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Abstract: Currently, significant efforts are being made to enhance the performance of the National
Institute of Environmental Research (NIER) operational model. However, the model performance
concerning Aerosol Optical Depth (AOD) estimation remains uninvestigated. In this study, three
different estimation methods for AOD were implemented using the NIER operational model and
validated with satellite and ground observations. In the widely used Interagency Monitoring of Pro-
tected Visual Environments (IMPROVE) method, AOD exponentially increases with relative humidity
owing to a hygroscopic growth factor. However, alternative methods show better performance, since
AOD estimation considers the size dependency of aerosol particles and is not sensitive to high relative
humidity, which reduces the high AOD in areas with large cloud fractions. Although some R values
are significantly low, especially for a single observational comparison and small numerical domain
analysis, one of the alternative estimation methods achieves the best performance for diagnosing
AOD in the East Asia region.

Keywords: aerosol optical depth (AOD); weather research and forecasting community multi-scale
air-quality (WRF-CMAQ); hygroscopic growth factor

1. Introduction

Atmospheric aerosols influence the Earth’s radiation balance by absorbing or scattering
radiation and induce climate change [1]. As a representing parameter of atmospheric
aerosol, aerosol optical depth (AOD), defined as the extinction of solar radiation caused
by aerosol and integrated into the whole atmospheric column, is a fundamental optical
property parameter and is widely used [2] in the scientific community. Generally, AOD is
measured by satellite and ground-based remote sensing. Since AOD strongly correlates
with air pollutant variables such as PM2.5 and PM10, it can act as an efficient parameter for
estimating air pollutants.

AOD can be expressed as a function of several aerosol related factors, such as aerosol
mass concentration, composition, size distribution, and meteorological parameters. Among
the many factors which influence the calculation of AOD, hygroscopicity is one of the
most uncertain factors [3]. The hygroscopic growth of aerosols is closely related to relative
humidity (RH) and influence the physico-chemical characteristics of aerosol. For instance,
different aerosol sources, types, and chemical components cause aerosol hygroscopicity to
vary with space and time and affect the aerosol optical properties, such as AOD, due to
increasing water uptake by increasingly hydrophilic compositions [4].

The Korean Ministry of Environment (KME) and the National Institute of Environmen-
tal Research (NIER) produce two-dimensional AOD data based on cutting-edge technology
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from satellite data [5–7], but there are still limitations in stably identifying concentrations
of air pollutants. For example, spatial and temporal resolutions may not be sufficient for
operational needs, and many satellite images suffer from a high cloud fraction or high
surface reflectance. In terms of high cloud fraction, baroclinic waves are most active in the
mid-latitude spring or wintertime when severe pollutant episodes are frequent. Hence,
complementary methods using numerical or statistical models to address missing data
are essential.

The simulation and forecasting of air quality using numerical models are common for
obtaining accurate and continuous information on air pollution. Models’ performances de-
crease with forecast or simulated time, and significant efforts are being made to increase the
accuracy or extend predictability. These methods can be categorized into two approaches:
(1) decreasing the uncertainty of model complexity, such as emissions, boundary condi-
tions, and parameterization for atmospheric processes (e.g., [8–10]); and (2) increasing the
accuracy of initial conditions using data assimilation techniques with ground and satellite
observations (e.g., [11–14]). However, while issues remain, several studies have accurately
estimated AOD from air-quality models.

This study aimed to analyze the performance of several AOD-estimation methods
from the operational air quality model of the NIER. Although significant efforts are being
made to enhance the performance of NIER’s operational model, in this study, we focused
on the ability and performance of AOD estimation based on past forecasting results. If the
missing values of satellite observations are related to a high cloud fraction, they should
have a significant dependency on the cloud hygroscopic growth factor in that region.
Herein, the effects of f(RH) on aerosol mass concentration are discussed and different
parametrization methods for f(RH) are compared with conventional methods. The results
of this study reveal fundamental problems and provide suggested strategies for improved
AOD estimation when using the operational WRF-CMAQ model in Korea.

The Interagency Monitoring of Protected Visual Environments (IMPROVE) estimation
method (or Malm’s reconstructed method) [15] is widely used in the Weather Research
and Forecasting (WRF)-Community Multi-Scale Air-quality (CMAQ) community. One of
the main limitations of Malm’s reconstructed method is that it cannot consider the size-
dependent function of relative humidity (f(RH)), which is an important aspect of aerosol
hygroscopicity [3,16]. Most of the previous studies have not considered the size-dependent
effects due to the complexity in reflecting polydispersity implying that f(RH) is to be
assumed constant regardless of the size [16]. However, many theoretical and empirical
studies have suggested that individual chemical substances should be specifically assessed
based on their size [3,17–20]. From a theoretical point of view, f(RH) should be recalculated
using a thermodynamic model and the Mie theory for each size distribution. Thus, it is
important to understand the size dependency of f(RH), and it is necessary to investigate
whether it has a serious sensitivity or uncertainty with respect to aerosol hygroscopic
growth factors upon considering size effects.

