Explicit Solution to Large Deformation of Cantilever Beam by Improved Homotopy Analysis Method II: Vertical and Horizontal Displacements
Abstract
:1. Introduction
2. Improved Homotopy Analysis Method
2.1. Problem Description
2.2. Fundamentals of Improved Homotopy Analysis Method
3. Vertical Displacement of Cantilever Beam by IHAM
3.1. Zero Order Deformation Equation
3.2. High Order Deformation Equations
3.3. Vertical Displacement at Free end of Cantilever Beam
3.3.1. Accurate Solution of Vertical Displacement
3.3.2. Control Parameter for Convergent Region
3.3.3. Control Parameters for Convergence Rate
3.3.4. 30th-Order Approximation Solution of Vertical Displacement
3.3.5. Homotopy-Páde Approximation
- the difference between the linear solution and the exact solution is remarkable;
- the 30th-order improved homotopy analysis solution for is much closer to the exact solution than does the 30th-order homotopy analysis solution for ;
- the convergence range and rate have been greatly improved by the expression by homotopy-Páde approximation;
- the Páde approximation solution by IHAM is more approximating to the exact solution than does the Páde approximation solution by HAM.
4. Horizontal Displacement of Cantilever Beam by IHAM
4.1. Zero Order Deformation Equation
4.2. High Order Deformation Equations
4.3. Horizontal Displacement at Free End of Cantilever Beam
4.3.1. Accurate Solution to Horizontal Displacement
4.3.2. Explicit Solution to Horizontal Displacement by IHAM
- the difference between the linear solution and the exact solution is remarkable;
- from result of Equation (4.32), result of Equation (4.34) and n = 30 result of Equation (4.37), the convergence regions of horizontal displacement increases with increasing iterations.
5. Discussions and Conclusions
5.1. Error Analysis of Vertical Displacement
5.2. Error Analysis of Horizontal Displacement
5.3. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
Rotation Angle |
Vertical Displacement |
Horizontal Displacement | ||||
---|---|---|---|---|---|---|
Exact Solutions | Exact Solutions | Exact Solutions | ||||
0 | 0 | 0 | 0 | 0 | 0 | |
0.3 | 0.094719 | 0.094751 | 0.098991 | 0.099038 | 0.0058994 | 0.0059052 |
0.6 | 0.18509 | 0.18530 | 0.19235 | 0.19266 | 0.022488 | 0.022563 |
0.9 | 0.26801 | 0.26853 | 0.27621 | 0.27699 | 0.047034 | 0.047300 |
1.2 | 0.34206 | 0.34291 | 0.34901 | 0.35030 | 0.076400 | 0.076933 |
1.5 | 0.40714 | 0.40825 | 0.41098 | 0.41271 | 0.10794 | 0.10872 |
1.8 | 0.46394 | 0.46520 | 0.46326 | 0.46534 | 0.13981 | 0.14076 |
2.1 | 0.51342 | 0.51477 | 0.50732 | 0.50966 | 0.17085 | 0.17190 |
2.4 | 0.55661 | 0.55798 | 0.54455 | 0.54709 | 0.20046 | 0.20153 |
2.7 | 0.59444 | 0.59580 | 0.57618 | 0.57888 | 0.22835 | 0.22939 |
3.0 | 0.62772 | 0.62905 | 0.60325 | 0.60605 | 0.25442 | 0.25540 |
