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Featured Application: This paper presents the development of a longitudinal mode dynamic model
via experiments of insect-like tailless flapping-wing micro air vehicles (FWMAVs).

Abstract: In this paper, model parameter identification results are presented for a longitudinal mode
dynamic model of an insect-like tailless flapping-wing micro air vehicle (FWMAV) using angle and
angular rate data from onboard sensors only. A gray box model approach with indirect method was
utilized with adaptive Gauss–Newton, Levenberg–Marquardt, and gradient search identification
methods. Regular and low-frequency reference commands were mainly used for identification since
they gave higher fit percentages than irregular and high-frequency reference commands. Dynamic
parameters obtained using three identification methods with two different datasets were similar
to each other, indicating that the obtained dynamic model was sufficiently reliable. Most of the
identified dynamic model parameters had similar values to the computationally obtained ones,
except stability derivatives for pitching moment with forward velocity and pitching rate variations.
Differences were mainly due to certain neglected body, nonlinear dynamics, and the shift of the center
of gravity. Fit percentage of the identified dynamic model (~49%) was more than two-fold higher
than that of the computationally obtained one (~22%). Frequency domain analysis showed that the
identified model was much different from that of the computationally obtained one in the frequency
range of 0.3 rad/s to 5 rad/s, which affected transient responses. Both dynamic models showed that
the phase margin was very low, and that it should be increased by a feedback controller to have a
robustly stable system. The stable dominant pole of the identified model had a higher magnitude
which resulted in faster responses. The identified dynamic model exhibited much closer responses
to experimental flight data in pitching motion than the computationally obtained dynamic model,
demonstrating that the identified dynamic model could be used for the design of more effective pitch
angle-stabilizing controllers.

Keywords: system identification; flapping-wing micro air vehicle; longitudinal mode; model refinement;
gray box model; onboard sensors

1. Introduction

Nature provides investigators with abundant insights and inspirations that aid in
solving engineering problems and creating new inventions [1,2]. With the advancement of
science, engineering, and technology, a growing number of robots have been designed in
different shapes and sizes to mimic biological systems [3,4]. These biomimetic robots mimic
animals, such as four-legged animals (quadrupeds) [5], monkeys [6], snakes [7], fish [8,9],
bats [10,11], and various birds and insects [12–14]. These robots have diverse potential
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applications, ranging from simple toys to exploration robots in dangerous and hazardous
environments. They have the potential to perform tasks that conventional robots cannot
accomplish, such as climbing steep surfaces [15,16], maneuvering through rubble [17], and
walking on uneven terrains [5]. These unique capabilities that only animals can perform
have motivated many researchers to develop biomimetic robots.

The flapping-wing micro air vehicle (FWMAV) is one such type of robot. It has been
popular for more than a decade [12,18–20]. With birds and insects as the main source of
inspiration for designing robots, FWMAVs are typically categorized into bird- or insect-
inspired FWMAVs. Alternatively, they are differentiated into tailed or tailless FWMAVs
based on the existence of the control surface on their tails, by which the differentiation
agrees with the physical configurations of birds or insects, respectively [21–25]. In general,
birds and insects have unique flight characteristics, which can be observed from the manner
in which their wings are manipulated and modulated. Compared to birds, insects normally
flap with higher flapping frequency and larger stroke amplitude to produce sufficient force
to fly. The flapping stroke plane of insects is nearly horizontal, which causes similar lift force
to be produced during a downstroke and an upstroke, whereas the flapping stroke plane
of birds is practically vertical, which causes most of the lift force to be produced during
downstroke [23,24]. These flight characteristics are mimicked by FWMAVs using various
approaches and engineering designs, especially for producing wing flapping motion and
other kinematics to generate force and moment [19,20,26].

Unlike tailed FWMAVs, tailless FWMAVs can exhibit steady hover and high maneu-
verability during a flight [27], indicating their potential applications in restricted spaces. To
date, several tailless FWMAV designs have successfully performed stable flight, including
the Nano Hummingbird [27], RoboBee [28], Delfly Nimble [29], KUBeetle [30–35], robotic
hummingbird [36], Colibri [37], NUS-Robobird [38], and Purdue Hummingbird [39]. There
are some similarities between each design. Nano Hummingbird, KUBeetle, robotic hum-
mingbird, and Colibri use only one DC motor to generate thrust through one pair of wings
and a few servos to manipulate the wing kinematics for control moment generation. They
are mainly different in system integration and various transmission mechanisms, such
as combination of string and crankshaft [27], combination of 4-bar linkage and pulley-
string [30], and combination of slider-crank and 4-bar linkage [37]. In comparison, Delfly
Nimble and NUS-Robobird use two DC motors to manipulate the flapping of two pairs
of wings to generate thrust and roll moments. Servos are used to adjust the relative angle
of two flapping mechanisms for pitch and yaw moment generation. A different control
strategy was found in Purdue Hummingbird where each wing, one left and one right, is
controlled by a DC motor to realize fully decoupled and independent wing kinematics
manipulation. In this way, no servos are needed because control moments are generated by
changing the wing flapping range and speed. While most tailless FWMAVs with successful
flights use DC motors and servos, RoboBee uses piezoelectric actuators driven with high
voltage. Stabilizing tailless FWMAVs is a significantly important objective in the develop-
ment of tailless FWMAVs for flying. Owing to the inherent instability of tailless FWMAVs,
feedback controllers are required to stabilize them during flight. In comparison, tailed
FWMAVs, such as the Microbat [40], Delfly II [41], TL-Flowerfly [42], Konkuk University
Biomimetic Ornithopter [43], H2Bird Ornithopter [44], and Robird [45], have an inherent
stability [46] so that they can maintain equilibrium without any active manipulation of wing
or tail kinematics. Recent findings on Hawkmoth [47] have indicated that the vibration
of flapping wings potentially contributes to the improved stability of large insects and
FWMAVs through a passive vibrational stabilization mechanism.

