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Abstract: Explicit solutions to vertical and horizontal displacements are derived for large defor-
mation of a cantilever beam under point load at the free end by an improved homotopy analysis
method (IHAM). Quadratic and cubic nonlinear differential equations are adopted to construct
more proficient nonlinear equations for vertical and horizontal displacements respectively combined
with their currently available nonlinear displacement equations. Higher-order nonlinear iterative
homotopy equations are established to solve the vertical and horizontal displacements by combining
simultaneous equations of the constructed nonlinear equations and the auxiliary linear equations.
The convergence range of vertical displacement is extended by the homotopy-Páde approximation.
The explicit solutions to the vertical and horizontal displacements are in favorable agreements with
the respective exact solutions. The convergence ranges for a relative error of 1% by the improved
homotopy analysis method for vertical and horizontal displacements increases by 60% and 7%,
respectively. These explicit formulas are helpful in practical engineering design for very slender
structures, such as high-rise buildings and long bridges.

Keywords: improved homotopy analysis method; large deformation of cantilever beam; strong
nonlinearity; vertical displacement; horizontal displacement

1. Introduction

In view of the shortage of land worldwide, especially in metropolitan areas, high-rise
building is a prioritized land-efficient architectural form developed more than 100 years
ago. High-rise building is the product of the comprehensive application of modern sciences
and engineering technologies. Smooth construction and sustainability of this new structural
form depends on more accurate calculation theory and method than those for non-high-rise
structures in light of that the extrusion of high-rise building into space could be as high as
800 m plus, and slight artefacts could be exaggerated into intractable unpredictability. Since
the 21st century, beam-like structures have achieved overwhelming popularity, such as in
high-rise buildings [1,2], long-span bridges [3,4], robots and aerospace; however, analysis
methods for this form of structure are still those conventional Euler-Bernoulli laws for large
deflection beams, which contain implicit integral to hinder general engineering application.
An explicit higher-resolution analysis method is expected to tackle the high nonlinearity in
high-rise buildings or long bridges.

The general theory of elastic deflection is called Elastica. To solve a general problem
of elastic large deflection, the equivalent load, deflection and longitudinal displacement
can be expressed by an analytic expression of elliptic integrals with free-end rotation angle
as parameters [5]; indeed, the results have been reported extensively in the classical works
of elastic mechanics [6–8]. For a cantilever beam subject to point load, the solution to this
elastic problem is still an implicit solution with an elliptic integral.
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In this study, the high-rise building is simplified as a large deformation of a cantilever
beam subject to point load at the free end, for example, of a loading extremity, as shown in
Figure 1. Given that the traditional analytical methods for solving nonlinear equations such
as perturbation [9], methods introduced in [10,11], Adomian decomposition method [12],
and δ-expansion method [13], in addition to the elliptical integrals mentioned above,
cannot provide accurate, convergent and simple solutions, we aim to derive an explicit
and accurate expression for rotation angle θb, vertical displacement δv and horizontal
displacement δh to minimize the potential unpredictability in the large deformation of the
long cantilever-like building.

Figure 1. Large deformation of beam under point load at the free end.

Unlike the perturbation technique, the homotopy analysis method (HAM) is inde-
pendent of any small/large physical parameters. HAM provides us great freedom to
choose equation-type and solution expression of the high order approximation equations.
A convergence-control parameter h is introduced into the series solutions to guarantee the
convergence. HAM distinguishes itself from other analytic approaches to be applied to
complicated problems with strong nonlinearity [14–27]. The Föppl–Von Kármán’s plate
equations were solved by HAM [28,29]. Especially, the steady-state resonant waves were
firstly predicted by the HAM in theory [21,22,30,31], which were then confirmed experi-
mentally [30].

Ji Wang et al. derived an explicit solution to the large deformation of a cantilever
beam under point load at the free end with HAM [32]. However, the improficiency of
this method is identified to be a low convergence rate due to the step-by-step iteration of
solutions of linear differential equations to approximate the exact solutions of complex
non-linear differential equations; moreover, it fails to serve explicit solutions of vertical and
horizontal displacements for large deformation of the beam.

In our previous paper, “Explicit Solution to Large Deformation Cantilever Beam by
Improved Homotopy Analysis Method I: ROTATION ANGLE”, an improved homotopy
analysis method (IHAM) was proposed. In IHAM, an auxiliary nonlinear operator ε
is introduced to improve the convergence rate and extend the convergence range. The
improved homotopy analysis method was used to obtain the explicit solution to the rotation
angle for the large deformation of a cantilever beam under point load at the free end.

For small deflection, the horizontal displacement of the cantilever beam is neglected
and only the deflection and rotation angle are calculated. For large deflection, horizontal
displacement is signified not to be neglected. Based on the explicit solution to the rotation
angle obtained in our previous paper, explicit expressions for the deflection and horizontal
displacement are derived using the improved homotopy analysis method in this paper.
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2. Improved Homotopy Analysis Method
2.1. Problem Description

The bending equations of a uniform cross-section beam with large deformation
are [5–8]

dθ(s)
ds

=
F

EI
[l − x(s)] (2.1a)

dv(s)
ds

= sin[θ(s)] (2.1b)

dx(s)
ds

= cos[θ(s)] (2.1c)

subject to boundary conditions

θ(0) = 0, θ′(L) = 0 (2.2a)

v(0) = 0 (2.2b)

x(0) = 0 (2.2c)

where s is the arc-coordinate of the neutral axis of the beam; x denotes the horizontal
coordinate from the fixed end; L represents the length of the beam; F stands for the point
load at the free end; EI is the bending stiffness of the beam; θ specifies the rotation angle of
cross-section of the beam; and l is the horizontal distance of two ends and is unknown.

Differentiating the equation with respect to s and then using the dimensionless vari-
ables ξ = s/L, α = FL2/(EI), X = x/L, V = v/L, Θb = θb/(π/2), Vb = δv/L and
Ub = δh/L, the original equations become

θ′′ (ξ) + α cos[θ(ξ)] = 0 (2.3a)

V′(ξ) = sin[θ(ξ)] (2.3b)

X′(ξ) = cos[θ(ξ)] (2.3c)

subject to boundary conditions

θ(0) = 0, θ′(1) = 0 (2.4a)

V(0) = 0 (2.4b)

X(0) = 0 (2.4c)

where the prime denotes the differentiation with respect to ξ.
For infinitesimal deformation, the below linear equations are sufficiently accurate

θ′′ (ξ) + α = 0 (2.5a)

V′(ξ) = θ(ξ) (2.5b)

X′(ξ) = 1 (2.5c)

subject to boundary conditions

θ(0) = 0, θ′(1) = 0 (2.6a)

V(0) = 0 (2.6b)

X(0) = 0 (2.6c)

Accordingly, the solutions are

θ(ξ) =
α

2
(2− ξ)ξ (2.7a)
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V(ξ) =
α

6
ξ2(3− ξ) (2.7b)

X(ξ) = ξ (2.7c)

The rotation angle, vertical and horizontal displacement of cross-section plane at end
as denoted by θb = θ(1), Vb = V(1), Ub = 1− X(1), are calculated to be

θb =
α

2
(2.8a)

Vb =
α

3
(2.8b)

Ub = 0 (2.8c)

In our previous paper, “Explicit Solution to Large Deformation Cantilever Beam by
Improved Homotopy Analysis Method I: ROTATION ANGLE”, the improved homotopy
analysis method was proposed to solve Equations (2.3a) and (2.4a), and a series of solutions
to the rotation angle are derived as [27]:

θ(ξ) = θ0(ξ) +
+∞

∑
n=1

θn(ξ) (2.9)

where

θn(ξ) =
+∞

∑
k=1

akξk, n = 1, 2, · · · (2.10)

In this paper, we apply the improved homotopy analysis method to derive the ex-
plicit expressions of deflection and horizontal displacement using Equations (2.3b), (2.4b),
(2.3c), and (2.4c) on the basis of the derived explicit expressions of rotation angle in
Equations (2.9) and (2.10).

2.2. Fundamentals of Improved Homotopy Analysis Method

For quick reference, the new improved homotopy analysis method (IHAM) is briefed.
The IHAM is essentially different from the HAM. Table 1 compares the formulations of
IHAM and HAM.