3.3 | 0.65714 | 0.65843 | 0.62658 | 0.62945 | 0.27870 | 0.27961 |
3.6 | 0.68327 | 0.68452 | 0.64684 | 0.64975 | 0.30128 | 0.30210 |
3.9 | 0.70659 | 0.70774 | 0.66455 | 0.66746 | 0.32228 | 0.32310 |
4.2 | 0.72749 | 0.72821 | 0.68014 | 0.68282 | 0.34180 | 0.34302 |
4.5 | 0.74630 | 0.74664 | 0.69397 | 0.69571 | 0.35999 | 0.36042 |
4.8 | 0.76329 | — | 0.70629 | 0.70724 | 0.37695 | — |
5.1 | 0.77870 | — | 0.71735 | 0.72349 | 0.39279 | — |
5.4 | 0.79272 | — | 0.72731 | — | 0.40762 | — |
5.7 | 0.80552 | — | 0.73635 | — | 0.42153 | — |
6.0 | 0.81723 | — | 0.74457 | — | 0.43459 | — |
1 | 1 | 1 | 1 | 1 | 1 |
References
- He, G.K. High-rise building structure facing the 21st century. Build. Sci. 2002, 11, 1–4. (In Chinese) [Google Scholar]
- Hu, S.D.; Fang, E.H. Analysis of the world’s tallest 100 buildings. Constr. Technol. 2004, 35, 540–542. (In Chinese) [Google Scholar]
- Xiang, H.F. Prospect of world bridge engineering in the 21st century. J. Civ. Eng. 2000, 33, 1–6. (In Chinese) [Google Scholar]
- Qin, R. Long-Span Bridge Structure; Science Publishing House: Beijing, China, 2008. [Google Scholar]
- Gere, J.M.; Timoshenko, S.P. Mechanics of Materials; PWS Publishing Company: Boston, MA, USA, 1997. [Google Scholar]
- Love, A.E.H. The Mathematics Theory of Elasticicy, 4th ed.; New York Dover Publications: Mineola, NY, USA, 1944. [Google Scholar]
- Frisch-Fay, R. Flexible Bars; Butter Worths: London, UK, 1962. [Google Scholar]
- Yu, T.X.; Zhang, L.Z. Theory of Plastic Bending and Its Applications; Science Publishing House: Beijing, China, 1992. [Google Scholar]
- Nayfeh, A.H. Perturbation Methods; Wiley: New York, NY, USA, 2000. [Google Scholar]
- Novozhilov, V.V. Foundations of the Nonlinear Theory of Elasticity; Graylock Press: New York, NY, USA, 1953. [Google Scholar]
- Luo, A.C.J. Nonlinear Deformable-Body Dynamics; Higher Education Press: Beijing, China; Springer: Berlin/Heidelberg, Germany, 2010. [Google Scholar]
- Adomian, G. Nonlinear stochastic differential equations. J. Math. Anal. Appl. 1976, 55, 441–452. [Google Scholar] [CrossRef] [Green Version]
- Karmishin, A.V.; Zhukov, A.T.; Kolosov, V.G. Methods of Dynamics Calculation and Testing for Thin-Walled Structures; Mashinostroyenie: Moscow, Russia, 1990. (In Russian) [Google Scholar]
- Abbasbandy, S. The application of homotopy analysis method to nonlinear equations arising in heat transfer. Phys. Lett. A 2006, 360, 109–113. [Google Scholar] [CrossRef]
- Liang, S.; Jeffrey, D.J. Approximate solutions to a parameterized sixth order boundary value problem. Comput. Math. Appl. 2010, 59, 247–253. [Google Scholar] [CrossRef] [Green Version]
- Ghotbi, A.R.; Omidvar, M.; Barari, A. Infiltration in unsaturated soils—An analytical approach. Comput. Geotech. 2011, 38, 777–782. [Google Scholar] [CrossRef]