The remainder of this paper is organized as follows. In Section 2, the operational model
and data are introduced, and the estimated AOD algorithms are summarized. A qualitative
comparison between satellite images and estimated AODs is presented in Section 3; in
addition, a more quantitative analysis focused on the Seoul metropolitan area is presented
along with detailed statistical results for the entire domain of the NIER operational model.
Section 4 summarizes the results of the study.

2. Data and Methods
2.1. Data

To evaluate AOD calculation from an air-quality model, we verified the operational
forecast results from NIER from March 2016 to February 2017, including the period of the
KORUS-AQ (International Cooperative Air Quality Field Study in Korea) campaign (https:
//espo.nasa.gov/home/korus-aq/content/KORUS-AQ, accessed on 17 February 2022).

https://espo.nasa.gov/home/korus-aq/content/KORUS-AQ
https://espo.nasa.gov/home/korus-aq/content/KORUS-AQ
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2.1.1. Description of the NIER Operational Forecast Model

The NIER operates an air quality forecast system using the CMAQ model [21,22]
along with meteorological inputs provided by the Weather Research Forecasting (WRF)
model ([23]). An operational forecast system has been introduced [24,25] and the model
configurations are summarized in Table 1. CMAQ v4.7 was used to estimate the concen-
trations of atmospheric chemical species. The chemical mechanism in the CMAQ was the
Statewide Air Pollution Research Center, Version 99 (SAPRC99; [26]), and the 5th generation
CMAQ aerosol module (AERO5) was used for aerosol simulation. Air pollutant emissions
include both anthropogenic and natural emissions. MIX 2010 [27] and the Clean Air Policy
Support System (CAPSS) was used to measure anthropogenic emissions. Anthropogenic
emissions were allocated spatiotemporally using Sparse Matric Operator Kernel Emissions
(SMOKE; [28]) and then utilized in the air quality model. Furthermore, biogenic emissions
were utilized based on the Model of Emission of Gases and Aerosols from Nature (MEGAN)
version 2.04. [29,30].

Table 1. Configuration of the National Institute of Environmental Research (NIER) operational air
quality forecast system.

Configuration Description

Model version WRF v3.3
Microphysics WRF Single-Moment 3-class scheme

Cumulus convection Kain-Fritsch
Longwave radiation RRTM scheme
Shortwave radiation Goddard shortwave

Land surface NOAH [31]
PBL scheme YSU [32]

Model version CMAQ v4.7
Chemical mechanism SAPRC99

Aerosol module AERO5
Chemical solver EBI

Advection scheme YAMO
Horizontal diffusion Multiscale

Vertical diffusion Eddy
Cloud scheme ACM

The spatial resolutions of the WRF-CMAQ model operated by NIER are 27 km (D01),
9 km (D02), and 3 km (D03), as shown in Figure 1a. The models forecast 76 h from 03 UTC
every day. In this study, we analyzed AOD concentrations from the 27 and 9 km grid
domains for East Asia and the Korean Peninsula, respectively.

2.1.2. Observational Data

In this study, we used Geostationary Ocean Color Imager (GOCI) and Aerosol Robotic
Network (AERONET) data to validate the horizontal distribution of AOD. The GOCI
provides hourly daylight spectral images eight times a day from 00:30 to 07:30 UTC over
East Asia; these data cover a 2500 × 2500 km region centered on 36◦ N and 130◦ E in eight
spectral channels (412, 443, 490, 555, 660, 680, 745, and 865 nm, [7]). AERONET is a ground-
based sun photometer network distributed worldwide that provides the optical properties
of aerosols at several wavelengths between 340 and 1640 nm [33]. In this study, we use level-
2 set of AERONET data from (http://aeronet.gsfc.nasa.gov, accessed on 17 February 2022).
The estimated AOD from D01 was examined using 15 AERONET datasets over East Asia,
as shown in Figure 1a. D02 was examined using six AERONET datasets over the Korean
Peninsula (Korea) region, as shown in Figure 1a. The Yonsei-YSU station, located in the
Seoul Urban Area of South Korea, was selected to compare the temporal variation of
the estimated AOD, because it had the smallest number of missing values during our
research period.

