. pi ∈ [0, 1] and gi ∈ [0, 1] represent
the prediction probability and label value of pixel, respectively, ε is the smoothing factor,
whose value range is (0.1,1). λ is the balance coefficient of Dice loss and BCE loss.

5. Training and Validation

In the neural network training, we randomly selected 1000 seismic images from an
open-source dataset [15] for training, and the corresponding label data were also completed
by manual marking in advance, marked as 1 in places with faults and 0 in places without
faults. The purpose of network training is to optimize the parameters of the whole network.
With each training, the deviation between the prediction and the actual represented by the
loss function will decrease until the prediction and the actual tend to be consistent.

Figure 7 shows randomly seismic data sets with their corresponding labels. We used
another 200 images as test and validation data, which were not included in the training. In
the process of training, SGD is used to optimize the network, and the number of images
sent into the network is 10 each time. The network model can be trained when the number
of epochs reaches 30 times. Figure 8a shows the change of training accuracy and validation
accuracy of the modified U-Net with the number of epochs. After 30 epochs, the accuracy
rate tends to be above 0.9. Figure 8b shows the changes of training loss and validation loss
of the modified U-Net with the number of epochs. After 30 epochs, the loss value tends to
0.01. After training, save the network parameters. In the process of training and validation,
in order to increase the diversity of training data sets and make the trained neural network
have better classification or recognition performance, data enhancement is used to improve
the diversity of training data sets. The data enhancement operation mainly includes data
reversal and rotation around the time axis.
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6. Application

This paper used field data to verify the effectiveness of the trained network, and
the fault probability volume is shown in Figure 9. In order to facilitate the interpretation
of results, the opacity of the fault probability cube was adjusted and superimposed on
the original seismic image. At the same time, we used a trained U-Net to identify faults
of this data, and other parameters were completely the same except for GCM and GSM
modules. The study area is located in a sandstone oil field in China, and the faults are
mainly Y-shaped throughout the section and occur in almost every formation [29]. In the
700 ms–1500 ms time window, the number of faults is the largest, and the characteristics
of faults are the most complex [30]. As depth increases, the imaging accuracy of seismic
data decreases and the difficulty of fault imaging becomes more and more. On the plane,
the fault is affected by the tension and strike-slip stress mechanism, and the fault direction
is mainly NE and NW. This data set consists of 495 (lines) × 580 (CDPs) with a CDP
spacing of 25 m and a line spacing of 25 m. The data are sampled at 1 ms with a length of
2 s. The inline number and xline number are in the range of (2410,2905) and (3600,4180),
respectively. By using an NVIDIA TITAN Xp GPU, it takes about 110 min to calculate the
fault probability volume. The randomly selected vertical profiles and time slice are inline
2510, xline 4025 and time slice at 1540 ms, respectively. The fault imaging results of the
modified U-Net and U-Net are shown in Figures 10–12.
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Figure 10. Three seismic images are displayed with faults that are imaged using the trained modified
U-Net model. (a) Inline 2510; (b) Xline 4025; (c) a time slice at 1540 ms.
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Figure 11. (a) A seismic image is displayed with faults that are imaged using (b) the trained U-Net
model and (c) the trained modified U-Net model.
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Figure 12. (a) A time slice is displayed with faults that are imaged via (b) the trained U-Net model
and (c) the trained modified U-Net model.

Figure 10 represents three seismic images in different directions with different scales
faults that are imaged using the trained modified U-Net model. Figure 11b shows the fault
image predicted by the trained U-Net model and Figure 11c shows the modified U-Net
prediction results. The U-Net result (Figure 11b) is reliable enough to depict faults in this
seismic image, however, much of the detail is still missing compared to features predicted
by the modified U-Net (Figure 11c). Figure 12b,c illustrate fault imaging results of different
slices. We observe that most faults can be clearly imaged under the trained modified
U-Net model, and multiple groups of faults in different directions can be distinguished
on horizontal slices. Figure 12b is the result of U-Net prediction, some small fracture
information has not been portrayed. In summary, the field data example shows that the
proposed method based on the modified U-Net has superior performance in detecting
faults of multiple scales, and provides relatively high sensitivity and continuity.

7. Conclusions

We developed a modified U-Net-based method to automatically image faults in the
sandstone reservoirs in China. The proposed network containing GCM and GSM mod-
ules is designed and trained to enhance the ability of the network to select multi-scale
information. The GCM and GSM module can select multi-scale information obtained by
convolution of different dilation rates between groups, enhance the consistency of receptive
field and fault recognition target region, and jointly improve the recognition ability of
micro-faults. The field data applications demonstrate the effectiveness of this approach. For
sandstone oil and gas reservoirs in China with abundant faults, this method has great ad-
vantages in improving fault imaging accuracy, but further research is needed in improving
computational efficiency and optimizing network architectures.