- Nassar, C.J.; Revelli, J.F.; Bowman, R.J. Application of the homotopy analysis method to the Poisson Boltzmann equation for semiconductor devices. Commun. Nonlinear Sci. Numer. Simul. 2011, 16, 2501–2512. [Google Scholar] [CrossRef]
- Aureli, M. A framework for iterative analysis of non-classically damped dynamical systems. J. Sound Vib. 2014, 333, 6688–6705. [Google Scholar] [CrossRef]
- Sardanyés, J.; Rodrigues, C.; Januário, C.; Martins, N.; Gil-Gómez, G.; Duarte, J. Activation of effector immune cells promotes tumor stochastic extinction: A homotopy analysis approach. Appl. Math. Comput. 2015, 252, 484–495. [Google Scholar] [CrossRef] [Green Version]
- Zou, K.; Nagarajaiah, S. An analytical method for analyzing symmetry-breaking bifurcation and period-doubling bifurcation. Commun. Nonlinear Sci. Numer. Simul. 2015, 22, 780–792. [Google Scholar] [CrossRef] [Green Version]
- Xu, D.; Lin, Z.; Liao, S.; Stiassnie, M. On the steady-state fully resonant progressive waves in water of finite depth. J. Fluid Mech. 2012, 710, 379–418. [Google Scholar] [CrossRef] [Green Version]
- Liu, Z.; Liao, S.J. Steady-state resonance of mulendle wave interactions in deep water. J. Fluid Mech. 2014, 742, 664–700. [Google Scholar] [CrossRef]
- Cheng, J.; Zhu, S.P.; Liao, S.J. An explicit series approximation to the optimal exercise boundary of American put options. Commun. Nonlin. Sci. Numer. Simul. 2010, 15, 1148–1158. [Google Scholar] [CrossRef]
- Liao, S.; Tan, Y. A general approach to obtain series solutions of nonlinear differential equations. Stud. Appl. Math. 2007, 119, 297–354. [Google Scholar] [CrossRef]
- Liao, S.; Zhao, Y. On the method of directly defining inverse mapping for nonlinear differential equations. Numer. Algor. 2016, 72, 989–1020. [Google Scholar] [CrossRef] [Green Version]
- Liao, S.J. Beyond Perturbation: Introduction to the Homotopy Analysis Method; Chapman & Hall/CRC Press: Boca Raton, FL, USA, 2003. [Google Scholar]
- Sajid, M.; Hayat, T. Comparison of HAM and HPM methods for nonlinear heat conduction and convection equations. Nonlinear Anal. Real World Appl. 2008, 9, 2296–2301. [Google Scholar] [CrossRef]
- Van Gorder, R.A. Analytical method for the construction of solutions to the Föppl–Von Kármán equations governing deflections of a thin flat plate. Int. J. Non-Linear Mech. 2012, 47, 1–6. [Google Scholar] [CrossRef]
- Zhong, X.X.; Liao, S.J. Analytic Solutions of Von Kármán Plate under Arbitrary Uniform Pressure—Equations in Differential Form. Stud. Appl. Math. 2017, 138, 371–400. [Google Scholar] [CrossRef] [Green Version]
- Liu, Z.; Xu, D.L.; Li, J.; Peng, T.; Alsaedi, A.; Liao, S.J. On the existence of steady-state resonant waves in experiments. J. Fluid Mech. 2015, 763, 1–23. [Google Scholar] [CrossRef] [Green Version]