Table 1. Comparison of improved homotopy analysis method against homotopy analysis method.

Homotopy Analysis Method (HAM) Improved Homotopy Analysis Method (IHAM)

Original N(ξ)= 0 and
Auxiliary L(ξ)= 0

⇒ Higher orderH(ξ; q)= 0

1© Original N(ξ)= 0 and
Auxiliary N0(ξ)= 0
⇒ New N(ξ; q)= 0

2© New N(ξ; q)= 0 and
Auxiliary L(ξ)= 0

⇒ Higher orderH(ξ; q)= 0

Notes: N—nonlinear operator, L—linear operator, N0—auxiliary nonlinear operator, N—new nonlinear operator,
H—homotopy operator, ξ—independent variable, q—embedding parameter.

Substantial difference lies in the different construction methods. HAM constructs
a higher order nonlinear iterative homotopy differential equation by the selected linear
differential equation and the original non-linear differential equation. However, IHAM
builds up a higher-order nonlinear iterative homotopy differential equation using the
selected linear differential equation, the selected simple non-linear differential equation
and the original non-linear differential equation (See Table 1).

Generalized Equation (2.3b) or Equation (2.3c) have the form of

N[v(ξ)]= 0: v′(ξ) = f [w(ξ)], ξ ∈ [0, 1] (2.11)
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where in f (w) is a derivable function in compliance with the boundary conditions of
fw(0) = c0, f ′w(0) = c1, 1

2! fw(0) = c2, 1
3! f ′′′w (0) = c3; w(ξ) is the selected polynomial

function of an independent variable in Equations (2.9) and (2.10). The boundary condition
in Equation (2.4b) or Equation (2.4c) can be expressed as

v(0) = 0 (2.12)

Note that it is unnecessary to assume the existence of any small or large parameters in
Equation (2.11). Thus, the proposed approach is general.

Linearizing original Equation (2.11) yields

L[v(ξ)]= 0: v′(ξ) = c0 + c1w(ξ), ξ ∈ [0, 1] (2.13)

which complies to the boundary condition of

v(0) = 0 (2.14)

We choose the simplest auxiliary nonlinear equations of

N0[v(ξ)] = 0: v′(ξ) = c0 + c1w(ξ) + c2ε2w2(ξ) + c3ε1w3(ξ), ξ ∈ [0, 1] (2.15)

herein, c0, c1, c2 and c3 are undetermined coefficients; and ε1 ∈ [0, 1], ε2 ∈ [0, 1], ε2
1 + ε2

2 6= 0.
which satisfies the boundary condition of

v(0)= 0 (2.16)

Detailed formulation for the improved homotopy analysis method could be found
in our previous paper titled “Explicit Solution to Large Deformation Cantilever Beam by
Improved Homotopy Analysis Method I: ROTATION ANGLE”.

3. Vertical Displacement of Cantilever Beam by IHAM
3.1. Zero Order Deformation Equation

The nonlinear boundary value Equations (2.3b) and (2.4b) are then solved by IHAM
to derive explicit form for Vb. To start with, V(ξ) is expressed by power series of ξ, i.e.,

V(ξ) =
+∞

∑
k=1

bkξk (3.1)

where bk is a constant coefficient. Since Equation (2.7b) from linear equation is an appropri-
ate initial guess, we choose

V0(ξ) =
α

6
ξ2(3− ξ) (3.2)

The equivalent nonlinear Equation (2.3b) becomes

V′ − θ +
ε1

3!
θ3 = 0 (3.3)

subject to boundary condition
V(0) = 0 (3.4)

where ε1 is the coefficient, and ε1 ∈ [0, 1].
When ε1= 0, Equation (3.3) becomes linear Equation (2.5b), so that

V′ − θ = 0 (3.5)
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When ε1= 1, Equation (3.3) becomes

V′ − θ +
1
3!

θ3 = 0 (3.6)

Equation (3.6) is an approximate expression of the second-order Taylor expansion of
sine function in view of that

sin θ ≈ θ − 1
3!

θ3 (3.7)

According to the original Equation (2.3b) and the equivalent Equation (3.3), we define
a nonlinear operator as

Nv[ν(ξ; q), ψ(ξ, q), q, ε1] =
dν(ξ; q)

dξ
− sin[q · ψ(ξ, q)]

− (1− q)ψ(ξ, q) +
ε1

3!

(
1− q3

)
[ψ(ξ, q)]3 (3.8)

where q ∈ [0, 1] is an embedding parameter; ν(ξ; q), ψ(ξ; q) are dependent on ξ and q; ε1 is
a control parameter to represent the convergent region, and ε1 ∈ [0, 1].

When q = 0, there is

Nv[ν(ξ; 0), ψ(ξ, 0), 0, ε1] =
dν(ξ; 0)

dξ
− ψ(ξ, 0) +

ε1

3!
[ψ(ξ, 0)]3 (3.9)

If q = 1, it yields

Nv[ν(ξ; 1), ψ(ξ, 1), 1, ε1] =
dν(ξ; 1)

dξ
− sin[ψ(ξ, 1)] (3.10)

Letting

Lv[ν(ξ; q)] =
∂ν(ξ; q)

∂ξ
(3.11)

be an auxiliary linear operator, and h ∈ [−1, 0) denotes a nonzero auxiliary parameter
(called convergence-control parameter), a homotopy is then constructed as

Hv[ν(ξ; q), q] := (1− q)Lv[ν(ξ; q)−V0(ξ)]

− qh1Nv[ν(ξ; q), ψ(ξ, q), q, ε1] (3.12)

When q = 0, we have

Hv[ν(ξ; 0), 0] := Lv[ν(ξ; 0)−V0(ξ)] (3.13)

If q = 1, there is
Hv[ν(ξ; 1), 1] := −h1Nv[ν(ξ; 1), 1, ε1]

= −h1

{
dν(ξ;1)

dξ − sin[ψ(ξ, 1)]
} (3.14)

Thus, by enforcing
Hv[ν(ξ; q), q] = 0

we have a family of equations

(1− q)Lv[ν(ξ; q)−V0(ξ)] = qh1Nv[ν(ξ; q), ψ(ξ, q), q, ε1] (3.15)

subject to the boundary condition of

ν(0; q)= 0 (3.16)
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When q = 0, we have

ν(ξ; 0) = V0(ξ), ψ(ξ; 0) = θ0(ξ) (3.17)

When q = 1, Equations (3.15) and (3.16) are equivalent to the original Equations (2.3b)
and (2.4b), provided that

ν(ξ; 1) = V(ξ), ψ(ξ; 1) = θ(ξ) (3.18)

Thus, as q increases from 0 to 1, ν(ξ; q) evolves smoothly from the specified initial
guess V0(ξ) to the solution V(ξ) of Equations (2.3b) and (2.4b).

With reference to Equation (3.17), by expanding ν(ξ; q) into Taylor series of the em-
bedding parameter q, we have

ν(ξ; q) = V0(ξ) +
+∞

∑
n=1

Vn(ξ)qn (3.19a)

ψ(ξ; q) = θ0(ξ) +
+∞

∑
n=1

θn(ξ)qn (3.19b)

where

Vn =
1
n!

∂nν(ξ; q)
∂qn

∣∣∣∣
q=0

, θn =
1
n!

∂nψ(ξ; q)
∂qn

∣∣∣∣
q=0

It is worth noting that the zero order deformation Equation (3.15) contains auxiliary
parameters ε1, h1. Auxiliary function H1(ξ; q, ε1) has the form of

H1(ξ; q, ε1) = −(1− q)ψ(ξ, q) +
ε1

3!

(
1− q3

)
[ψ(ξ, q)]3

Assuming that h1 and ε1 are properly chosen, so that Equation (3.18) is convergent at
q = 1. Thus, we have

V(ξ) = V0(ξ) +
+∞

∑
n=1

Vn(ξ) (3.20a)

θ(ξ) = θ0(ξ) +
+∞

∑
n=1

θn(ξ) (3.20b)

The governing equations of Vn(ξ) can be deduced from the 0th-order deformation
Equations (3.15) and (3.16).