http://aeronet.gsfc.nasa.gov
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Figure 1. (a) Domain of the National Institute of Environmental Research (NIER) operational fore-
cast model. Shadings represent the terrain height (m). The red box and red-colored dots represent 
Geostationary Ocean Color Imager (GOCI) coverage and the locations of Aerosol Robotic Network 
(AERONET) sites in East Asia. (b) Domain 2 and (c) domain 3 of NIER operational forecast system 
are shown with PM2.5 observation sites (blue dots) of Air Korea in the Seoul metropolitan area and 
Yonsei AERONET site (red dot). 
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Figure 1. (a) Domain of the National Institute of Environmental Research (NIER) operational forecast
model. Shadings represent the terrain height (m). The red box and red-colored dots represent
Geostationary Ocean Color Imager (GOCI) coverage and the locations of Aerosol Robotic Network
(AERONET) sites in East Asia. (b) Domain 2 and (c) domain 3 of NIER operational forecast system
are shown with PM2.5 observation sites (blue dots) of Air Korea in the Seoul metropolitan area and
Yonsei AERONET site (red dot).

2.2. Estimation Methods for AOD
2.2.1. IMPROVE and Its Uncertainty

The Malm [15] Interagency Monitoring of Protected Visual Environments (IMPROVE)
equation is a commonly used WRF-CMAQ diagnosis approach [15,34–36]. Two aerosol
extinction coefficients are critical for diagnosing AOD [15], as follows:

AOD = ∑N
i=1

(
σsp + σap

)
i ∆Zi (1)

where N is the number of vertical layers in the numerical model, ∆Zi is the thickness
of each layer, and σsp and σap are the aerosol extinction coefficients of scattering and
absorption by particles, respectively. In Equation (1), σsp and σap are calculated using the
following relation:

σsp = 0.003 × f(RH)×
[
NH+

4 + SO−
4 + NO−

3
]
+ 0.004 × [Organic Mass] + 0.001 × [Fine soil]

+0.0006 × [Coasre Mass]
(2)

σap = 0.01 × [Light Absorbing Carbon] (3)

The unit of air pollutants in is mg m−3, and the unit of each coefficient (0.003, 0.004,
0.001, 0.0006, and 0.01) is m2 mg−1; f(RH) is a function that depends on relative humidity
and is calculated as follows:

f(RH) = b0 + b1

(
1

1 − RH

)
+ b2

(
1

1 − RH

)2
(4)

where b0, b1, and b2 are correlation parameters that vary seasonally, as listed in Table 2.
It should be noted that f(RH) applies to the inorganic aerosol (

[
NH+

4 + SO−
4 + NO−

3
]
)

only. According to previous studies, a non-negligible fraction of organic aerosol is water-
soluble [37,38]. Moreover, a substantial fraction of water-soluble organic aerosol is known
to be composed of humic-like substances (HULIS), associated with light-absorbing brown
carbon aerosol. However, lot of complexities and uncertainties exist in the characterization
of organic aerosol. In this study, we assumed that organic aerosol is non-hygroscopic and
non-absorbing aerosol [39]. A drawback of Equation (4) is that it is unable to consider the
size dependence of f(RH) [40]. A practical issue in Equation (4) is the formulation of the
denominator using relative humidity. A problem arises when the value of f(RH) becomes
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unrealistically large (when RH approaches 1). Therefore, the maximum RH value is limited.
The uncertainties and sensitivities are shown in Figure 2. Figure 2 displays the horizontal
distribution of GOCI AOD at 01:00 UTC 24 May 2016, along with estimated AODs from
the NIER operational model following Equations (2)–(4) with maximum RH values of 93%,
96%, and 98% to avoid infinite values from Equation (4). GOCI AOD does not appropriately
represent the AOD value in the area with clouds (Figure 2a); the estimated AODs from the
operational model show a large sensitivity to cloud area depending on the maximum RH
from Equation (4) (Figure 2b–d). In the broad cloud region, estimated AODs more than
doubled as the value of the maximum RH increases from 93% to 98%.

Table 2. Seasonal parameters of b0, b1, and b2 in Equation (4).

b0 b1 b2

Spring −0.01097 0.78095 0.08015
Summer −0.18614 0.99211 -

Fall −0.24812 1.01865 0.01074
Winter 0.34603 0.81984 -
Annual 0.33713 0.58601 0.09164
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Monitoring of PROtected Visual Environments (IMPROVE) method [15] with maximum relative
humidity (RH) values of (b) 93%, (c) 96%, and (d) 98%.