- Liao, S.; Xu, D.; Stiassnie, M. On the steady-state nearly resonant waves. J. Fluid Mech. 2016, 794, 175–199. [Google Scholar] [CrossRef] [Green Version]
- Wang, J.; Chen, J.-K.; Liao, S. An explicit solution of the large deformation of a cantilever beam under point load at the free end. J. Comput. Appl. Math. 2008, 212, 320–330. [Google Scholar] [CrossRef] [Green Version]
Homotopy Analysis Method (HAM) | Improved Homotopy Analysis Method (IHAM) |
---|---|
Original and Auxiliary Higher order | ① Original and Auxiliary New |
② New and Auxiliary Higher order |
Exact Solution | (HAM) | (IHAM) | (IHAM) | ||||
---|---|---|---|---|---|---|---|
0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
0.1 | 0.033295 | 0.033310 | 0.0446% | 0.033302 | 0.0194% | 0.033301 | 0.0161% |
0.2 | 0.066364 | 0.066481 | 0.176% | 0.066414 | 0.0756% | 0.066405 | 0.0623% |
0.3 | 0.098991 | 0.099375 | 0.388% | 0.099152 | 0.163% | 0.099123 | 0.133% |
0.4 | 0.13098 | 0.13185 | 0.669% | 0.13133 | 0.272% | 0.13126 | 0.219% |
0.5 | 0.16214 | 0.16377 | 1.00% | 0.16278 | 0.390% | 0.16265 | 0.309% |
0.6 | 0.19235 | 0.19500 | 1.38% | 0.19332 | 0.504% | 0.19310 | 0.389% |
0.7 | 0.22148 | 0.22539 | 1.76% | 0.22281 | 0.599% | 0.22247 | 0.445% |
0.8 | 0.24945 | 0.25481 | 2.15% | 0.25109 | 0.658% | 0.25060 | 0.461% |
0.9 | 0.27621 | 0.28312 | 2.50% | 0.27805 | 0.666% | 0.27738 | 0.425% |
1.0 | 0.30172 | 0.31017 | 2.80% | 0.30356 | 0.611% | 0.30269 | 0.322% |
1.1 | 0.32598 | 0.33584 | 3.02% | 0.32755 | 0.480% | 0.32646 | 0.145% |
1.2 | 0.34901 | 0.35998 | 3.14% | 0.34993 | 0.264% | 0.34861 | 0.115% |
1.3 | 0.37082 | 0.38245 | 3.14% | 0.37067 | 0.0427% | 0.36911 | 0.461% |
1.4 | 0.39147 | 0.40312 | 2.97% | 0.38973 | 0.442% | 0.38797 | 0.892% |
1.5 | 0.41098 | 0.42184 | 2.64% | 0.40714 | 0.933% | 0.40521 | 1.40% |
1.6 | 0.42941 | 0.43847 | 2.11% | 0.42293 | 1.51% | 0.42089 | 1.99% |
1.7 | 0.44682 | 0.45289 | 1.36% | 0.43717 | 2.16% | 0.43510 | 2.62% |
1.8 | 0.46326 | 0.46494 | 0.361% | 0.44997 | 2.87% | 0.44800 | 3.30% |
1.9 | 0.47879 | 0.47448 | 0.899% | 0.46146 | 3.62% | 0.45975 | 3.98% |
2 | 0.49346 | 0.48139 | 2.44% | 0.47184 | 4.38% | 0.47058 | 4.64% |
1 | 1 | 0 | 1 | 0 | 1 | 0 |
Exact Solution | |||||||
---|---|---|---|---|---|---|---|
0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
0.2 | 0.066364 | 0.066365 | 0.000951% | 0.066368 | 0.00522% | 0.066385 | 0.0316% |
0.4 | 0.13098 | 0.13098 | 0.00286% | 0.13100 | 0.0183% | 0.13113 | 0.120% |
0.6 | 0.19235 | 0.19236 | 0.00418% | 0.19241 | 0.0339% | 0.19283 | 0.252% |
0.8 | 0.24945 | 0.24946 | 0.00464% | 0.24957 | 0.0480% | 0.25047 | 0.410% |
1.0 | 0.30172 | 0.30174 | 0.00486% | 0.30190 | 0.0602% | 0.30348 | 0.583% |