3.2. High Order Deformation Equations

Substituting Equation (3.19) into Equation (3.15) and differentiating Equation (3.15) n
times with respect to the embedding parameter q, then dividing by n! and setting q = 0,
we have the n th-order deformation equation as below,

Lv[Vn(ξ)− χnVn−1(ξ)] = h1Rv
n(V0, V1, · · · , Vn−1; θ0, θ1, · · · , θn−1) (3.21)

Equation (3.21) is subject to boundary conditions of

Vn(0)= 0 (3.22)

where

Rv
n =

1
(n− 1)!

∂n−1Nv[ν(ξ; q), ψ(ξ; q), q, ε1]

∂qn−1

∣∣∣∣
q=0

(3.23)

and

χn =

{
0, n ≤ 1
1, n > 1

(3.24)
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Combining Equations (3.8) and (3.23), we have

Rν
1 = V′0(ξ)− θ0(ξ) +

ε1

6
θ3

0(ξ) (3.25a)

Rv
2 = V′1(ξ)− θ1(ξ) +

ε1

2
θ2

0(ξ)θ1(ξ) (3.25b)

Rv
3 = V′2(ξ)− θ2(ξ) +

ε1

2
θ2

0(ξ)θ2(ξ) +
ε1

2
θ0(ξ)θ

2
1(ξ) (3.25c)

Rv
4 = V′3(ξ)− θ3(ξ) +

1
6 θ3

0(ξ)−
ε1
6 θ3

0(ξ)

+ ε1
6 θ3

1(ξ) +
ε1
2 θ2

0(ξ)θ3(ξ) + ε1θ0(ξ)θ1(ξ)θ2(ξ)
(3.25d)

Rv
5 = V′4(ξ)− θ4(ξ) +

1
2 θ2

0(ξ)θ1(ξ)

− ε1
2 θ2

0(ξ)θ1(ξ) +
ε1
2 θ2

0(ξ)θ4(ξ) +
ε1
2 θ0(ξ)θ

2
2(ξ)

+ ε1
2 θ2

1(ξ)θ2(ξ) + ε1θ0(ξ)θ1(ξ)θ3(ξ)

(3.25e)

These equations can be solved by symbolic calculation software such as Maple, Mat-
lab, etc. Thereafter, the linear high-order deformation Equations (3.21) and (3.22) can be
solved explicitly.

The solutions given by the IHAM contains auxiliary parameters ε1 and h1, which
control and adjust the convergence region and rate of IHAM solution series.

3.3. Vertical Displacement at Free end of Cantilever Beam
3.3.1. Accurate Solution of Vertical Displacement

From Equation (2.3), the transcendental equation used to solve Vb is as follows

Vb = 1− 2√
α
[E(µ)− E(φ, µ)] (3.26)

where

E(µ) =
∫ π/2

0

dt√
1− µ2 sin2 t

(3.27a)

E(φ, µ) =
∫ φ

0

dt√
1− µ2 sin2 t

(3.27b)

herein E(µ) is complete elliptic integral of the second kind; E(φ, µ) is the elliptic integral of
the second kind; and

φ = arcsin
1√
2 µ

(3.28)

µ =

√
1 + sin θb

2
(3.29)

From Equation (2.8b), the linear solution of the vertical displacement at the free end is

Vb =
α

3
(3.30)

When the relative error ∆ ≤ 1%, the convergent region of the linear solution is

α ∈ [0, 0.29], Vb ∈ [0, 0.097], 0 ≤ δv ≤ 0.097L (3.31)

3.3.2. Control Parameter ε1 ∈ [0, 1] for Convergent Region

Combining Equation (2.3b) with Equation (3.3) gives

sin θ = θ − ε1

3!
θ3 (3.32)
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When θ = π
2 , we have

1 =
π

2
− ε1

3!

(π

2

)3
(3.33)

Accordingly, the optimal convergence parameter for the full coverage is derived as

ε1 =
24(π − 2)

π3 (3.34)

When n = 2, h = −1, ε = 8/π2, the 2nd-order approximation of Vb by IHAM is

Vb = 1
3 α+2.3159 × 10−2h1α3 + 1.9048× 10−3h1ε1α3

+9.5238× 10−3h2
1ε1α3 − 2.0430× 10−3h1ε1α5 (3.35)

For example, the 2nd-order approximation of Vb with h1 = −1, ε1 = 24(π − 2)/π3 is

Vb =
1
3

α− 3.1575× 10−2α3 + 1.8053× 10−3α5 (3.36)

When the relative error ∆ ≤ 1%, the convergent region of the 2nd-order approximation
by IHAM is

α ∈ [0, 1.5], Vb ∈ [0, 0.41], 0 ≤ δv ≤ 0.41L (3.37)

Table 2 shows 2nd order numerical solutions V[n=2]
b by IHAM with different values ε1

compared with exact solutions Vb. The relative error in Table 2 is calculated by

∆ =

∣∣∣V[n=2]
b −Vb

∣∣∣
Vb

× 100% (3.38)

Table 2. 2st-order numerical solutions V[n=2]
b by IHAM (h1 = −1) with different values ε1 compared

with exact solutions Vb.

a
Exact Solution ε1 = 0

(HAM)
ε1 = 24(π−2)/π3

(IHAM)
ε1 = 1

(IHAM)

Vb Vb ∆ Vb ∆ Vb ∆

0 0 0 0 0 0 0 0

0.1 0.033295 0.033310 0.0446% 0.033302 0.0194% 0.033301 0.0161%

0.2 0.066364 0.066481 0.176% 0.066414 0.0756% 0.066405 0.0623%

0.3 0.098991 0.099375 0.388% 0.099152 0.163% 0.099123 0.133%

0.4 0.13098 0.13185 0.669% 0.13133 0.272% 0.13126 0.219%

0.5 0.16214 0.16377 1.00% 0.16278 0.390% 0.16265 0.309%

0.6 0.19235 0.19500 1.38% 0.19332 0.504% 0.19310 0.389%

0.7 0.22148 0.22539 1.76% 0.22281 0.599% 0.22247 0.445%

0.8 0.24945 0.25481 2.15% 0.25109 0.658% 0.25060 0.461%

0.9 0.27621 0.28312 2.50% 0.27805 0.666% 0.27738 0.425%

1.0 0.30172 0.31017 2.80% 0.30356 0.611% 0.30269 0.322%

1.1 0.32598 0.33584 3.02% 0.32755 0.480% 0.32646 0.145%

1.2 0.34901 0.35998 3.14% 0.34993 0.264% 0.34861 0.115%

1.3 0.37082 0.38245 3.14% 0.37067 0.0427% 0.36911 0.461%

1.4 0.39147 0.40312 2.97% 0.38973 0.442% 0.38797 0.892%

1.5 0.41098 0.42184 2.64% 0.40714 0.933% 0.40521 1.40%

1.6 0.42941 0.43847 2.11% 0.42293 1.51% 0.42089 1.99%

1.7 0.44682 0.45289 1.36% 0.43717 2.16% 0.43510 2.62%
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Table 2. Cont.

a
Exact Solution ε1 = 0

(HAM)
ε1 = 24(π−2)/π3

(IHAM)
ε1 = 1

(IHAM)

Vb Vb ∆ Vb ∆ Vb ∆

1.8 0.46326 0.46494 0.361% 0.44997 2.87% 0.44800 3.30%

1.9 0.47879 0.47448 0.899% 0.46146 3.62% 0.45975 3.98%

2 0.49346 0.48139 2.44% 0.47184 4.38% 0.47058 4.64%

∞ 1 1 0 1 0 1 0

After two iterations, when ε1 = 0, the convergence region of Vb is 0 <α ≤ 0.5. When
ε1 = 24(π − 2)/π3, the convergence region of Vb is 0 < α ≤ 1.5, whence the convergence
region is expanded by 200% compared to the case with ε1 = 0.

When 0 < α ≤ 0.5, ε1 increases from 0 to 1, the series of solutions of vertical displace-
ment converge to the exact solution with relative error to the exact solution is less than 1%,
so that the effective region of ε1 is identified to be Rε1 = [0, 1].

Thus, the optimal control parameters for the convergence region of the improved
homotopy analysis method is identified to be ε1 = 24(π − 2)/π3.