2.2.2. Other Formulations for Estimating AOD from WRF-CMAQ

Hygroscopic growth factors are determined by relative humidity; as such, formulations
such as Equation (4) are essential for estimating the AOD algorithm. We applied two
alternative methods to remove the uncertainty from the IMPROVE method [15]. First, we
replaced Equation (4) following the method of Kiehl [41]:

f(RH) = exp
(
−1 − 0.6

RH − 1.2
− 0.75

RH − 1.5

)
(5)

Equation (5) was obtained by solving the Köhler equation to determine the equilibrium
radius of dry sulfate aerosol particles at a given relative humidity and fitting their size
distribution with a lognormal size distribution [41]. In most simulations, there is no case
where supersaturation exists for RH ≥ 1.2; thus, we did not set an upper limit for RH in
Equation (5).
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Second, we applied the Pitchford method [16], in which AOD is estimated from the
empirical reconstructed mass-extinction as:

AOD =
N

∑
i=1

(bext)i∆Zi (6)

where N is the number of vertical layers in the numerical model, ∆Zi is the thickness of
each layer, and bext is light extinction due to scattering and absorption by particles. In
Equation (6), bext is calculated using the relation:

bext ≈ 2.2 × fs(RH)× [Small Sulfate] + 4.8 × fL(RH)× [Large Sulfate] + 2.4 × fs(RH)× [Small Nitrate]
+5.1 × fL(RH)× [Large Nitrate] + 2.8 × [Small Organic Mass]
+6.1 × [Large Organic Mass] + 10 × [Elemental Carbon] + 1 × [Fine Soil]
+1.7 × fss(RH)× [Sea Salt] + 0.6 × [Coarse Mass] + Rayleigh Scattering (Site Specific)
+0.33 × [NO2(ppb)]

(7)

The unit of air pollutants is mg m−3, and the unit of each coefficient (2.2, 4.8, 2.4, 5.1,
2.8, 6.1, 10, 1, 1.7, 0.6, and 0.33) is expressed as m2 mg−1; fs(RH), fL(RH), and fss(RH) are
the small size, large size, and sea salt hygroscopic growth factor functions, respectively.
Equations (6) and (7) consider the effects of sea salt on extinction over the ocean and
subdivide hygroscopic growth factors according to particle size [28], unlike the IMPROVE
algorithm of Malm [15]. They use an organized look-up table (see Tables A1 and A2 in
Appendix A) for building fs(RH), fL(RH), and fss(RH). As indicated in [30], RH values
over than 95% are set equal to them at RH = 95%. For simplicity, the IMPROVE, Kiehl and
Pitchford’s method are referred to as M1, M2 and M3, respectively, later in this paper.

3. Results
3.1. Performance of the NIER Operational Model (WRF-CMAQ)

Before comparing the capability of AOD estimation between different methods, we
summarized the performance of the NIER operational air quality system from the temporal
distributions of daily PM2.5. Figure 3 shows a time series of observed and simulated daily
PM2.5 concentrations in the Seoul (25 stations marked in Figure 1b) and Busan (19 stations)
metropolitan areas from March 2016 to February 2017. The model was spun up for 12 h
every day and daily 12 h (f12) and 35 h (f35) forecasts from 15:00 to 14:00 UTC the next day
were compared with observations. The model results were interpolated to the location of
the observation site using the Cressman method. Although the concentration of PM2.5 is
higher in D01 compared with D02 in most periods, the operational forecast shows a reliable
air pollutant simulation overall. Simulated values typically tend to be underestimated in
summer and overestimated in winter; however, the model bias does not vary significantly
over time. Therefore, we used all forecasts, except for the spin-up time, to investigate
AOD estimation. A detailed analysis of the predictability of operational WRF-CMAQ
using statistical scores is beyond the scope of this study; instead, we evaluated different
algorithms of AOD estimation using the NIER operational model.
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forecasted daily PM2.5 from the 27 km resolution (red) and 9 km resolution (blue) operational forecasts
of March 2016–February 2017.

3.2. Validation of AOD Estimation Methods

Air pollution in South Korea is most severe in spring and winter [42–44]; therefore, we
first focused on March–May 2016 (spring) and December 2016–February 2017 (winter). In
general, finer grid spacing is expected to be relatively beneficial for simulating small-scale
activities, such as regional circulation and local instability; thus, we investigated the perfor-
mance of AOD estimation depending on grid resolution from the NIER operational model.
Since the finest domain (D03) is too small to investigate AOD with satellite images, we
only analyzed the model domains of D01 and D02 for East Asia and the Korean Peninsula,
respectively. In this study, all statistical parameters are calculated using AERONET data,
since satellite images (e.g., GOCI) cannot be used to evaluate the model outputs due to large
cloud cover. However, each method’s two-dimensional AOD is presented and compared
with satellite image to reveal the key features of each estimation.