Owing to their feasibility and simplicity, proportional–integral–derivative (PID) feed-
back controllers and their simple variants are often implemented, particularly during the
early development of tailless FWMAVs [19,30,37,38]. More complex variants of PID feed-
back controllers incorporating different strategies (such as neural network [48], particle
swarm optimization [49], and dominant pole placement [50]) and autotuning algorithms
(such as optimal approach [51,52] and fuzzy adaptive [53]) are being developed for various
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applications. As with many biomimetic robots, tailless FWMAVs have less complicated
body structures and control mechanisms than their biological counterparts. Thus, they
can be considered as simplified versions of insects. However, owing to the nonlinear,
time-varying, and periodic nature of these systems, describing the mechanics of tailless
FWMAVs is still a considerable challenge. In addition, as tailless FWMAVs have different
wing configurations [54–57], actuators, and control mechanisms [19,27–39], they cannot
be fully generalized. Many efforts have been made to model the flapping kinematics,
aerodynamics, and flight dynamics of flyers and FWMAVs. They are derived computa-
tionally or experimentally with various assumptions, ranging from time-invariant linear to
nonlinear time-periodic models [58–60]. One of the main purposes of obtaining a dynamic
model is to design a flight controller with various control techniques and schemes, such
as PID [34,61], linear–quadratic–Gaussian [62], state feedback [63,64], nonlinear [65–67],
sliding mode [68,69], robust [70,71], adaptive [72], adaptive neural network [73,74], and
model-free [75]. While many dynamic models and controllers have been successfully devel-
oped, only a limited number have been implemented on tailless FWMAVs because some
tailless FWMAVs cannot generate sufficient lift to perform free flight for implementation
and verification.

In this study, the system identification of a tailless FWMAV called KUBeetle was con-
ducted to improve the previously derived longitudinal mode extended dynamic model [34]
and obtain a more accurate dynamic model to design a controller. The fabrication of tail-
less FWMAVs with successful flight makes it possible for system identification based on
measured input and output data to be conducted [65,76–82]. This approach can potentially
identify real dynamics and address the design changes of tailless FWMAVs to obtain a
dynamic model with a high degree of similarity to actual systems. In a previous study [65],
three single-axis closed-loop system identifications of the robotic hummingbird were con-
ducted using a gimbal system and a Vicon motion tracking system with step reference
command as the input. A second-order system was used to describe the pitch, roll, and
yaw dynamic. A theoretical linear model for the piezo actuator positioning of Robobee
wings’ [76] was developed using an off-board displacement laser sensor. The identified
model had an error of around 5%, but it was restricted to the wing driving system. A
longitudinal gray box model system identification using open-loop system identification
procedures was conducted on Delfly Nimble [77]. Data were obtained using the OptiTrack
motion tracking system and the onboard system with doublet input as a reference com-
mand. The obtained linear time-averaged longitudinal dynamic models for hover and
forward flight up to 1 m/s showed more than 80% fit.

The majority of system identification research uses high-speed camera systems with
high data rates to obtain experimental flight data. High-speed camera systems are very
expensive. In addition, the camera marker balls are relatively heavy compared to the small
mass of the KUBeetle (only 17.7 g), which could affect the dynamics. Moreover, there
exists little difference between the angle measured by a high-speed camera system and
that obtained by an onboard sensor, due to misalignment, scale factor errors, and added
measurement noises. So, the model obtained using the high-speed camera system should
be modified to be used in a real feedback control system, while the dynamic model obtained
using onboard sensors can be used directly without modification.