3.3.3. Control Parameters h1 ∈ [−1, 0) for Convergence Rate

By IHAM, when ε = 8/π2, h = −0.5, ε1 = 24(π − 2)/π3, h1 = −0.5, the 10th-order
approximation of Vb is

Vb = 1
3 α− 3.7639× 10−2α3 + 7.5564× 10−3α5

−1.6013× 10−3α7+2.9034× 10−4α9 − 4.1074× 10−5α11

+4.3984× 10−6α13 − 3.5126× 10−7α15 + 2.0566× 10−8α17

−8.2692× 10−10α19 + 1.7210× 10−11α21

(3.39)

When the relative error ∆ ≤ 1%, the convergent regions of the 10th-order approxima-
tion by IHAM are

α ∈ [0, 3.3], Vb ∈ [0, 0.63], 0 ≤ δv ≤ 0.63L (3.40)

Table 3 compares the 10th-order numerical solutions with the exact solutions. The
relative error in Table 3 is calculated by

∆ =

∣∣∣V[n=10]
b −Vb

∣∣∣
Vb

× 100% (3.41)

Table 3. 10th-order numerical solutions V[n=10]
b by IHAM with different values of h1

(ε1 = 24(π − 2)/π3) compared with exact solutions Vb.

α
Exact Solution h1 = 1 h1 = −0.5 h1 = −0.3

Vb Vb ∆ Vb ∆ Vb ∆

0 0 0 0 0 0 0 0
0.2 0.066364 0.066365 0.000951% 0.066368 0.00522% 0.066385 0.0316%
0.4 0.13098 0.13098 0.00286% 0.13100 0.0183% 0.13113 0.120%
0.6 0.19235 0.19236 0.00418% 0.19241 0.0339% 0.19283 0.252%
0.8 0.24945 0.24946 0.00464% 0.24957 0.0480% 0.25047 0.410%
1.0 0.30172 0.30174 0.00486% 0.30190 0.0602% 0.30348 0.583%
1.2 0.34901 0.34902 0.00369% 0.34926 0.0713% 0.35168 0.765%
1.4 0.39147 0.39145 0.00312% 0.39178 0.0803% 0.39519 0.950%
1.6 0.42941 0.42933 0.0201% 0.42977 0.0829% 0.43429 1.14%
1.8 0.46326 0.46305 0.0457% 0.46361 0.0750% 0.46936 1.32%
2.0 0.49346 0.49313 0.0665% 0.49374 00572% 0.50082 1.49%
2.2 0.52042 0.52014 0.0539% 0.52061 0.0371% 0.52908 1.66%
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Table 3. Cont.

α
Exact Solution h1 = 1 h1 = −0.5 h1 = −0.3

Vb Vb ∆ Vb ∆ Vb ∆

2.4 0.54455 0.54472 0.0319% 0.54471 0.0296% 0.55457 1.84%
2.6 0.56619 0.56745 0.222% 0.56646 0.0475% 0.57767 2.03%
2.8 0.58567 0.58846 0.476% 0.58610 0.0741% 0.59864 2.21%
3 0.60325 0.60709 0.636% 0.60340 0.0243% 0.61745 2.35%

3.2 0.61918 0.62601 1.10% 0.61870 0.0777% 0.63428 2.44%
3.4 0.63365 0.68393 7.94% 0.64405 1.64% 0.65542 3.44%
3.6 0.64684 — — 0.76181 17.8% 0.72504 12.1%
3.8 0.65890 — — — — — —
4.0 0.66996 — — — — — —
∞ 1 1 0 1 0 1 0

After n = 10 iterative calculations, when h1 = −1, the convergence region of Vb is
0 < α ≤ 3. When h1 = −0.5, the convergence region of Vb is 0 < α ≤ 3.2. When h1 = −0.3,
the convergence region of Vb is 0 <α ≤ 1.4. It is seen that when h1 = −0.5, the convergence
region is 128% larger than that with h1 = −0.3, while it is 6.7% larger than that with
h1 = −1 (See Table 3).

Accordingly, the optimal control parameters h1 of convergence rate for the 10th-order
approximation solution to the vertical displacement is identified to be h1 = −0.5.

3.3.4. 30th-Order Approximation Solution of Vertical Displacement

When ε = 8/π2, h = −0.1, the 30th-order approximation of θb by IHAM is

θb = α
2 − 4.3804× 10−2α3 + 7.2872× 10−3α5 − 1.3299× 10−3α7

+2.2991× 10−4α9 − 3.5481× 10−5α11 + 4.7492× 10−6α13

−5.4234× 10−7α15 + 5.2245× 10−8α17 − 4.2081× 10−9α19

+2.8138× 10−10α21 − 1.5540× 10−11α23 + 7.0725× 10−13α25

−2.6561× 10−14α27 + 8.2720× 10−16α29 − 2.1528× 10−17α31

+4.7252× 10−19α33 − 8.8286× 10−21α35 + 1.4162× 10−22α37

−1.9643× 10−24α39 + 2.3681× 10−26α41 − 2.4891× 10−28α43

+2.2824× 10−30α45 − 1.8213× 10−32α47 + 1.2569× 10−34α49

−7.4143× 10−37α51 + 3.6656× 10−39α53 − 1.4683× 10−41α55

+4.4741× 10−44α57 − 9.1359× 10−47α59 + 9.2009× 10−50α61

(3.42)

When the relative error ∆ ≤ 1%, the convergent region of the 30th-order approximation
by IHAM is

α ∈ [0, 5.1], Θb ∈ [0, 0.79], 0 ≤ θb ≤ 70.6◦ (3.43)

When ε1 = 0, h1 = −0.3, the 30th-order approximation of Vb by HAM is

Vb = 1
3 α− 3.6198× 10−2α3 + 6.5568× 10−3α5

−1.2305× 10−3α7 + 2.1160× 10−4α9 − 3.1714× 10−5α11

+4.0427× 10−6α13 − 4.3197× 10−7α15 + 3.8284× 10−8α17

−2.7902× 10−9α19 + 1.6610× 10−10α21 − 8.0436× 10−12α23

+3.1678× 10−13α25 − 1.0188× 10−14α27 + 2.6964× 10−16α29

−5.9333× 10−18α31 + 1.0971× 10−19α33 − 1.7218× 10−21α35

+2.3130× 10−23α37 − 2.6772× 10−25α39 + 2.6808× 10−27α41

−2.3258× 10−29α43 + 1.7456× 10−31α45 − 1.1275× 10−33α47

+6.2040× 10−36α49 − 2.8576× 10−38α51 + 1.0708× 10−40α53

−3.0973× 10−43α55 + 6.1662× 10−46α57 − 6.2456× 10−49α59

(3.44)
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Table 4 compares the above numerical solution with the exact solution. The relative
error in Table 4 is calculated by

∆ =

∣∣∣V[n=30]
b −Vb

∣∣∣
Vb

× 100% (3.45)

Table 4. 30th-order numerical solutions V[n=30]
b by IHAM (ε = 8/π2, h = −0.1, h1 = −0.3) compared

with exact solutions Vb.