3.2.1. Springtime

Figure 4 displays the horizontal distribution of the observed and estimated AOD
at 01:00 UTC on 31 May 2016, during the KORUS-AQ period. As shown in Figure 2,
because the M1 method of Malm [11] with maximum RH values of 96% and 98% tends
to overestimate AOD, we only present the results with a maximum RH value of 93%.
In Figure 4a, the GOCI satellite image shows large missing areas in most cloud regions
where synoptic lows have collapsed; however, there is high-AOD from eastern China to the
mid-western coastal region of the Korean Peninsula, crossing the Yellow Sea. Although the
estimated algorithms for AOD use the same model results, their diagnosed AOD patterns
are very different, especially in the cloud region, regardless of the grid resolution. In the D01
analysis, M1 (Figure 4b) shows high AOD along the missing regions from a satellite image;
in contrast, reduced values of AOD were output by the M2 and M3 methods (Figure 4c,d,
respectively). Since most values from clouds are missing in satellite observations, no
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quantitative validation can be performed (Figure 4b–d). Thus, other validations using
ground observations are discussed later using detailed statistics.
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Figure 4. (a) Spatial distribution of aerosol optical depth (AOD) obtained from the geostationary
ocean color imager (GOCI) satellite at 01:00 UTC on 31 May 2016. Estimated AOD from 27 km
resolution model results using (b) M1 with maximum relative humidity (RH) = 93%, (c) M2, and
(d) M3. (e–g) Estimated AODs from the 9 km resolution model using the (e) M1, (f) M2, and
(g) M3 method.

From a 9 km resolution model around the Korean Peninsula (Figure 4e,f), more detailed
distributions were simulated and compared with the coarse grid results. High AOD values
are apparent in the Seoul metropolitan area, and a strong AOD gradient is evident in the
northern area of the western inflow (Figure 4e). However, as shown in Figure 4f,g, the AOD
is reduced in the central Korean Peninsula, and the northern edge of the strong gradient is
also weaker than that of the M1 method.

Statistical robustness was determined using long-term analysis of the time series
and quantitative comparisons were carried out using ground observations (Figure 5).
Figure 5 shows observed and estimated AOD values during March–May 2016. There are 11
AERONET stations in the Seoul metropolitan area; we selected the Yonsei-YSU AERONET
station (marked as a large red dot in Figure 1b) because it has the fewest missing value
during our analysis period. However, we also performed a comparative statistical analysis
using multiple stations for the entire numerical domain (see Section 3.2.3). To the best of our
knowledge, the model’s ability to estimate AOD is usually investigated in large domains,
and past studies have tested the method on a regional scale. The estimated AOD values
from the WRF-CMAQ model were interpolated to the location of the observation station
using Cressman interpolation. Both the observation and model results were averaged daily;
Figure 5a,b represent the results from D01 and D02, respectively. From the 27 km grid
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(Figure 5a), all estimated AODs show similar temporal variation to the observed AOD, but
their difference is significant when high peaks of AOD are simulated. The estimated AOD
using the M1 method with a maximum RH of 96% was almost twice that for a maximum
RH of 93%, offering evidence of uncertainty in this method. The finer-grid AOD also
suffered from these overestimations (Figure 5b), but the M2 and M3 methods were more
accurate than the M1 method in both D01 and D02, with the M3 estimation showing the
smallest AOD among the algorithms. These results are consistent with those shown in
Figure 4. It is noteworthy that there are some underestimations within the M3 results,
particularly for high-AOD cases.
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Figure 5. Time series of daily aerosol optical depth (AOD) from the Yonsei-YSU Aerosol Robotic
Network (AERONET) station (black) and estimated AOD from the forecast model during March–
May 2016 (springtime). Estimated AODs in (a,b) represent the 27 and 9 km resolution model
results, respectively. Yellow, green, blue, and red lines indicate M1 with maxRH = 93%, M1 with
maxRH = 96%), M2, and M3, respectively.