Many system identification methods have been developed. They are available for open-
loop and closed-loop system identification [78–82]. Because KUBeetle flight is unstable,
a closed-loop system identification was chosen. Considering prior knowledge of the
dynamics of the KUBeetle and the PD feedback controller, a gray box model approach
with indirect methods [79,82] was utilized. The longitudinal mode extended dynamic
model of KUBeetle, categorized as a linear, time-invariant, and single-input multiple-
output system with state space model structure, was refined with the help of system
identification tools in MATLAB®. Several variations of input and output data pairing and
different identification methods on model refinement were investigated and compared. By
investigating dynamic model parameters and time-domain responses, the most appropriate
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refined dynamic model was obtained. The main contributions of this paper are: (1) dynamic
model parameters for the new KUBeetle using only low-cost onboard sensors outputs;
and (2) stability and frequency domain analyses, which could be used for designing a
closed-loop feedback controller.

The remainder of this paper is organized as follows. Section 2 describes the design
and longitudinal mode dynamic model of the KUBeetle. Section 3 presents experimental
flight, system identification setups, and the results. Finally, Section 4 provides conclusions
and indicates towards future research topics.

2. KUBeetle
2.1. KUBeetle Design

Figure 1 shows the KUBeetle [30–35,83,84], a tailless FWMAV used for parameter
identification in this study. The design of the KUBeetle in this study slightly differed from
that of a previously developed KUBeetle [34]. They were mainly different in their flapping
mechanisms and the location of the control board. One pair of wings of the KUBeetle were
modulated by a DC motor using a rack and pinion mechanism to perform a high-amplitude
flapping motion for thrust generation [85], whereas previous models used a pulley-string
mechanism [30,31]. In the current KUBeetle, the control board was placed between the yaw
servo motor and battery, which could lower the center of gravity (CG) position compared
with the older version of the KUBeetle. The control board was designed to receive the
reference command to control the FWMAV and transmit flight data in real time through a
wireless communication RF module extension. A previous study [34] explains the detailed
design and specifications of the control board. Figure 1b shows that the flight stability and
control are maintained by manipulating the wing stroke plane using three servo motors to
generate control moments for pitch, roll, and yaw.
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Figure 1. A flight model of the KUBeetle: (a) detailed construction components used in the KUBeetle;
(b) principle of the stroke-plane-change mechanism for control moment generation.

2.2. Dynamic Model

System identification using a gray box model requires an initial dynamic model with
starting parameters. The longitudinal mode dynamic model of the KUBeetle used in this
study was based on Newton–Euler equations of motion at near-hover conditions [86–89].
The dynamic model was extended to include filters and servo motor dynamics [34]. Param-
eters (specifically, the moments of inertia and filter parameters) were updated according to
the latest KUBeetle design. Table 1 shows the stability and control derivatives obtained
from the computational fluid dynamics (CFD) analysis and force and moment measure-
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ments. Figure 1 shows the body frame of the KUBeetle. The extended longitudinal mode
dynamic model is described below [34,86–89]:

.
xext = Aext xext + Bext uext, (1)

yext = Cext xext, (2)

xext =



u
w
q
ϑ

q̂lp f
ϑ̂lp f

ϑ̂k f ,angle
ϑ̂k f ,bias
uservo


, (3)

where u and w are velocities along the x- and z-axis, respectively; q is the pitch rate (rad/s);
ϑ is the pitch angle (rad); uext is the control input in the form of pitch servo angle; yext is
the output or response of the KUBeetle; q̂lp f is the low-pass filtered pitch rate; ϑ̂lp f is the
low-pass filtered pitch angle; ϑ̂k f ,angle and ϑ̂k f ,bias are the pitch angle and bias estimation
of the Kalman filter, respectively, and uservo is the servo output. The system and input
matrices of the extended dynamic model are given below [34,86–89]:

Aext =



Xu
m

Xw
m

Xq
m g 0 0 0 0 Xγp

m
Zu
m

Zw
m

Zq
m 0 0 0 0 0 Zγp

m
Mu
Iyy

Mw
Iyy

Mq
Iyy

0 0 0 0 0 Mγp
Iyy

0 0 1 0 0 0 0 0 0
0 0 204.3 0 −204.3 0 0 0 0
0 0 0 10.13 0 −10.13 0 0 0
0 0 0 0 1 0.329 −0.329 1 0
0 0 0 0 0 −0.05 0.05 0 0
0 0 0 0 0 0 0 0 −30.67


, (4)

Bext =



0
0
0
0
0
0
0
0

30.91


, (5)

where X and Z are aerodynamic forces along the x- and z-axes, respectively, and M is
the aerodynamic pitching moment about the CG. Subscripts u, w, and q indicate their
aerodynamic derivatives with respect to u, w, and q. The subscript γp implies control
input by the pitch servo. m is the mass of the KUBeetle (17.7 × 10−3 kg), Iyy is the pitching
moment of inertia (12.43 ×10−6 kg m2), and g is the gravitational acceleration

(
9.81 m s−2).