α
Exact Solution

ε1 = 0
(HAM)

ε1 = 24(π−2)/π3

(IHAM)

Vb Vb ∆ Vb ∆

0 0 0 0 0 0

0.3 0.098991 0.099038 0.0481% 0.099038 0.0482%

0.6 0.19235 0.19266 0.160% 0.19266 0.162%

0.9 0.27621 0.27697 0.275% 0.27699 0.282%

1.2 0.34901 0.35025 0.355% 0.35030 0.370%

1.5 0.41098 0.41262 0.400% 0.41271 0.422%

1.8 0.46326 0.46522 0.423% 0.46534 0.449%

2.1 0.50732 0.50953 0.437% 0.50966 0.462%

2.4 0.54455 0.54699 0.449% 0.54709 0.467%

2.7 0.57618 0.57883 0.459% 0.57888 0.467%

3.0 0.60325 0.60609 0.470% 0.60605 0.464%

3.3 0.62658 0.62959 0.479% 0.62945 0.457%

3.6 0.64684 0.65001 0.490% 0.64975 0.450%

3.9 0.66455 0.66794 0.510% 0.66746 0.438%

4.2 0.68014 0.68338 0.475% 0.68282 0.393%

4.5 0.69397 0.69274 0.177% 0.69571 0.251%

4.8 0.70629 0.68406 3.15% 0.70724 0.135%

5.1 0.71735 0.65758 8.33% 0.72349 0.856%

5.4 0.72731 0.76120 4.66% 0.73988 1.73%

5.7 0.73635 — — 0.68583 6.86%

6.0 0.74457 — — 0.44959 39.6%

∞ 1 1 0 1 0

When the relative error ∆ ≤ 1%, the convergent regions of the 30th-order approxima-
tion by HAM (ε1 = 0) are

α ∈ [0, 4.6], Vb ∈ [0, 0.70], 0 ≤ δv ≤ 0.70L (3.46)
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When ε1 = 24(π − 2)/π3, h1 = −0.3, the 30th-order approximation of Vb by IHAM is

Vb = 1
3 α− 3.6198× 10−2α3 + 6.6118× 10−3α5 − 1.2700× 10−3α7

+2.2683× 10−4α9 − 3.5802× 10−5α11 + 4.8726× 10−6α13

−5.6396× 10−7α15 + 5.5006× 10−8α17 − 4.4899× 10−9α19

+3.0512× 10−10α21 − 1.7202× 10−11α23 + 8.0374× 10−13α25

−3.1168× 10−14α27 + 1.0073× 10−15α29 − 2.7301× 10−17α31

+6.2517× 10−19α33 − 1.2190× 10−20α35 + 2.0389× 10−22α37

−2.9432× 10−24α39 + 3.6841× 10−26α41 − 4.0095× 10−28α43

+3.7952× 10−30α45 − 3.1164× 10−32α47 + 2.2056× 10−34α49

−1.3297× 10−36α51 + 6.6933× 10−39α53 − 2.7186× 10−41α55

+8.3645× 10−44α57 − 1.7196× 10−46α59 + 1.7421× 10−49α61

(3.47)

When the relative error ∆ ≤ 1%, the convergent regions of the 30th-order approxima-
tion by IHAM (ε1 = 24(π − 2)/π3) are

α ∈ [0, 5.1], Vb ∈ [0, 0.72], 0 ≤ δv ≤ 0.72L (3.48)

From Table 4, the improved homotopy analysis method extends the convergence
region from α ∈ [0, 4.6] by the homotopy analysis method [32] to α ∈ [0, 5.1], which is an
11% increase.

From the above comparison, it can be seen that the expansion rate of the conver-
gence region for vertical displacement by IHAM against that by HAM increases with the
increasing iterations.

3.3.5. Homotopy-Páde Approximation

By application of the homotopy-Páde acceleration technique [27], the convergence re-
gion can be greatly enlarged. For example, when n = 30, ε1= 0, h1 = −0.3, the Pade[11, 11]
homotopy-Páde approximation of Vb in Equation (3.44) by HAM can be written as

Vb =
α

3
f (α)
g(α)

(3.49a)

f (α) = 1 + 0.31708α2 + 6.1434× 10−2α4 + 6.0404× 10−3α6

+4.1539× 10−4α8 + 5.5063× 10−6α10 (3.49b)

g(α) = 1 + 0.42567α2 + 8.7988× 10−2α4 + 1.0914× 10−2α6

+8.0640× 10−4α8 + 2.8143× 10−6α10 (3.49c)

When the relative error ∆ ≤ 1%, the convergent regions of the Pade[11, 11] homotopy-
Páde approximation by HAM are

α ∈ [0, 5], Vb ∈ [0, 0.71], 0 ≤ δv ≤ 0.71L (3.50)

When n = 30, ε1 = 24(π − 2)/π3, h1 = −0.3, the Pade[15, 15] homotopy-Páde ap-
proximation of Vb in Equation (3.47) by IHAM are

Vb =
α

3
f (α)
g(α)

(3.51a)

f (α) = 1 + 0.33026α2 + 7.1207× 10−2α4 + 8.9035× 10−3α6 + 9.2792× 10−4α8

+5.3226× 10−5α10 + 2.5321× 10−6α12 + 1.9082× 10−8α14 (3.51b)

g(α) = 1 + 0.43885α2 + 9.9028× 10−2α4 + 1.4763× 10−2α6 + 1.5584× 10−3α8

+1.1572× 10−4α10 + 5.5647× 10−6α12 + 1.3297× 10−7α14 (3.51c)
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When the relative error ∆ ≤ 1%, the convergent regions of the Pade[15, 15] homotopy-
Páde approximation by IHAM are

α ∈ [0, 8.1], Vb ∈ [0, 0.79], 0 ≤ δv ≤ 0.79L (3.52)

Table 5 shows that numerical solutions V[P]
b of homotopy-Páde approximation by

IHAM compares with exact solutions Vb. The relative error in Table 5 is calculated by

∆ =

∣∣∣V[P]
b −Vb

∣∣∣
Vb

× 100% (3.53)

Table 5. Numerical solutions V[P]
b of homotopy-Páde approximation by IHAM. (n = 30, ε = 8/π2,

h = −0.1, h1 = −0.3) compared with exact solutions Vb.

α
Exact Solution

ε1 = 0
(HAM)

Pade[11,11]

ε1 = 24(π−2)/π3

(IHAM)
Pade[15,15]

Vb Vb ∆ Vb ∆

0 0 0 0 0 0

0.5 0.16214 0.16234 0.120% 0.16234 0.121%

1 0.30172 0.30265 0.307% 0.30267 0.315%

1.5 0.41098 0.41262 0.400% 0.41271 0.422%

2 0.49346 0.49559 0.433% 0.49572 0.459%

2.5 0.55566 0.55817 0.452% 0.55826 0.468%

3 0.60325 0.60610 0.471% 0.60605 0.463%

3.5 0.64039 0.64360 0.501% 0.64325 0.446%

4 0.66996 0.67379 0.571% 0.67272 0.412%

4.5 0.69397 0.69899 0.723% 0.69645 0.358%

5 0.71379 0.72096 1.00% 0.71587 0.292%

5.5 0.73042 0.74102 1.45% 0.73214 0.235%

6 0.74457 0.76007 2.08% 0.74616 0.213%

6.5 0.75676 0.77877 2.91% 0.75867 0.252%

7 0.76737 0.79754 3.93% 0.77024 0.374%

7.5 0.77670 0.81664 5.14% 0.78132 0594%

8 0.78498 0.83624 6.53% 0.79222 0.922%

8.5 0.79239 0.85642 8.08% 0.80319 1.36%

9 0.79906 0.87725 9.79% 0.81439 1.92%

9.5 0.80510 0.89871 11.6% 0.82593 2.59%

10 0.81061 0.92080 13.6% 0.83788 3.36%

∞ 1 1 0 1 0

From Equations (3.50) and (3.52), the improved homotopy analysis method extends
the convergence region from α ∈ [0, 5] to α ∈ [0, 8.1] for the homotopy-Páde approximate
solution compared with the homotopy analysis method [32], which is a 62% increase.

Figure 2 compares the 30th-order iteration solution and the exact solution of the
vertical displacement. From Figure 2, it can be observed that

• the difference between the linear solution and the exact solution is remarkable;
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• the 30th-order improved homotopy analysis solution for ε1 = 24(π − 2)/π3 is much
closer to the exact solution than does the 30th-order homotopy analysis solution
for ε1= 0;

• the convergence range and rate have been greatly improved by the expression by
homotopy-Páde approximation;

• the Páde approximation solution Pade[15, 15] by IHAM is more approximating to the
exact solution than does the Páde approximation solution Pade[11, 11] by HAM.

Figure 2. Comparison of vertical displacement at the free end Vb with n = 30.

4. Horizontal Displacement of Cantilever Beam by IHAM
4.1. Zero Order Deformation Equation

The nonlinear boundary value Equations (2.3c) and (2.4c) are then solved by IHAM to
give explicit expression for Ub. To start with, X(ξ) is expressed by the power series of ξ,
so that

X(ξ) =
+∞

∑
k=1

ckξk (4.1)

where ck is a constant coefficient. Linear Equation (2.7c) is specified as initial guess. Ac-
cordingly, we choose

X0(ξ) = ξ (4.2)

The equivalent nonlinear equation of Equation (2.3c) is

X′ − 1 +
ε2

2!
θ2 = 0 (4.3)

subject to boundary condition of
X(0) = 0 (4.4)

where ε2 is the correction coefficient of the convergent region, and ε2 ∈ [0, 1].
When ε2= 0, Equation (4.3) becomes the linear Equation (2.5c), so that

X′ − 1 = 0 (4.5)

When ε2= 1, Equation (4.3) becomes

X′ − 1 +
1
2!