Statistical analysis for the Seoul metropolitan area during springtime is shown in
Figure 6 using the data from Figure 5. Statistical scores with correlation (R), root mean
square error (RMSE), and mean bias (MB) are displayed in each plot. The R-values are all
between 0.24 and 0.3, which is significantly lower than those reported in previous studies
(e.g., [45,46]) from WRF-CMAQ around the Korean Peninsula. The lower performance of
the model can be attributed to two possible factors: (1) the small number of observations
and (2) local features of observational points that are not included in the model. Because of
error terms or extreme values from observation, local statistics can show bad performance.
As indicated in Koo [47], the impact of hygroscopic growth factors on AOD can differ
among observational locations. Further studies are required to address this issue. At
27 km resolution, the M1 method exhibited positive biases, with a value of 0.16 (0.42)
for a maximum RH of 93% (96%). However, the MB of the M2 was half that of the M1
method, while the M3 only showed a negative bias of −0.08, which is consistent with its
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underestimation tendency. Visual differences between the coarse and fine resolutions are
not significant, but the absolute value of MB decreased in the 9 km grid for both the M1
and M2 methods. The M3 estimation was not sensitive to the model grid size in terms of
MB. The other statistical values saw no significant improvement when using the higher
resolution model with any of the methods.
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Figure 6. Daily aerosol optical depth (AOD) from the Yonsei-YSU station and estimated AOD from
the forecast model during March-May 2016. The left and right panels represent the results from
the 27 and 9 km resolution model results, respectively. Estimation methods are (a,b) M1 with max
RH = 93%, (c,d) M1 with RH = 96%, (e,f) M2, and (g,h) M3.

3.2.2. Wintertime

We further examined the seasonal sensitivity of each method through an additional
case analysis for winter. Figure 7 displays the horizontal distribution of observed and
estimated AOD at 01:00 UTC on 2 January 2017 over East Asia and the Korean Peninsula.
While the GOCI satellite missed the AOD for most of the East Asia region (Figure 7a), the
estimated AODs of all methods showed large values in the missing region (southern China
and the central Korean Peninsula; Figure 7b–d). Unlike springtime, the M2 method showed
an AOD similar to that of the M1 method. However, the M3 method still showed the lowest
AOD. For the 9 km resolution analysis (Figure 7g), reduced AOD estimation by the M3
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method was significant on the eastern and the southern Korean Peninsula and for the Seoul
Metropolitan area compared with the other methods Figure 7e,f). Although the observable
area from the satellite image in Figure 7a is very small, the M3 estimation might be the
closest to the satellite comparing the eastern side of the Korean Peninsula.
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Figure 7. (a) Spatial distribution of aerosol optical depth (AOD) obtained from the geostationary ocean
color imager (GOCI) satellite at 01:00 UTC on 2 January 2017. Estimated AOD from 27 km resolution
model results using (b) M1 with maximum relative humidity (RH) = 93%, (c) M2, and (d) M3.
(e–g) Estimated AODs from the 9 km resolution model using (e) M1, (f) M2, and (g) M3.

The daily variation in AODs was compared at the Yonsei University AERONET
station (Figures 8 and 9). All estimated AODs were closer to the AERONET observation in
wintertime than in springtime, and the overestimation tendency was not very significant
in winter. Interestingly, high-concentration PM2.5 (PM2.5 > 35 µg m−3) events were more
frequent in winter (32 days) than in springtime (17 days) during our analysis period, but
wintertime estimations showed good agreement with the overall observations. Although
differences between estimation methods still exist, especially in the high-concentration
AOD period (Figure 8a), these are reduced with high resolution (Figure 8b). Furthermore,
there is no underestimation by the M3 algorithm, in contrast to the springtime for both
the D01 and D02. Most statistical scores were similar or better than those in springtime
(e.g., enhanced R and RMSE); however, for the M2 method, RMSE and MB increased and
were similar to those of the M1 method with maximum RH = 93% (Figure 9).
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3.2.3. Statistical Analysis for the Entire Numerical Domain

Previously, we verified AOD estimations using a single ground observation, focusing
on the Seoul metropolitan area. To expand our analysis for the entire domain of the NIER
operational model, we also evaluated AOD estimation for wider regions over both East
Asia and the Korean Peninsula. The AOD from the 27 km grid was compared with the
15 sites of the AERONET station in East Asia, and the 9 km grid was compared with the
six sites on the Korean Peninsula, as shown in Figure 1a. We selected these observational
stations because other stationary data had missing values of longer than 30 days during
our analysis period.