The first four rows of the system matrix consisted of parameters of the basic dynamic
model [34]. In the fifth and sixth rows, parameters of low-pass filters for pitch rate and
pitch angle were included, respectively. The seventh and eighth rows included Kalman
filter parameters for pitch angle and bias estimation. Finally, the last row contained servo
motor dynamic parameters. The output matrix of the extended dynamic model, Cext (open-
loop) or Cext,cl (closed-loop), can be adjusted according to the number of available outputs
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for system identification. For pitch angle and pitch rate outputs, the output matrix is given
as follows:

Cext1 = Cext,cl1 =

[
0 0 0 0 1 0 0 0 0
0 0 0 0 0 0 1 0 0

]
. (6)

For pitch angle output only, the output matrix was given as:

Cext2 = Cext,cl2 =
[

0 0 0 0 0 0 1 0 0
]
. (7)

Table 1. Stability and control derivatives.

Xu [N s m−1] Xw [N s m−1] Xq [N s rad−1] Zu [N s m−1] Zw [N s m−1] Zq [N s rad−1]

−2.39 × 10−2 2.79 × 10−4 6.22 × 10−4 1.06 × 10−3 −1.34 × 10−2 1.15 × 10−4

Mu [N s] Mw [N s] Mq [N s m rad−1] Xγp [N rad−1] Zγp [N rad−1] Mγp [N m rad−1]

−8.3 × 10−4 −1.6 × 10−5 −6.2 × 10−6 1.32 × 10−1 −2.03 × 10−2 1.38 × 10−2

In general, it is not feasible or practical to identify an unstable system. Therefore, a
simple PD feedback controller was added to the unstable system to obtain a stable closed-
loop control system. The same PD gains in a previous study [34] were used as the starting
reference. They were then slightly tuned through experimental flight. Figure 2 shows the
data acquisition structure of system identification with a PD feedback controller. Pitch
rate estimation was obtained after the pitch rate output of the dynamic model was filtered
by a low-pass filter [34]. Considering real time implementation, a first order low-pass
filter (cutoff frequency 32 Hz) was used to reduce the high-frequency noise because of its
simplicity which took a small calculation time and memory of the microprocessor. Pitch
angle estimation was obtained by combining low-pass filtered pitch rate output and pitch
angle estimated from acceleration outputs using the Kalman filter [34]. The KUBeetle
showed stable flight performance with the current filters, especially on hovering, although
there were some oscillating motions, indicating that the current setup was sufficient for an
experimental flight.
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A closed-loop system identification is more challenging than an open-loop system
identification due to existing feedback. The feedback can affect system identification
performance by making the closed-loop system less sensitive to parameter changes in
an open-loop system [79]. In addition, the natural dynamic of the KUBeetle toward the
reference command might be regarded as a disturbance that needs to be damped and
minimized by the controller [77,78]. However, the feedback also allows for more input in
a specific frequency range without increasing the output magnitude [79]. Two different
methods [79,82], direct and indirect, were tested to identify the longitudinal mode dynamic
model of KUBeetle. According to Figure 2, the direct method used sets of control input and
output data to obtain the open-loop dynamic model, while the indirect method used sets of
reference command and output data to obtain the closed-loop dynamic model. It is possible
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to use the indirect approach, because the structure of the state space of the closed-loop
extended dynamic model is fully known.

A simple PD controller with reference command is given bellow [34]:

upd = KP

(
ϑre f − ϑ̂k f ,angle

)
− KD q̂lp f , (8)

where upd is the control input, ϑre f is the angle reference command, KP is the proportional
controller gain, and KD is the derivative controller gain. The system matrix and input
matrix of the closed-loop extended dynamic model can be expressed as follows:

Aext,cl =

[
Aext(1 : 8, 1 : 9)

0 0 0 0 −30.91KD 0 −30.91KP 0 −30.67

]
, (9)

Bext,cl =

[
Bext(1 : 8, 1)

30.91KP

]
. (10)

The addition of a PD controller to the extended dynamic model only changed the last
row of the state space matrix where the control input was given to the servo. Either an open-
loop or a closed-loop extended dynamic model could be used as the starting reference in
system identification with the gray box model approach. The open-loop extended dynamic
model could be retrieved simply by setting controller gain parameters on the last row of
the system matrix to zero and changing the last parameter of the input matrix to 30.91,
according to Equations (4) and (5). Moreover, it should be noted that velocities along the x-
and z-axes were not measured. They could not be used for system identification, which
makes the system identification more challenging.

Parameters of the filters, servo motor, and PD controller were fixed, because their
values were already known and verified [34]. The gravity, integrator, and zero constants
were also fixed. Thus, only nine stability derivatives and three control derivates were
refinable in system identification. Each parameter had different physical characteristics
and an effect on the dynamic of the KUBeetle [87–89]. Based on CFD analysis [89], Xu,
Zw, and Mu should be negative and have relatively large magnitudes; Xw, Zu, Zq, and
Mw should be close to zero; and Xq and Mq should have relatively small magnitudes.
Overall, Xu, Xq, Zw, Mu, and Mq, the five parameters of stability derivatives, and Xγp,
Zγp, and Mγp, the three parameters of control derivatives, were mainly focused on for
system identification. During system identification, these eight parameters were refined
with a relatively wide range of restriction. Conversely, non-focused parameters of stability
derivatives were kept close to zero with a narrow range of restriction. Restrictions were
adjusted considering computational fluid dynamics (CFD) results [87–89] and current
KUBeetle design specifications to maintain the integrity of the identified dynamic model
in relation to the physical system. While relaxing parameter restrictions might improve
the result of system identification, some refined parameters might not match the real
physical system.