θ2 = 0 (4.6)

Approximation expression of the second-order Taylor expansion of cosine function
can be written as

cos θ ≈ 1− 1
2!

θ2 (4.7)
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According to the original Equation (2.3c) and the equivalent Equation (4.3), we define
a nonlinear operator as

Nu[µ(ξ; q), ψ(ξ, q), q, ε2] =
dµ(ξ;q)

dξ − cos[q · ψ(ξ, q)]
+ ε2

2!
(
1− q2)[ψ(ξ, q)]2

(4.8)

where q ∈ [0, 1] is an embedding parameter; µ(ξ; q), ψ(ξ; q) are the functions dependent on
ξ and q; ε2 is a control parameter for the convergent region, and ε2 ∈ [0, 1].

When q = 0, there is

Nu[µ(ξ; 0), ψ(ξ, 0), 0, ε2] =
dµ(ξ; 0)

dξ
− 1 +

ε2

2!
[ψ(ξ, 0)]2 (4.9)

If q = 1, it yields

Nu[µ(ξ; 1), ψ(ξ, 1), 1, ε2] =
dµ(ξ; 1)

dξ
− sin[ψ(ξ, 1)] (4.10)

Specifying

Lu[µ(ξ; q)] =
∂µ(ξ; q)

∂ξ
(4.11)

as an auxiliary linear operator, and denoting h2 ∈ [−1, 0) as a nonzero auxiliary parameter
(convergence-control parameter), a homotopy is constructed as

Hu[µ(ξ; q), q] := (1− q)Lu[µ(ξ; q)− X0(ξ)]

− qh2Nu[µ(ξ; q), ψ(ξ, q), q, ε2] (4.12)

Accordingly, when q = 0, we have

Hu[µ(ξ; 0), 0] := Lu[µ(ξ; 0)− X0(ξ)] (4.13)

If q = 1, it becomes

Hu[µ(ξ; 1), 1] := −h2Nu[µ(ξ; 1), 1, ε2]

= −h2

{
dµ(ξ;1)

dξ − cos[ψ(ξ, 1)]
} (4.14)

Thus, by enforcing
Hu[µ(ξ; q), q] = 0 (4.15)

we have a family of equations

(1− q)Lu[µ(ξ; q)− X0(ξ)] = qh2Nu[µ(ξ; q), ψ(ξ, q), q, ε2] (4.16)

subject to boundary conditions
µ(0; q)= 0 (4.17)

When q = 0, we have

µ(ξ; 0) = X0(ξ), ψ(ξ; 0) = θ0(ξ) (4.18)

When q = 1, Equations (4.16) and (4.17) are equivalent to the original Equations (2.3c)
and (2.4c), provided that

µ(ξ; 1) = X(ξ), ψ(ξ; 1) = θ(ξ) (4.19)

Thus, as q increases from 0 to 1, µ(ξ; q) evolves from the known initial guess solution
X0(ξ) to the exact solution X(ξ) of Equations (2.3c) and (2.4c).
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With reference to Equation (4.10), by expanding µ(ξ; q) into Taylor series of the em-
bedding parameter q, we have

µ(ξ; q) = X0(ξ) +
+∞

∑
n=1

Xn(ξ)qn (4.20a)

ψ(ξ; q) = θ0(ξ) +
+∞

∑
n=1

θn(ξ)qn (4.20b)

where

Xn =
1
n!

∂nµ(ξ; q)
∂qn

∣∣∣∣
q=0

, θn =
1
n!

∂nψ(ξ; q)
∂qn

∣∣∣∣
q=0

(4.21)

It is worth noting that the zero order deformation Equation (4.16) contains auxiliary
parameters ε2, h2. And the auxiliary function H2(ξ; q, ε2) has the form of

H2(ξ; q, ε2) =
ε2

2!

(
1− q2

)
[ψ(ξ, q)]2 (4.22)

Assuming that h2 and ε2 are properly chosen, so that Equation (4.19) is convergent at
q = 1, thus, we have

X(ξ) = X0(ξ) +
+∞

∑
n=1

Xn(ξ) (4.23)

The governing equations Xn(ξ) can be deduced from 0th-order deformation
Equations (4.16) and (4.17).

4.2. High Order Deformation Equations

Substituting Equation (4.20) into Equation (4.16) and differentiating (4.16) n times with
respect to the embedding parameter q, then dividing by n! and setting q = 0, we have the n
th-order deformation equation as below

Lu[Xn(ξ)− χnXn−1(ξ)] = h2Ru
n(X0, X1, · · · , Xn−1; θ0, θ1, · · · , θn−1) (4.24)

Equation (4.24) is subject to boundary condition of

Xn(0)= 0 (4.25)

where

Ru
n =

1
(n− 1)!

∂n−1Nu[µ(ξ; q), ψ(ξ; q), q, ε2]

∂qn−1

∣∣∣∣
q=0

(4.26)

and

χn =

{
0, n ≤ 1
1, n > 1

(4.27)

Combining Equations (4.8) and (4.26), we have

Ru
1 = X′0(ξ)− 1 +

ε2

2
θ2

0(ξ) (4.28a)

Ru
2 = X′1(ξ) + ε2θ0(ξ)θ1(ξ) (4.28b)

Ru
3 = X′2(ξ) +

1
2

θ2
0(ξ)−

ε2

2
θ2

0(ξ) +
ε2

2
θ2

1(ξ) + ε2θ0(ξ)θ2(ξ) (4.28c)

Ru
4 = X′3(ξ) + θ0(ξ)θ1(ξ)

−ε2θ0(ξ)θ1(ξ) + ε2θ1(ξ)θ2(ξ) + ε2θ0(ξ)θ3(ξ)
(4.28d)
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Ru
5 = X′4(ξ) + θ0(ξ)θ2(ξ) +

1
2 θ2

1(ξ)−
1

24 θ4
0(ξ)

−ε2θ0(ξ)θ2(ξ) + ε2θ1(ξ)θ3(ξ) + ε2θ0(ξ)θ4(ξ)

− ε2
2 θ2

1(ξ) +
ε2
2 θ2

2(ξ)

(4.28e)

The right-hand side term Ru
n of the above equations can be derived by symbolic

calculation software such as Maple, Matlab, etc. Thereafter, explicit form of solution to the
linear high-order deformation Equations (4.24) and (4.25) have been derived.

4.3. Horizontal Displacement at Free End of Cantilever Beam
4.3.1. Accurate Solution to Horizontal Displacement

Accordingly, in Equation (2.3c), the transcendental equation to solve Ub is as follows

Ub = 1−
√

2 sin θb
α

(4.29)

With reference to Equation (2.8c), the linear solution of the horizontal displacement at
the free end is

Ub= 0 (4.30)

4.3.2. Explicit Solution to Horizontal Displacement by IHAM

The solutions by IHAM contains two auxiliary parameters ε2 and h2, which control
and adjust the convergence region and rate of IHAM solution series.