Statistical analyses of AERONET and estimated AODs are summarized in Table 3 for
all periods in terms of R, RMSE, and MB. The number of observed data points used in these
analyses are also shown; there is seasonal variation in these numbers. Regardless of the
estimation method, all AODs gave small values of MB, confirming good performance; this
is in contrast to the single observational comparison shown in Figure 9, despite being from
a 9 km grid. For D01, all the R values were larger than those from a single observational
value. The R values were highest during summer and lowest during springtime for all
estimations. For the M3 estimation, all R values were better than those of M1 and M2’s
estimation. This raises the same question as that raised in Section 3.2.1 from the single
observational analysis, but understanding the discrepancy between large and local regions
would be challenging. Analyzing RMSE with R, the M1 method with maximum RH = 93%
was superior to the M2 during all seasons, even though the M2 method gave a good
performance for the Seoul metropolitan area. The best skill score was still obtained using
the M3 estimation, consistent with the single observational comparison. The highest R
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and lowest RMSE were obtained by the M3 method for both D01 and D02. From the D02
analysis, the statistical results were similar to those of D01, except for the R values.
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Figure 9. Daily aerosol optical depth (AOD) from the Yonsei-YSU station and estimated AOD from the
forecast model during December 2016–March 2017 (wintertime). The left and right panels represent
the results from the 27 and 9 km resolution model results, respectively. Estimation methods are
(a,b) M1 with max RH = 93%, (c,d) M1 with max RH = 96%, (e,f) M2, and (g,h) M3.
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Table 3. Statistical values between daily aerosol optical depth (AOD) from 15 Aerosol Robotic Network (AERONET) stations and estimated AOD from the forecast
models during March 2016–February 2017.

Resolution Method Season N R RMSE MB Resolution Method Season N R RMSE MB

27 km

M1
max RH = 93%

Spring 36,696 0.35 0.34 −0.08

9 km

M1
max RH = 93%

Spring 18,036 0.38 0.29 −0.01

Summer 44,088 0.66 0.33 −0.10 Summer 22,512 0.37 0.31 −0.08

Fall 33,015 0.60 0.29 0.01 Fall 16,981 0.50 0.25 0.05

Winter 31,425 0.57 0.24 0.03 Winter 18,013 0.42 0.23 0.06

M1 max RH = 96%

Spring 36,696 0.30 0.41 −0.03

M1
max RH = 96%

Spring 18,036 0.34 0.43 0.07

Summer 44,088 0.63 0.34 −0.08 Summer 22,512 0.36 0.31 −0.04

Fall 33,015 0.55 0.32 0.04 Fall 16,981 0.46 0.31 0.10

Winter 31,425 0.55 0.25 0.05 Winter 18,013 0.40 0.26 0.08

M2

Spring 36,696 0.33 0.37 −0.04

M2

Spring 18,036 0.37 0.28 −0.01

Summer 44,088 0.60 0.35 −0.01 Summer 22,512 0.32 0.34 0.02

Fall 33,015 0.54 0.37 0.09 Fall 16,981 0.46 0.34 0.13

Winter 31,425 0.48 0.37 0.10 Winter 18,013 0.38 0.35 0.12

M3

Spring 36,696 0.43 0.30 −0.10

M3

Spring 18,036 0.45 0.22 −0.07

Summer 44,088 0.68 0.33 −0.11 Summer 22,512 0.41 0.32 −0.13

Fall 33,015 0.68 0.26 −0.01 Fall 16,981 0.56 0.21 −0.01

Winter 31,425 0.61 0.24 0.03 Winter 18,013 0.46 0.22 −0.05
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4. Summary and Conclusions

AOD retrieval from satellites can provide reliable information, but missing values
are problematic when cloud fractions are continually high. Instead of real observations,
a numerical model can be used to make up for missing data. In this study, to investigate
the consistency of AOD estimations, the AOD calculation ability of the NIER operational
numerical forecast model (WRF-CMAQ) was verified through comparative analysis. The
greatest uncertainty in the M1 (IMPROVE) method [15] is related to f(RH), which corre-
sponds to the cloud and aerosol hygroscopic growth factor. The AODs are very sensitive to
the set value of the maximum relative humidity, especially around cloudy regions where
relative humidity is close to 1. To remove this uncertainty, we tested two alternative estima-
tions [29,30] in which it is not necessary to set the maximum value of relative humidity.

When comparing GOCI-retrieved and WRF-CMAQ-derived AODs for spring and
winter, the M1 estimation with maximum RH = 96% showed the largest values, while
those of the M3 method were the smallest. These results are consistent with a single
observational analysis for the Seoul Metropolitan. However, the statistics should be treated
with caution, since all R values were significantly lower than those in a previous study;
identifying the reasons for this requires further study considering local features of AOD
with large observational points. Other statistics, such as RMSE and MB, are dependent
on model resolution and the analyzed period. AOD estimations are not always improved
at high resolution, and their seasonal dependency is apparent. Underestimations and
overestimations were reduced during winter compared with springtime for the M3 and
other estimation methods, respectively.