3. Experimental Flight and System Identification

In this study, the system identification process was performed in the following steps:
(1) experimental flight setup; (2) data acquisition for system identification via experimental
flight; (3) linear model refinement in system identification using the gray box model
approach; and (4) dynamic model analysis and verification.

3.1. Experimental Flight Setup

Figure 3 shows the experimental flight setup to obtain flight data for system iden-
tification. This setup consisted of a remote control, the KUBeetle, and a ground station.
The remote control was used for throttle adjustment for taking off, hovering, and landing
the KUBeetle. It was also used for adjusting and maintaining trim conditions during the
experimental flight. The flight was conducted indoors without wind disturbance. All exper-
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imental flight data were obtained and processed with an onboard control board equipped
with an inertial measurement unit (MPU-9250, InvenSense, San Jose, CA, USA). Flight data
were then transmitted via wireless communication (NRF24L01+, Nordic Semiconductor,
Trondheim, Norway) to the ground station. Considering that the bandwidth of the longitu-
dinal mode dynamics with the PD controller was less than 20 rad/s, the sampling rate was
set to be 100 Hz. Recorded data consisted of time, pitch reference command, pitch angle,
and pitch rate. In addition, the control input was calculated from the reference command
and output data with known control gains.
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3.2. Data Acqusition for System Identification via Experimental Flight

Initially, the KUBeetle was manually kept in a hovering condition with minimum drift
via a remote control. In hovering condition, the preprogrammed command in the control
board was triggered through the remote control to automatically apply reference com-
mands to the KUBeetle. Preprogrammed command was used to ensure the repeatability
and consistency during each experimental flight. The reference command is a very impor-
tant component of the system identification because it affects entire aspects of the system
identification process. The reference command should be able to excite as many dynamic
modes of interest and natural dynamics as possible to provide comprehensive data for sys-
tem identification [77–80]. With the dynamic of the KUBeetle in consideration, two different
reference commands were used in the experimental flight. The first reference command was
in the form of a regular square signal with a relatively long and constant period (amplitude:
±17◦ (0.3 rad); period: 6 s) to analyze transient and steady state responses of the KUBeetle
(Supplementary Materials Video S1). The second reference command consisted of an irreg-
ular square signal with varying periods (amplitude: ±17◦ (0.3 rad); period: 0.2 to 1.4 s) to
cover the frequency bandwidth of interest (Supplementary Materials Video S2). The sec-
ond reference command was generated using a pseudo-random binary signal, which was a
periodic and deterministic signal with properties such as white noise [79]. The amplitude
and period of the reference command were chosen considering the operating range of the
KUBeetle. Assuming the same amplitude and frequency range, the square signal covered a
similar range to that of a chirp signal, as indicated by the frequency spectrum of reference
commands shown in Figure 4:

For clarity, the extended dynamic model with parameters obtained from CFD and
force and moment measurements, later used as the initial dynamic model in system identi-
fication, is called the CFD dynamic model. Figure 5 shows experimental and simulation
results of the KUBeetle with a regular square command for pitch. Together with the
preprogrammed command, the constant trim control input from the remote control was
applied to the KUBeetle. The constant trim command was subtracted to obtain the refer-
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ence command from the actual command input applied. Small noises were added while
the trim control input was being read from the pulse-width-modulated signal. The ref-
erence command was the summation of the preprogrammed command and the added
trim command noise. Figure 5a shows that the closed-loop KUBeetle has a relatively slow
response, high overshoot, and large steady state error. After the reference command was
provided, the KUBeetle attempted to follow the reference command in the beginning by
responding quickly according to the stroke plane change via the servo motor. However, it
was gradually stabilized to a low pitching angle, which maintained the large steady state
error. This phenomenon was mainly caused by the position of the CG that affected the
force and the moment generated by the gravity force during flight. The CG was located at
a relatively large distance below the aerodynamic center (AC). Figure 5b presents the pitch
rate responses to a regular square reference command, showing that the measured pitch
rate still had a large periodic and high-frequency noise due to wing flapping.