1.2 | 0.34901 | 0.34902 | 0.00369% | 0.34926 | 0.0713% | 0.35168 | 0.765% |
1.4 | 0.39147 | 0.39145 | 0.00312% | 0.39178 | 0.0803% | 0.39519 | 0.950% |
1.6 | 0.42941 | 0.42933 | 0.0201% | 0.42977 | 0.0829% | 0.43429 | 1.14% |
1.8 | 0.46326 | 0.46305 | 0.0457% | 0.46361 | 0.0750% | 0.46936 | 1.32% |
2.0 | 0.49346 | 0.49313 | 0.0665% | 0.49374 | 00572% | 0.50082 | 1.49% |
2.2 | 0.52042 | 0.52014 | 0.0539% | 0.52061 | 0.0371% | 0.52908 | 1.66% |
2.4 | 0.54455 | 0.54472 | 0.0319% | 0.54471 | 0.0296% | 0.55457 | 1.84% |
2.6 | 0.56619 | 0.56745 | 0.222% | 0.56646 | 0.0475% | 0.57767 | 2.03% |
2.8 | 0.58567 | 0.58846 | 0.476% | 0.58610 | 0.0741% | 0.59864 | 2.21% |
3 | 0.60325 | 0.60709 | 0.636% | 0.60340 | 0.0243% | 0.61745 | 2.35% |
3.2 | 0.61918 | 0.62601 | 1.10% | 0.61870 | 0.0777% | 0.63428 | 2.44% |
3.4 | 0.63365 | 0.68393 | 7.94% | 0.64405 | 1.64% | 0.65542 | 3.44% |
3.6 | 0.64684 | — | — | 0.76181 | 17.8% | 0.72504 | 12.1% |
3.8 | 0.65890 | — | — | — | — | — | — |
4.0 | 0.66996 | — | — | — | — | — | — |
1 | 1 | 0 | 1 | 0 | 1 | 0 |
Exact Solution | (HAM) | (IHAM) | |||
---|---|---|---|---|---|
0 | 0 | 0 | 0 | 0 | 0 |
0.3 | 0.098991 | 0.099038 | 0.0481% | 0.099038 | 0.0482% |
0.6 | 0.19235 | 0.19266 | 0.160% | 0.19266 | 0.162% |
0.9 | 0.27621 | 0.27697 | 0.275% | 0.27699 | 0.282% |
1.2 | 0.34901 | 0.35025 | 0.355% | 0.35030 | 0.370% |
1.5 | 0.41098 | 0.41262 | 0.400% | 0.41271 | 0.422% |
1.8 | 0.46326 | 0.46522 | 0.423% | 0.46534 | 0.449% |
2.1 | 0.50732 | 0.50953 | 0.437% | 0.50966 | 0.462% |
2.4 | 0.54455 | 0.54699 | 0.449% | 0.54709 | 0.467% |
2.7 | 0.57618 | 0.57883 | 0.459% | 0.57888 | 0.467% |
3.0 | 0.60325 | 0.60609 | 0.470% | 0.60605 | 0.464% |
3.3 | 0.62658 | 0.62959 | 0.479% | 0.62945 | 0.457% |
3.6 | 0.64684 | 0.65001 | 0.490% | 0.64975 | 0.450% |
3.9 | 0.66455 | 0.66794 | 0.510% | 0.66746 | 0.438% |
4.2 | 0.68014 | 0.68338 | 0.475% | 0.68282 | 0.393% |
4.5 | 0.69397 | 0.69274 | 0.177% | 0.69571 | 0.251% |
4.8 | 0.70629 | 0.68406 | 3.15% | 0.70724 | 0.135% |
5.1 | 0.71735 | 0.65758 | 8.33% | 0.72349 | 0.856% |
5.4 | 0.72731 | 0.76120 | 4.66% | 0.73988 | 1.73% |
5.7 | 0.73635 | — | — | 0.68583 | 6.86% |
6.0 | 0.74457 | — | — | 0.44959 | 39.6% |
1 | 1 | 0 | 1 | 0 |
Exact Solution | (HAM) | (IHAM) | |||
---|---|---|---|---|---|
0 | 0 | 0 | 0 | 0 | 0 |
0.5 | 0.16214 | 0.16234 | 0.120% | 0.16234 | 0.121% |
1 | 0.30172 | 0.30265 | 0.307% | 0.30267 | 0.315% |
1.5 | 0.41098 | 0.41262 | 0.400% | 0.41271 | 0.422% |
2 | 0.49346 | 0.49559 | 0.433% | 0.49572 | 0.459% |
2.5 | 0.55566 | 0.55817 | 0.452% | 0.55826 | 0.468% |
3 | 0.60325 | 0.60610 | 0.471% | 0.60605 | 0.463% |
3.5 | 0.64039 | 0.64360 | 0.501% | 0.64325 | 0.446% |
4 | 0.66996 | 0.67379 | 0.571% | 0.67272 | 0.412% |
4.5 | 0.69397 | 0.69899 | 0.723% | 0.69645 | 0.358% |
5 | 0.71379 | 0.72096 | 1.00% | 0.71587 | 0.292% |