For example, the 10th-order approximation of Ub with n = 10, ε = 8/π2, h = −0.5,
ε2 = 8/π2, h2 = −0.4 is derived as

Ub = 6.6128× 10−2α2 − 1.2132× 10−2α4 + 2.6029× 10−3α6

−5.0108× 10−4α8 + 7.4259× 10−5α10 − 8.1166× 10−6α12

+6.5090× 10−7α14 − 3.7900× 10−8α16 + 1.5743× 10−9α18

−3.4811× 10−11α20

(4.31)

When the relative error ∆ ≤ 1%, the convergent regions of the 10th-order approxima-
tion by IHAM are

α ∈ [0, 2.8], Ub ∈ [0, 0.24], 0 ≤ δh ≤ 0.24L (4.32)

The 20th-order approximation of Ub with n = 20, ε = 8/π2, h = −0.3, ε2 = 8/π2,
h2 = −0.4 is expressed as

Ub = 6.6663× 10−2α2 − 1.2647× 10−2α4 + 3.0553× 10−3α6

−7.8913× 10−4α8 + 1.9565× 10−4α10 − 4.2939× 10−5α12

+7.8795× 10−6α14 − 1.1689× 10−6α16 + 1.3828× 10−7α18

−1.3058× 10−8α20 + 9.9286× 10−10α22 − 6.1404× 10−11α24

+3.1142× 10−12α26 − 1.3002× 10−13α28 + 4.4587× 10−15α30

−1.2419× 10−16α32 + 2.7429× 10−18α34 − 4.5778× 10−20α36

+5.1643× 10−22α38 − 2.9055× 10−24α40

(4.33)

When the relative error ∆ ≤ 1%, the convergent region of the 20th-order approximation
by IHAM is

α ∈ [0, 3.4], Ub ∈ [0, 0.29], 0 ≤ δh ≤ 0.29L (4.34)

The 30th-order approximation of Ub with n = 30, ε = 8/π2, h = −0.1, ε2 = 8/π2,
h2 = −0.3 is
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Ub = 6.6665× 10−2α2 − 1.1891× 10−2α4 + 2.4037× 10−3α6

−4.6144× 10−4α8 + 7.8466× 10−5α10 − 1.1452× 10−5α12

+1.4110× 10−6α14 − 1.4525× 10−7α16 + 1.2395× 10−8α18

−8.7140× 10−10α20 + 5.0250× 10−11α22 − 2.3731× 10−12α24

+9.1975× 10−14α26 − 2.9421× 10−15α28 + 7.8331× 10−17α30

−1.7531× 10−18α32 + 3.3309× 10−20α34 − 5.4217× 10−22α36

+7.6171× 10−24α38 − 9.2885× 10−26α40 + 9.8639× 10−28α42

−9.1295× 10−30α44 + 7.3481× 10−32α46 − 5.1117× 10−34α48

+3.0383× 10−36α50 − 1.5131× 10−38α52 + 6.1056× 10−41α54

−1.8743× 10−43α56 + 3.8564× 10−46α58 − 3.9126× 10−49α60

(4.35)

When the relative error ∆ ≤ 1%, the convergent regions of the 30th-order approxima-
tion by IHAM are

α ∈ [0, 4.6], Ub ∈ [0, 0.37], 0 ≤ δh ≤ 0.37L (4.36)

Table 6 compares the above numerical solutions with the exact solutions. The relative
error in Table 6 is calculated by

∆ =

∣∣∣U[n=30]
b −Ub

∣∣∣
Ub

× 100% (4.37)

Table 6. 30th-order numerical solutions U[n=30]
b by IHAM (ε = 8/π2, h = −0.1, h2 = −0.3) compared

with exact solutions Ub.

α
Exact Solution

ε2 = 0
(HAM)

ε2 = 8/π2

(IHAM)

Ub Ub ∆ Ub ∆

0 0 0 0 0 0

0.3 0.0058994 0.0059063 0.116% 0.0059052 0.0993%

0.6 0.022488 0.022578 0.402% 0.022563 0.335%

0.9 0.047034 0.047359 0.690% 0.047300 0.565%

1.2 0.076400 0.077065 0.870% 0.076933 0.696%

1.5 0.10794 0.10894 0.923% 0.10872 0.723%

1.8 0.13981 0.14104 0.886% 0.14076 0.681%

2.1 0.17085 0.17223 0.804% 0.17190 0.610%

2.4 0.20046 0.20188 0.705% 0.20153 0.531%

2.7 0.22835 0.22973 0.603% 0.22939 0.456%

3.0 0.25442 0.25570 0.504% 0.25540 0.387%

3.3 0.27870 0.27985 0.411% 0.27961 0.324%

3.6 0.30128 0.30226 0.324% 0.30210 0.270%

3.9 0.32228 0.32316 0.274% 0.32310 0.257%

4.2 0.34180 0.34334 0.448% 0.34302 0.356%

4.5 0.35999 0.36371 1.03% 0.36042 0.121%

4.8 0.37695 0.37525 0.449% 0.36186 4.00%
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Table 6. Cont.

α
Exact Solution

ε2 = 0
(HAM)

ε2 = 8/π2

(IHAM)

Ub Ub ∆ Ub ∆

5.1 0.39279 0.31920 18.7% 0.30447 22.5%

5.4 0.40762 0.027011 93.4% 0.14924 63.4%

5.7 0.42153 — — 0.10903 74.1%

6.0 0.43459 — — — —

∞ 1 1 0 1 0

From Table 6, IHAM extends the convergence regions from α ∈ [0, 4.2] by HAM to
α ∈ [0, 4.6], which is 7.1% increase.

Figure 3 shows the relationship between horizontal displacement and concentrated
force at the free end. From Figure 3, it is observed that

• the difference between the linear solution and the exact solution is remarkable;
• from n = 10 result of Equation (4.32), n = 20 result of Equation (4.34) and n = 30 result

of Equation (4.37), the convergence regions of horizontal displacement increases with
increasing iterations.

Figure 3. Horizontal displacement at free end.

5. Discussions and Conclusions
5.1. Error Analysis of Vertical Displacement

The influence of the control parameters ε1 and h1 on the error of vertical displacement
after n= 5 iterations with α= 2.0 is then discussed.

After five iterations, the improved homotopy analysis method is adopted to solve the
Equations (3.21) and (3.22) to yield the solution to the original Equations (2.3b) and (2.4b)
as below
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Vb = 0.33333α + 0.096738h1α3 + 0.10197h2
1α3

+0.052108h3
1α3+0.011580h4

1α3 + 0.028571ε1h1α3

+0.085714ε1h2
1α3+0.095238ε1h3

1α3+0.047619ε1h4
1α3

+9.5238× 10−3ε1h5
1α3 − 6.1695× 10−3h1α5 − 3.3120× 10−3h2

1α5

−8.2799× 10−4h3
1α5 − 5.8320× 10−3ε1h1α5 − 8.1553× 10−3ε1h2

1α5

−4.5967× 10−3ε1h3
1α5 − 1.0215× 10−3ε1h4

1α5+2.5955× 10−4h1α7

+7.4156× 10−5h2
1α7 + 6.8257× 10−4ε1h1α7 + 4.3913× 10−4ε1h2

1α7

+1.0978× 10−4ε1h3
1α7 − 7.4415× 10−6h1α9 − 4.2843× 10−5ε1h1α9

−1.2241× 10−5ε1h2
1α9+1.4103× 10−6ε1h1α11

(5.1)

When α= 2.0, Equation (5.1) becomes

Vb = 0.66667 + 0.60589h1 + 0.71928h2
1 + 0.39037h3

1
+0.092637h4

1 + 0.11027ε1h1 + 0.47469ε1h2
1

+0.62886ε1h3
1 + 0.34826ε1h4

1 + 0.076190ε1h5
1

(5.2)

When α= 2.0, the exact solution is Vb= 0.49346. When the iteration is five times, the
relative error between the result by IHAM and the exact solution can be expressed as

∆V =

∣∣∣V[n=5]
b −Vb

∣∣∣
Vb

× 100% (5.3)

When h1 = −0.68, Equation (5.2) becomes

Vb = 0.48432+0.010163ε1 (5.4)

According to Equations (5.3) and (5.4), the relative error curve of control parameter
∆V − ε1 is a broken line. When the relative error is less than ∆V ≤ 1%, the convergence
interval is Rε1 = [0.4, 1], which is the effective region of ε1.

Figure 4 shows the relative errors curve ∆V − ε1 of Equation (2.3b) when α= 2.0,
h1 = −0.68. From Figure 4, when ε1 = 24(π − 2)/π3, the relative error is the minimum.

Figure 4. Relative errors curve ∆V − ε1 of Equation (2.3b) when α= 2.0, h1 = −0.68.

When ε1 = 24(π − 2)/π3, Equation (5.2) becomes

Vb = 0.66667 + 0.70333h1 + 1.1387h2
1

+0.94605h3
1 + 0.40038h4

1+0.067325h5
1

(5.5)
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According to Equations (5.3) and (5.5), the relative error curve of control parameter
∆V − h1 is a quintic power function. When the relative error is less than ∆V ≤ 1%, the
convergence interval is Rh1 = [−1,− 0.58], which is the effective region of h1.