Figure 6 demonstrates experimental and simulation results of the KUBeetle with an
irregular square reference command. Figure 6a shows the pitch angle responses. In some
intervals, the pitch angle response misleadingly looks as if it is following the command
signal well, although some phase delays exist. This is due to overshooting responses at the
beginning of step inputs. However, as the frequency of the reference command increased,
it could not follow the reference command. Figure 6b illustrates that the pitch rate was
contaminated with large noise, as in the regular square reference command case shown in
Figure 5b. The high-frequency noise was still very large on the angular rate signal, although
it was low-pass filtered (cutoff frequency 32 Hz). However, it was not easy to remove it
without invoking much phase delay, which degraded the closed-loop stability. Thus, the
current setup was kept for the experimental flight.
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3.3. Linear Model Refinement in System Identification

System identification processes were performed with the help of system identification
tools in MATLAB®. The dynamic model generated from the system identification using
the black box model approach was found to be very complex. It could not be matched with
real physical parameters of the KUBeetle. Thus, this research only focused on the system
identification using the gray box model approach. The gray box model approach with
direct and indirect methods was tested to refine open- and closed-loop dynamic models.
Two different pairings were considered for the direct and indirect methods, respectively.
Firstly, the control input was given as input, while the pitch rate and pitch angle were given
as outputs. Secondly, the reference command was given as input, while the pitch rate and
pitch angle were given as outputs. Equations (4) and (5) present the structure of the system
and input matrices of the dynamic model as fixed for the open-loop dynamic model, while
Equations (9) and (10) present those for the closed-loop dynamic model. In addition, given
values of parameters in Equations (4)–(10), obtained from computations and measurements,
were used as the initial values for system identification. The pitch angle output was given
higher weighting, because it had smaller noise compared to the pitch rate output which
had larger high-frequency noise that could affect the accuracy of the identified dynamic
model. According to the experimental flight setup and data, the obtained dynamic model
mainly represented the dynamic of KUBeetle during hover and forward flights with pitch
angle under 0.3 radian. Adaptive Gauss–Newton (GNA), Levenberg–Marquardt (LM), and
gradient search (GRAD) methods were utilized for model refinements. Table 2 summarizes
the general characteristics of each identification method [90–92]:

The total iteration for each search method was limited to 2000 iterations, as further
iterations provided negligible improvement. Results from each search method were com-
pared and evaluated. One of the indicators used was the fit percentage of the responses of
the identified dynamic model to the experimental flight data. It was defined as:

Fit Percentage = 100

1 −

√
∑N

i=1(ymeasured − ymodel)
2√

∑N
i=1(ymeasured − ymeasured)

2

, (11)

where, N was the number of samples, ymeasured was the experimental flight data measured,
ymodel was the simulated response of the dynamic model identified, and ymeasured was the
mean of experimental flight data measured.
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Table 2. General characteristics of each identification method.

Identification Method Characteristics

GNA The adaptive subspace Gauss–Newton search method.
This minimizes the objective function, which is the sum of squared errors that is

approximately quadratic in the parameters near the optimal solution.
Convergence is not guaranteed, and it might converge only to a local optimum, depending on

the starting parameters.

LM The Levenberg–Marquardt least square search method.
This updates the parameters by adaptively combining the Gauss–Newton and gradient

descent approaches, depending on the parameter errors.
This is a refinement to the Gauss–Newton search method that improves the chance of local

convergence and prevents divergence.
This method is more robust than the Gauss–Newton and gradient descent search methods.

GRAD The Steepest descent or Gradient descent search method.
This updates the parameters towards the largest directional derivative or negative gradient

direction of the objective function to reduce the sum of squared errors.
When close to minimum, the iteration process becomes relatively slow.

Firstly, system identification using the gray box model approach with the direct
method was conducted. Closed-loop system identification with the direct method is
often used, because it works regardless of the complexity of the regulator. In addition,
it does not require knowledge of the characteristic of the feedback [79]. However, the
system identification result depended on the quality of the disturbance model, which
should also be identified during model refinement. The open-loop CFD dynamic model in
Equations (4) and (5) was used as the initial dynamic model. However, the direct method
was found to be unsuitable for the system identification of the KUBeetle using the current
experimental flight data as the disturbance model could not be identified well, which
caused responses of the identified model not to match experimental flight data. Note that
some working identification methods for open-loop system identification may fail when
they are applied to a closed-loop system identification [79].

Secondly, considering that the open-loop dynamic model could easily be retrieved
from the closed-loop dynamic model, system identification using the gray box model
approach with the indirect method was conducted. In the indirect method, the system
matrix of the closed-loop CFD dynamic model in Equations (9) and (10) was used as
the initial dynamic model. Through system identification with several different methods
and various restriction settings, several identified dynamic models were obtained. The
criteria to select the identified dynamic model were: (1) the fit percentage should be high
enough; (2) time-domain responses of the closed-loop dynamic model should have similar
characteristics to the experimental flight data; and (3) the open-loop dynamic model should
have similar stable and unstable poles and zeros to those of the computationally calculated
dynamic model, whereas the closed-loop dynamic model with the PD feedback controller
should be stable.