5.5 | 0.73042 | 0.74102 | 1.45% | 0.73214 | 0.235% |
6 | 0.74457 | 0.76007 | 2.08% | 0.74616 | 0.213% |
6.5 | 0.75676 | 0.77877 | 2.91% | 0.75867 | 0.252% |
7 | 0.76737 | 0.79754 | 3.93% | 0.77024 | 0.374% |
7.5 | 0.77670 | 0.81664 | 5.14% | 0.78132 | 0594% |
8 | 0.78498 | 0.83624 | 6.53% | 0.79222 | 0.922% |
8.5 | 0.79239 | 0.85642 | 8.08% | 0.80319 | 1.36% |
9 | 0.79906 | 0.87725 | 9.79% | 0.81439 | 1.92% |
9.5 | 0.80510 | 0.89871 | 11.6% | 0.82593 | 2.59% |
10 | 0.81061 | 0.92080 | 13.6% | 0.83788 | 3.36% |
1 | 1 | 0 | 1 | 0 |
Exact Solution | (HAM) | (IHAM) | |||
---|---|---|---|---|---|
0 | 0 | 0 | 0 | 0 | 0 |
0.3 | 0.0058994 | 0.0059063 | 0.116% | 0.0059052 | 0.0993% |
0.6 | 0.022488 | 0.022578 | 0.402% | 0.022563 | 0.335% |
0.9 | 0.047034 | 0.047359 | 0.690% | 0.047300 | 0.565% |
1.2 | 0.076400 | 0.077065 | 0.870% | 0.076933 | 0.696% |
1.5 | 0.10794 | 0.10894 | 0.923% | 0.10872 | 0.723% |
1.8 | 0.13981 | 0.14104 | 0.886% | 0.14076 | 0.681% |
2.1 | 0.17085 | 0.17223 | 0.804% | 0.17190 | 0.610% |
2.4 | 0.20046 | 0.20188 | 0.705% | 0.20153 | 0.531% |
2.7 | 0.22835 | 0.22973 | 0.603% | 0.22939 | 0.456% |
3.0 | 0.25442 | 0.25570 | 0.504% | 0.25540 | 0.387% |
3.3 | 0.27870 | 0.27985 | 0.411% | 0.27961 | 0.324% |
3.6 | 0.30128 | 0.30226 | 0.324% | 0.30210 | 0.270% |
3.9 | 0.32228 | 0.32316 | 0.274% | 0.32310 | 0.257% |
4.2 | 0.34180 | 0.34334 | 0.448% | 0.34302 | 0.356% |
4.5 | 0.35999 | 0.36371 | 1.03% | 0.36042 | 0.121% |
4.8 | 0.37695 | 0.37525 | 0.449% | 0.36186 | 4.00% |
5.1 | 0.39279 | 0.31920 | 18.7% | 0.30447 | 22.5% |
5.4 | 0.40762 | 0.027011 | 93.4% | 0.14924 | 63.4% |
5.7 | 0.42153 | — | — | 0.10903 | 74.1% |
6.0 | 0.43459 | — | — | — | — |
1 | 1 | 0 | 1 | 0 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, Y.; Li, X.; Xie, C.; Huo, S. Explicit Solution to Large Deformation of Cantilever Beam by Improved Homotopy Analysis Method II: Vertical and Horizontal Displacements. Appl. Sci. 2022, 12, 2513. https://doi.org/10.3390/app12052513
Li Y, Li X, Xie C, Huo S. Explicit Solution to Large Deformation of Cantilever Beam by Improved Homotopy Analysis Method II: Vertical and Horizontal Displacements. Applied Sciences. 2022; 12(5):2513. https://doi.org/10.3390/app12052513
Chicago/Turabian StyleLi, Yinshan, Xinye Li, Chen Xie, and Shuhao Huo. 2022. "Explicit Solution to Large Deformation of Cantilever Beam by Improved Homotopy Analysis Method II: Vertical and Horizontal Displacements" Applied Sciences 12, no. 5: 2513. https://doi.org/10.3390/app12052513
APA StyleLi, Y., Li, X., Xie, C., & Huo, S. (2022). Explicit Solution to Large Deformation of Cantilever Beam by Improved Homotopy Analysis Method II: Vertical and Horizontal Displacements. Applied Sciences, 12(5), 2513. https://doi.org/10.3390/app12052513