Figure 5 gives the relative errors curve ∆V − h1 of Equation (2.3b) when α= 2.0,
ε1 = 24(π − 2)/π3. From Figure 5, when h1 = −0.68, the relative error is the minimum.

Figure 5. Relative errors curve ∆V − h1 of Equation (2.3b) when α= 2.0, ε1 = 24(π − 2)/π3.

5.2. Error Analysis of Horizontal Displacement

The influence of the control parameter ε2 and h2 on the error of horizontal displacement
after 5 iterations when α= 2.0 is then discussed.

After five iterations, the improved homotopy analysis method is adopted to solve
the Equations (4.24) and (4.25) to derive the solution to the original Equations (2.3c) and
(2.4c). Thus,

Ub = −0.20000h2α2 − 0.20000h2
2α2 − 0.066667h3

2α2

−0.13333ε2h2α2 − 0.46667ε2h2
2α2 − 0.60000ε2h3

2α2

−0.33333ε2h4
2α2 − 0.066667ε2h5

2α2+0.010871h2α4

+3.7741× 10−3h2
2α4 + 0.017903ε2h2α4 + 0.027904ε2h2

2α4

+0.017361ε2h3
2α4+3.7741× 10−3ε2h4

2α4 − 2.6973× 10−4h2α6

−1.6042× 10−3ε2h2α6 − 1.1329× 10−3ε2h2
2α6

−2.6973× 10−4ε2h3
2α6 + 8.2194× 10−5ε2h2α8

+2.1630× 10−5ε2h2
2α8 − 1.8596× 10−6ε2h2α10

(5.6)

When α= 2.0, Equation (5.6) becomes

Ub = −0.64333h2 − 0.73961h2
2 − 0.26667h3

2
−0.33042ε2h2 − 1.4872ε2h2

2 − 2.1395ε2h3
2

−1.2729ε2h4
2 − 0.26667ε2h5

2

(5.7)

When α= 2.0, the exact solution is Ub = 0.16064. After 5 time iterations, the relative
error between the results by IHAM method and the exact solution can be written as

∆U =

∣∣∣U[n=5]
b −Ub

∣∣∣
Ub

× 100% (5.8)

When h2 = −0.465, Equation (5.7) becomes

Ub = 0.16603− 0.0065196ε2 (5.9)
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According to Equations (5.8) and (5.9), the relative error curve of control parameter
∆U − ε2 is a broken line. When the relative error is less than ∆U ≤ 1%, the convergence
region is Rε2 = [0.58, 1], which is the effective region of ε2.

Figure 6 shows the relative errors curve ∆U − ε2 of Equation (2.3c) when α= 2.0,
h2 = −0.465. From Figure 6, when ε2 = 8/π2, the relative error is the minimum.

Figure 6. Relative errors curve ∆U − ε2 of Equation (2.3c) when α= 2.0, h2 = −0.465.

When ε2 = 8/π2, Equation (5.7) becomes

Ub = −0.91116h2 − 1.9451h2
2 − 2.0009h3

2
−1.0318h4

2 − 0.21615h5
2

(5.10)

According to Equations (5.8) and (5.10), the relative error curve of control parameter
∆U − h2 is a quintic polynomial curve. When the relative error is less than ∆U ≤ 1%, the
convergence interval is Rh2 = [−0.75,−0.42], which is the effective region of h2.

Figure 7 depicts the relative errors curve ∆U − h2 of Equation (2.3c) when α= 2.0,
ε2 = 8/π2. From Figure 7, when h2 = −0.465 or h2 = −0.66, the relative error is
the minimum.

Figure 7. Relative errors curve ∆U − h2 of Equation (2.3c) when α= 2.0, ε2 = 8/π2.

5.3. Conclusions

In this paper, an improved homotopy analysis method (IHAM) is applied to derive
complete expressions of vertical and horizontal displacements of a cantilever beam under
point load at the free end. In fact, the proposed method is a semi-analytical method since
many numerical algorithms are used.
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The linear solution is only valid for small α. For large α, the nonlinear effect of the
equation cannot be neglected. A family of the explicit solutions of the rotation angle,
the vertical and horizontal displacements of a cantilever beam under a point load at
the free end are obtained by IHAM, which are summarized in Table A1 for 30th-order
approximation. The current explicit solutions with different parameters and solution
schemes match well with the exact solutions from elliptical integrals; however, our solutions
for the current problem by the proposed IHAM, especially Equations (3.36) and (4.31), are
explicit and simple compared with the exact solution from the elliptical integrals which
requires solving a transcendental equation. The current solution is easy to calculate with the
explicit polynomial expressions, which should be, thus, prioritized for practical engineering
applications with minimal requirements on the calculation and computation.

By solving the exact bending equation of a cantilever beam, we demonstrate the
superior proficiency of IHAM over a class of existing equations in solid mechanics. The
improved homotopy analysis method has great superiority compared over the traditional
homotopy analysis method in view of the very much increased rate and precision of
convergence as well as the substantially enlarged convergence range.

The convergence ranges of the rotation angle and vertical displacement are extended
by the homotopy-Páde approximation, whereas it does not avail horizontal displacement.

In summary, the 30th-order improved homotopy analysis solutions and exact solutions
of the angular, vertical and horizontal displacements of large deflection cantilever beams by
Equations (3.42), (3.47) and (4.35) are compared in the following Appendix A table. It can
be concluded from this study that the proposed IHAM can be applied to solve a general
strong nonlinear problem in structural analysis.
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Appendix A

Table A1. 30th-order numerical solutions Θ[n=30]
b , V[n=30]

b , U[n=30]
b by IHAM compared with exact

solutions Θb, Vb and Ub.

α

Rotation Angle Θb Vertical Displacement Vb Horizontal Displacement Ub

Exact Solutions
n = 30
ε = 8/π2

h = −0.1
Exact Solutions

n = 30
ε1 = 24(π−2)/π3

h1 = −0.3
Exact Solutions

n = 30
ε2 = 8/π2

h2 = −0.3

0 0 0 0 0 0

0.3 0.094719 0.094751 0.098991 0.099038 0.0058994 0.0059052

0.6 0.18509 0.18530 0.19235 0.19266 0.022488 0.022563

0.9 0.26801 0.26853 0.27621 0.27699 0.047034 0.047300
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Table A1. Cont.

α

Rotation Angle Θb Vertical Displacement Vb Horizontal Displacement Ub

Exact Solutions
n = 30
ε = 8/π2

h = −0.1
Exact Solutions

n = 30
ε1 = 24(π−2)/π3

h1 = −0.3
Exact Solutions

n = 30
ε2 = 8/π2

h2 = −0.3

1.2 0.34206 0.34291 0.34901 0.35030 0.076400 0.076933

1.5 0.40714 0.40825 0.41098 0.41271 0.10794 0.10872

1.8 0.46394 0.46520 0.46326 0.46534 0.13981 0.14076

2.1 0.51342 0.51477 0.50732 0.50966 0.17085 0.17190

2.4 0.55661 0.55798 0.54455 0.54709 0.20046 0.20153

2.7 0.59444 0.59580 0.57618 0.57888 0.22835 0.22939

3.0 0.62772 0.62905 0.60325 0.60605 0.25442 0.25540

3.3 0.65714 0.65843 0.62658 0.62945 0.27870 0.27961

3.6 0.68327 0.68452 0.64684 0.64975 0.30128 0.30210

3.9 0.70659 0.70774 0.66455 0.66746 0.32228 0.32310

4.2 0.72749 0.72821 0.68014 0.68282 0.34180 0.34302

4.5 0.74630 0.74664 0.69397 0.69571 0.35999 0.36042

4.8 0.76329 — 0.70629 0.70724 0.37695 —

5.1 0.77870 — 0.71735 0.72349 0.39279 —

5.4 0.79272 — 0.72731 — 0.40762 —

5.7 0.80552 — 0.73635 — 0.42153 —

6.0 0.81723 — 0.74457 — 0.43459 —

∞ 1 1 1 1 1 1
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