3.4. Dynamic Model Analysis and Verification

Single or a combination of multiple sets of experimental flight data were tested to
obtain the best identified dynamic model. This was completed to evaluate the consistency
of the identification results and sensitivity of the identification methods. It was found that
identified parameters related to velocities along the x- and z-axes had relatively larger devi-
ations because they were not available using onboard sensors. In addition, high-frequency
noises and nonlinear body dynamics not included in the model also affected identification
results. By following all the selection criteria, six identified dynamic models were consid-
ered. Table 3 shows parameters of the identified dynamic model with the indirect method.
Each of the selected dynamic models was named based on the identification method used
to refine it and numbers represent datasets used for the identification. Fit percentages of
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identified models obtained using irregular and high-frequency reference signals were much
lower than those obtained using regular and low-frequency reference signals. Thus, they
were discarded. The fit percentage of the dynamic model from CFD was only about 22%.
This low fit percentage was mainly because only wing parts were considered to obtain the
stability derivative-related parameters, instead of using the whole body of the KUBeetle.
The whole body of the KUBeetle, including the wings, was considered to obtain mass
and moments of inertia. The average fit percentage of the identified dynamic models was
approximately 49%, which was more than double that of the CFD dynamic model. Most
parameter values obtained from the three different identification methods and CFD were
quite similar to each other. The CG of the new KUBeetle design, being lower than the CG of
the previous KUBeetle design, increased the magnitude of Mu. This was in accordance with
the shift of the CG position due to the relocation of the control board and RF module from
the top of the flapping mechanism to under the motor. The increase in Mq showed that
the system had higher damping than that initially given from CFD. This indicated that the
body of the KUBeetle greatly affected system stability. According to system identification
results, aerodynamic forces along the x- and z-axes, Xγp and Zγp, had larger magnitudes
than that previously measured. When measuring the control derivative, only the wings
and frames near the wing were included. Because of a mounting problem, the lower body
of the KUBeetle could not be included, which could be one of the possible reasons for the
difference. Other parameters maintained similar values to CFD values.

Table 3. Refined parameters of identified dynamic models using an indirect method.

Parameters CFD (Initial)
Identified Dynamic Model

GNA 1 LM 1 GRAD 1 GNA 2 LM 2 GRAD 2 Average

Xu/m −1.351 0.000 0.000 0.000 0.000 0.000 0.000 0.000

Zu/m 0.060 0.001 0.000 0.000 0.000 0.028 0.000 0.005

Mu/Iyy −66.755 −79.656 −79.870 −75.722 −87.300 −99.508 −83.732 −84.298

Xw/m 0.016 4.237 4.237 4.237 4.237 4.237 4.237 4.237

Zw/m −0.756 −1.464 −1.742 −1.645 −1.268 −1.113 −1.646 −1.480

Mw/Iyy −1.287 −1.126 −1.126 −1.126 −1.126 −1.227 −1.126 −1.143

Xq/m 0.035 0.294 0.560 0.347 −0.044 −0.058 −0.002 0.183

Zq/m 0.006 0.006 0.006 0.006 0.006 0.006 0.006 0.006

Mq/Iyy −0.499 −7.715 −1.532 −3.622 −6.470 −7.467 −4.460 −5.211

Xγp/m 7.458 16.553 20.746 21.329 12.767 9.796 18.457 16.608

Zγp/m −1.147 −11.333 −14.579 −14.826 −8.953 −7.405 −13.671 −11.795

Mγp/Iyy 1109.171 1015.702 1092.554 1108.319 1016.950 1058.045 1107.437 1066.501

Fit Percentage 21.982 49.090 48.640 49.920 45.110 43.180 46.520 48.300

Using the current flight data and dynamic model structure, it was not easy to obtain
dynamic model parameters with high fit percentage, even using the black box model
approach where there were no parameter restrictions. Moreover, it was found that the
parameters obtained were a little sensitive to the datasets used for system identification.
The possible reasons for this were: (1) velocities along x- and z-axes were not measured,
which degraded the accuracy of the related parameters, Xu, Xw, Xq, Zu, Zw, and Zq; (2) high-
frequency noise also contributed to accuracy degradation; and (3) there were nonlinear
coupling dynamic terms not included in the model. It has been reported that accuracy
can be improved if velocities along the x- and z-axes are available and nonlinear coupling
terms are included [77].