To extend our analysis to a larger domain, we also carried out a statistical investigation
for NIER D01 and D02. All AODs performed well, showing small MB values. The values
of R in D01 were larger than the single observational values and were comparable to those
reported in the literature. However, from the D02 analysis, R was significantly lower
than that of D01. For the M3 estimation, values were >0.5, but for all other methods, the
values were <0.5. A small number of observations and/or local characteristics of AOD can
cause these results and it will be a challenge to investigate this issue in future studies. In
general, the R values were highest during summer and lowest during springtime for all
methods. Overall, the M3 gave the best scores in the large domain analysis. To the best
of our knowledge, M1 is still widely used to derive AOD from WRF-CMAQ. While our
results only represent a 1-year data analysis, care should be taken when performing AOD
estimation, and empirically reconstructed mass-extinction methods, such as that of M3,
offer an alternative solution.
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Appendix A

Table A1. Water growth in the small- and large-sized sulfate and nitrate components.

RH(%) fS(RH) fL(RH) RH(%) fS(RH) fL(RH) RH(%) fS(RH) fL(RH)

0~36 1.00 1.00 56 1.78 1.61 76 2.60 2.18
37 1.38 1.31 57 1.81 1.63 77 2.67 2.22
38 1.40 1.32 58 1.83 1.65 78 2.75 2.27
39 1.42 1.34 59 1.86 1.67 79 2.84 2.33
40 1.44 1.35 60 1.89 1.69 80 2.93 2.39
41 1.46 1.36 61 1.92 1.71 81 3.03 2.45
42 1.48 1.38 62 1.95 1.73 82 3.16 2.52
43 1.49 1.39 63 1.99 1.75 83 3.27 2.60
44 1.51 1.41 64 2.02 1.78 84 3.42 2.69
45 1.53 1.42 65 2.06 1.80 85 3.58 2.79
46 1.55 1.44 66 2.09 1.83 86 3.76 2.90
47 1.57 1.45 67 2.13 1.86 87 3.98 3.02
48 1.59 1.47 68 2.17 1.89 88 4.23 3.16
49 1.62 1.49 69 2.22 1.92 89 4.53 3.33
50 1.64 1.50 70 2.26 1.95 90 4.90 3.53
51 1.66 1.52 71 2.31 1.98 91 5.35 3.77
52 1.68 1.54 72 2.36 2.01 92 5.93 4.06
53 1.71 1.55 73 2.41 2.05 93 6.71 4.43
54 1.73 1.57 74 2.47 2.09 94 7.78 4.92
55 1.76 1.59 75 2.54 2.13 95 9.34 5.57

Table A2. Sea salt particle diameter growth and water growth function.

RH(%) Growth
Factor fSS(RH) RH(%) Growth

Factor fSS(RH)

1~46 1.0000 1.0000 71 1.8434 3.1269
47 1.5922 2.3584 72 1.8589 3.1729
48 1.6001 2.3799 73 1.8751 3.2055
49 1.6081 2.4204 74 1.8921 3.2459
50 1.6162 2.4488 75 1.9100 3.2673
51 1.6245 2.4848 76 1.9288 3.3478
52 1.6329 2.5006 77 1.9488 3.4174
53 1.6415 2.5052 78 1.9700 3.5202
54 1.6503 2.5279 79 1.9925 3.5744
55 1.6593 2.5614 80 2.0166 3.6329
56 1.6685 2.5848 81 2.0423 3.6905
57 1.6779 2.5888 82 2.0701 3.8080
58 1.6875 2.6160 83 2.1001 3.9505
59 1.6974 2.6581 84 2.1328 4.0398
60 1.7075 2.6866 85 2.1684 4.1127
61 1.7179 2.7341 86 2.2077 4.2824
62 1.7286 2.7834 87 2.2512 4.4940
63 1.7397 2.8272 88 2.2999 4.6078
64 1.7511 2.8287 89 2.3548 4.8573
65 1.7629 2.8594 90 2.4174 5.1165
66 1.7751 2.8943 91 2.4898 5.3844
67 1.7877 2.9105 92 2.5749 5.7457
68 1.8008 2.9451 93 2.6769 6.1704
69 1.8145 3.0105 94 2.8021 6.7178
70 1.8286 3.0485 95 2.9610 7.3492
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