Author Contributions: Conceptualization, J.W. and Y.S.; methodology, W.W.; software, Y.S.; valida-
tion, J.W.; formal analysis, Y.S.; investigation, W.W.; resources, J.W.; data curation, Y.S.; writing—
original draft preparation, J.W.; writing—review and editing, J.W.; visualization, W.W.; project
administration, W.W. All authors have read and agreed to the published version of the manuscript.

Funding: This research was funded by the Key Project of National Natural Science Foundation of
China (41930431), China Postdoctoral Science Foundation (2020M680840) and Northeast Petroleum
University’s special fund (1305021889).

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Conflicts of Interest: The authors declare no conflict of interest.



Appl. Sci. 2022, 12, 2451 11 of 12

References
1. Liu, B.; Sun, J.; Zhang, Y.; He, J.; Fu, X.; Yang, L.; Xing, J.; Zhao, X. Reservoir space and enrichment model of shale oil in the first

member of Cretaceous Qingshankou Formation in the Changling sag, southern Songliao Basin, NE China. Pet. Explor. Dev. 2021,
48, 608–624. [CrossRef]

2. Xu, J.; Zhang, L. Genesis of Cenozoic basins in Northwest Pacific Ocean margin (1): Comments on basin-forming mechanism. Oil
Gas Geol. 2000, 21, 93–98.

3. Chen, W.-C.; Yan, J.-J. On the Evolutional Characteristics of Cenozoic Episodic rifting of Nanpu Sag. J. Jining Norm. Coll. 2020, 3,
115–119.

4. Peacock, D.C.P.; Sanderson, D.J.; Rotevatn, A. Relationships between fractures. J. Struct. Geol. 2018, 106, 41–53. [CrossRef]
5. Tong, H.; Zhao, B.; Cao, Z.; Liu, G.; Dun, X.M.; Zhao, D. Structural analysis of faulting system origin in the Nanpu sag, Bohai Bay

basin. Acta Geol. Sin. 2013, 87, 1647–1661.
6. Wu, J.; Liu, B.; Zhang, H.; He, S.; Yang, Q. Fault Detection Based on Fully Convolutional networks (FCN). J. Mar. Sci. Eng. 2021, 9,

259. [CrossRef]
7. LeCun, Y.; Bengio, Y.; Hinton, G. Deep learning. Nature 2015, 521, 436–444. [CrossRef] [PubMed]
8. Smith, J.A. LAI Inversion Using a Back-propagation Neural Network Trained with a Multiple Scattering Model. IEEE Trans.

Geosci. Remote Sens. 1993, 31, 1102–1106. [CrossRef]
9. Krizhevsky, A.; Sutskever, I.; Hinton, G.E. ImageNet classification with deep convolutional neural networks. Commun. ACM 2017,

60, 84–90. [CrossRef]
10. Zheng, Z.H.; Kavousi, P.; Di, H.B. Multi-Attributes and Neural network-Based Fault Detection in 3D Seismic Interpretation. Adv.

Mater. Res. 2014, 838–841, 1497–1502. [CrossRef]
11. Araya-Polo, M.; Dahlke, T.; Frogner, C.; Zhang, C.; Poggio, T.; Hohl, D. Automated fault detection without seismic processing.

Lead. Edge 2017, 36, 208–214. [CrossRef]
12. Waldeland, A.; Solberg, A. Salt classification using deep learning. In Proceedings of the 79th EAGE Conference and Exhibition

2017, Paris, France, 12–15 June 2017.
13. Guitton, A.; Wang, H.; Trainor-Guitton, W. Statistical imaging of faults in 3D seismic volumes using a machine learning approach.

In SEG Technical Program Expanded Abstracts; Society of Exploration Geophysicists: Tulsa, OK, USA, 2017; pp. 2045–2049.
14. Xiong, W.; Ji, X.; Ma, Y.; Wang, Y.; AlBinHassan, N.M.; Ali, M.N.; Luo, Y. Seismic fault detection with convolutional neural

network. Geophysics 2018, 83, 97–103. [CrossRef]
15. Wu, X.; Liang, L.; Shi, Y.; Fomel, S. FaultSeg3D: Using synthetic data sets to train an endto-end convolutional neural network for

3D seismic fault segmentation. Geophysics 2019, 84, IM35–IM45. [CrossRef]
16. Ronneberger, O.; Fischer, P.; Brox, T. U-Net: Convolutional networks for biomedical image segmentation. In Medical Image

Computing and Computer-Assisted Intervention, Proceedings of the MICCAI 2015, Munich, Germany, 5–9 October 2015; Lecture Notes in
Computer Science; Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F., Eds.; Springer: Cham, Switzerland, 2015; Volume 9351,
pp. 234–241.