Although all dynamic model candidates showed similar fit percentages, GRAD1
was chosen for analysis and evaluation since it had the highest fit percentage. Identified
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parameters were evaluated in the basic form of the dynamic model [34], where filters and
servo dynamics were not included. The basic dynamic model is described as follows:

.
xbasic = Abasic xbasic + Bbasic ubasic, (12)

ybasic = Cbasic xbasic, (13)

xbasic =


u
w
q
ϑ

, (14)

Abasic =


Xu
m

Xw
m

Xq
m g

Zu
m

Zw
m

Zq
m 0

Mu
Iyy

Mw
Iyy

Mq
Iyy

0
0 0 1 0

, (15)

Bbasic =


Xγp
m

Zγp
m

Mγp
Iyy

0

, (16)

and Cbasic was set as
[

0 0 0 1
]

to describe the pitch angle measurement.
Figure 7 shows the open-loop frequency responses and a Nyquist diagram of the

GRAD1 and CFD dynamic models. When the frequency was under 0.01 rad/s, the low-
frequency gain of the identified GRAD1 dynamic model was similar to that of the CFD
dynamic model. As the frequency increased to higher than 0.3 rad/s, the gain of the
GRAD1 dynamic model was smaller than that of the CFD dynamic model. Moreover, at
mid-frequency, the GRAD1 dynamic model had a local minimum point. As the frequency
further increased to higher than 5 rad/s, both dynamic models had similar characteristics.
Poles of the GRAD1 were (2.86 ± 8.46i, −9.35, −1.64), while those of the CFD model were
(3.69 ± 7.58i, −9.22, −0.76). The unstable pole locations did not move much. However,
the magnitude of the stable dominant pole of the GRAD1 dynamic model was larger than
that of the CFD dynamic model. Thus, it is expected that response of the GRAD1 dynamic
model is faster than that of the CFD dynamic model. Both basic dynamic models encircle
the (−1, 0) point two times in the Nyquist diagram, meaning that if the loop is closed, the
two systems will be stable. However, Figure 7b shows that both models have very small
phase margins, with less than 8 degrees.

The simulation was used to analyze and compare extended dynamic models as shown
in Figure 8. Gain and phase margins of the GRAD1 dynamic model were 17.2 dB and 39.0◦,
respectively, while the gain and phase margins of the CFD dynamic model were 16.5 dB
and 30.3◦, respectively. In the Nyquist diagram, both extended dynamic models encircled
the (−1, 0) point two times. Both dynamic models had small gains in the low-frequency
range, which resulted in a large steady state error. To reduce the steady state error, the loop
gain should be increased. However, this may decrease the stability margins.

Figure 9 shows experimental flight data and simulation results of the GRAD1 dynamic
model using the PD feedback controller. As shown in Figure 9a, the pitch angle response of
the GRAD1 dynamic model was closer to the pitch angle from the experimental flight data
compared to that of the dynamic model from CFD. The peak and valley points predicted
using the GRAD1 dynamic model were more accurate than those of the CFD dynamic
model. Figure 9b also shows that the GRAD1 dynamic model was better than the CFD
dynamic model in following the pitch rate from the experimental flight data, neglecting the
high-frequency noise. The high-frequency noise was due to wing flapping, which degraded
the performances of system identification and control.
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4. Conclusions

In this study, we identified a dynamic model of the KUBeetle with several identification
approaches and methodologies using angle and angular rate data from onboard sensors
only. The gray box model approach was preferred to the black box model approach, because
the structure and integrity of parameters of the dynamic model could be maintained. Higher
weighting was given to the angle output because it had much lower noises compared to
angular rate output. It was found that dynamic models with high fit percentage were
obtained using datasets which included the data obtained using regular and low-frequency
reference commands. In addition, obtained parameters were slightly sensitive to the quality
of the dataset. GNA, LM, and GRAD identification methods showed similar results to each
other for two different datasets, while GRAD1 showed the highest fit percentage. These
consistent results indicate that the dynamic model was quite reliable and could represent
the main dynamic of the KUBeetle, although nonlinear dynamics were not fully identified.
Compared to that of the CFD dynamic model, the fit percentage was improved from 22%
to 49%. Increases in Mu complied with the lower CG of the KUBeetle. In addition, the
increases in Mq indicated higher damping caused by the body dynamics of the KUBeetle
that were not considered previously. The obtained dynamic model mainly works for
predicting hover and forward flight responses with pitch angle reference command under
0.3 radian, which is used in an experimental flight. The obtained dynamic model described
the pitch angular motion quite well, while the linear velocity-related parameters needed
more improvement. This is because there was no onboard speed sensor.
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From frequency domain analysis, it was found that the open-loop GRAD1 model
had a small phase margin indicating that KUBeetle stability could be easily affected by
the angular rate feedback gain changes. Moreover, the GRAD1 dynamic model had a
faster response because its stable dominant pole had a larger magnitude than the CFD
dynamic model. In addition, it showed a similar response to the experimental flight
data, neglecting high-frequency noises. It is expected that if the high-frequency noise
due to flapping could be reduced and the velocity could be estimated, the fit percentage
could be further improved. The time-domain and frequency responses of the identified
dynamic model were considerably closer to experimental flight data than those obtained by
numerical computation. Further studies are needed to reduce the high-frequency noise due
to flapping, to better estimate forward and vertical velocities, and to improve the accuracy
of identification.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/10
.3390/app12052486/s1, Video S1: Experimental Flight PD controller with regular frequency command
(speed 0.5×); Video S2: Experimental Flight PD controller with irregular frequency command (speed 0.5×).
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