17. Sevastopolsky, A. Optic disc and cup segmentation methods for glaucoma detection with modification of U-Net convolutional
neural network. Pattern Recognit. Image Anal. 2017, 27, 618–624. [CrossRef]

18. Zhang, H.; Han, J.; Li, Z.; Zhang, H. Extracting Q Anomalies from Marine Reflection Seismic Data Using Deep Learning. IEEE
Geosci. Remote Sens. Lett. 2021, 19, 7501205. [CrossRef]

19. Liang, C.; Wang, N.; Zhu, M.; Yang, X.; Li, J.; Gao, X. Based on Multi-Scale Feature Fusion Faces—Sketch Synthesis. China Science,
Information Science, 1–14. Available online: http://kns.cnki.net/kcms/detail/11.5846.TP.20220126.1627.002.html (accessed on
4 January 2022).

20. Ma, L.; Liu, X.; Li, H.; Duan, J.; Niu, B. Neural Network Lightweight Method Using Cavity Convolution. Computer Engineering
and Applications: 1–14. Available online: http://kns.cnki.net/kcms/detail/11.2127.TP.20210419.1339.035.html (accessed on
4 January 2022).

21. Yu, Q.; Zhang, J.; Wei, X.; Zhang, Q. Segmentation of liver tumors based on cascated separable cavity residual U-NET. Chin. J.
Appl. Sci. 2021, 39, 378–386.

22. Fisher, Y.; Koltun, V. Multi-scale context aggregation by dilated convolutions. arXiv 2015, arXiv:1511.07122.
23. Zhe, Z.; Bilin, W.; Zhezhou, Y.; Zhiyuan, L. Dilated Convolutional Pixels Affinity network for Weakly Supervised Semantic

Segmentation. Chin. J. Electron. 2021, 30, 1120–1130. [CrossRef]
24. Gao, H.; Cao, L.; Yu, D.; Xiong, X.; Cao, M. Semantic Segmentation of Marine Remote Sensing Based on a Cross Direction

Attention Mechanism. IEEE Access 2020, 8, 142483–142494. [CrossRef]
25. Meng, D.; Sun, L. Some New Trends of Deep Learning Research. Chin. J. Electron. 2019, 28, 1087–1091. [CrossRef]
26. Rumelhart, D.E.; Hinton, G.E.; Williams, R.J. Learning representations by back-propagating errors. Nature 1986, 323, 533–536.

[CrossRef]
27. Xie, S.N.; Tu, Z.W. Holistically-Nested Edge Detection. In Proceedings of the International Conference on Computer Vision,

Santiago, Chile, 7–13 December 2015; pp. 1395–1403. [CrossRef]
28. Milletari, F.; Navab, N.; Ahmadi, S.A. V-Net: Fully Convolutional Neural networks for Volumetric Medical Image Segmentation.

In Proceedings of the 2016 Fourth International Conference on 3D Vision (3DV), Stanford, CA, USA, 25–28 October 2016.

http://doi.org/10.1016/S1876-3804(21)60049-6
http://doi.org/10.1016/j.jsg.2017.11.010
http://doi.org/10.3390/jmse9030259
http://doi.org/10.1038/nature14539
http://www.ncbi.nlm.nih.gov/pubmed/26017442
http://doi.org/10.1109/36.263783
http://doi.org/10.1145/3065386
http://doi.org/10.4028/www.scientific.net/AMR.838-841.1497
http://doi.org/10.1190/tle36030208.1
http://doi.org/10.1190/geo2017-0666.1
http://doi.org/10.1190/geo2018-0646.1
http://doi.org/10.1134/S1054661817030269
http://doi.org/10.1109/LGRS.2020.3048171
http://kns.cnki.net/kcms/detail/11.5846.TP.20220126.1627.002.html
http://kns.cnki.net/kcms/detail/11.2127.TP.20210419.1339.035.html
http://doi.org/10.1049/cje.2021.08.007
http://doi.org/10.1109/ACCESS.2020.3013898
http://doi.org/10.1049/cje.2019.07.011
http://doi.org/10.1038/323533a0
http://doi.org/10.1109/ICCV.2015.164


Appl. Sci. 2022, 12, 2451 12 of 12

29. Liu, B.; Zhao, X.; Fu, X.; Yuan, B.; Bai, L.; Zhang, Y.; Ostadhassan, M. Petrophysical characteristics and log identification of
lacustrine shale lithofacies: A case study of the first member of Qingshankou Formation in the Songliao Basin, Northeast China.
Interpretation 2020, 8, SL45–SL57. [CrossRef]

30. Gao, D. Integrating 3D seismic curvature and curvature gradient attributes for fracture characterization:Methodologies and
interpretational implications. Geophysics 2013, 78, O21–O31. [CrossRef]

http://doi.org/10.1190/INT-2019-0254.1
http://doi.org/10.1190/geo2012-0190.1

	Introduction 
	Illustration of Dilated Convolution 
	The Architecture of the Modified U-Net 
	Loss Function 
	Training and Validation 
	Application 
	Conclusions 
	References

