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Abstract: Low-density parity-check (LDPC) codes are known to be one of the best error-correction
coding (ECC) schemes in terms of correction performance. They have been utilized in many advanced
data communication standards for which the codecs are typically implemented in custom integrated
circuits (ICs). In this paper, we present a research work that shows that the LDPC coding scheme
can also be applied in a system characterized by highly limited computational resources. We present
a microcontroller-based application of an efficient LDPC encoding algorithm with efficient usage
of memory resources for the code-parity-check matrix and the storage of the results of auxiliary
computations. The developed implementation is intended for an IoT-type system, in which a low-
complexity network node device encodes messages transmitted to a gateway. We present how the
classic Richardson–Urbanke algorithm can be decomposed for the QC-LDPC subclass into cyclic
shifts and GF(2) additions, directly corresponding to the CPU instructions. The experimental results
show a significant gain in terms of memory usage and decoding timing of the proposed method
in comparison with encoding with the direct parity check matrix representation. We also provide
experimental comparisons with other known block codes (RS and BCH) showing that the memory
requirements are not greater than for standard block codes, while the encoding time is reduced,
which enables the energy consumption reduction. At the same time, the error-correction performance
gain of LDPC codes is greater than for the mentioned standard block codes.

Keywords: error correction; ECC; low-density parity-check codes; LDPC; QC-LDPC; IoT systems

1. Introduction

Internet of things (IoT) systems, which are composed of a large number of cheap,
energy-efficient terminals, are some of the emerging elements of the recent landscape of
information technology. The role of IoT has grown in numerous areas, such as smart
homes, smart cities, Industry 4.0, agriculture, smart grids, public safety, etc. [1]. The
general concept of IoT involves numerous possibilities in which a system’s hardware and
software can be designed. However, the IoT nodes, which constitute the bottom level
of a system, are usually devices containing a set of sensors/actuators and a low-power
processor with limited processing capabilities (a microcontroller) (e.g., [2,3]). Machine-to-
machine communications over the Internet in an IoT system employ a variety of last-mile
communication types, with wired, wireless, or fiber-optic mediums and numerous possible
stacks of protocols for the physical layer. Since nodes are usually battery powered, the
energy efficiency of the protocol and its implementation is an important issue. Despite the
limited resources of IoT processor devices, the implementation of efficient communication
protocols is required in order to enable communication with decent power efficiency.

One of the important elements of any communication protocol stack is an error-
control coding (ECC) mechanism, which has a direct influence on the effectiveness of
the communication. However, the implementation of modern ECC methods with great
coding gain, such as Turbo coding [4], Polar coding [5], and low-density parity-check
(LDPC) coding [6,7], is known to be computationally demanding. In this paper, we present
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how one of the mentioned modern and power-efficient LDPC coding schemes can be
implemented in a low-power microcontroller-based IoT device.

1.1. Relevant Research Works

While numerous hardware implementations of modern ECC codecs, including LDPC
codecs, have already been developed, typically they are devoted to high-throughput de-
manding communication standards; thus, they are based on high-volume custom ICs [8–10],
FPGAs [11–14], or GPU devices [15,16]. On the other hand, the typical physical-layer pro-
tocol stack for an IoT-type device is developed with low memory, device complexity and
processing time requirements as the most important goals.

LDPC codes [6,7] are a class of linear block error-correcting codes that are known to
achieve a performance near the capacity limit [17]. Extensive research in the field of LDPC
coding includes issues such as graph–theoretic representations of LDPC codes [18,19],
parity-check matrix design and construction methods [20–24], efficient encoding [25] and
decoding [26–28] algorithm development, ECC coding system design for different use
cases [29,30], hardware implementations in ASIC and FPGA equipment [9,11,13,31,32], and
the design of nonbinary codes and codecs [22,33–36]. While LDPC codes have already
been applied in a number of communication standards, such as WiMAX [37], Wi-Fi [38],
and 5G [39], in this article, we show that LDPC coding can also be considered for devices
with highly constrained computational resources. Despite the recent advances in digital
circuit technologies, the process of codec design is still not trivial.

The research on LDPC efficient encoding implementation is quite rich already, with
a number of issues that have been considered. For example, in [40], an efficient FPGA
architecture for subclass of CCSDS (Consultative Committee for Space Data Systems)
codes, recommended for channel coding in near-Earth and deep-space communications,
is presented. The proposed architecture is based on a series of convolutional encoders,
leveraging the QC structure inherent parallelism. In [41], LDPC encoding for a 5G new radio
(NR) codes is considered, and a high-throughput encoder architecture is proposed. In [42],
an encoding scheme is developed, involving pruning the full-base matrix of 5G NR code for
a computationally efficient encoding in a high-throughput hardware architecture. The 5G
NR code encoders are also considered in [16], where a GPU implementation is developed.

1.2. This Research Contributions

In the research presented in this paper, we investigate how one of the modern and
power-efficient coding schemes—namely, a quasi-cyclic (QC) subclass of LDPC codes—can
be applied in a device equipped with a microcontroller. The great error-correction perfor-
mance of LDPC codes can then guarantee a power-efficient usage of the communications
channel, regardless of the transmission medium and protocols used.

While the number of research works, including the mentioned above, involve high-
throughput hardware implementations, there is a lack of LDPC codec development for the
case of computationally constrained, low-power CPU devices. In this context, the research
presented in this paper was initiated.

In this work, an IoT system is considered, in which the energy efficiency, due to the
utilization of an advanced ECC coding, is mostly desired in an uplink direction, from the
microcontroller-based IoT node, which is usually battery powered, to the IoT gateway.
Therefore, the focus is on the LDPC encoding procedure, which is formulated and imple-
mented in a low-cost CPU device. We present an efficient encoding scheme developed for
a microcontroller implementation, with elementary operations corresponding directly to
a CPU instructions, as well as the experimental results showing the computing time and
energy reduction that can be then achieved. The contributions can be listed as follows:

1. We show how the Richardson–Urbanke encoding algorithm [43] utilized for QC-
LDPC codes can be decomposed into simple, repeated operations of cyclic shifts and
GF(2) additions.
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2. We present a CPU implementation of this encoding with a QC-LDPC matrix represen-
tation that can be efficiently stored in the system’s RAM.

3. We provide the experimental results of the implementation in comparison with
other classic block ECC schemes: the RS (Reed–Solomon) and BCH (Bose–Chaudhuri–
Hocquenghem) codes. Comparisons are made in terms of memory usage, block
encoding time, energy savings and error-correction performance.

For an IoT system, short-to-moderate block length codes are likely to be utilized, due
to the short message lengths; therefore, we do not consider the application of state-of-the-art
5G NR codes, but instead we base the experimental part on the proprietary codes designed
with a graph optimization algorithm [24].

The paper is organized as follows. In Sections 2 and 3, we provide preliminary
information about our system model of ECC in the context of IoT systems and basic
definitions of LDPC coding. In Section 4, the Richardson–Urbanke encoding algorithm
with a formulation specifically for QC-LDPC codes is presented. Then, in Section 5, we
provide the details of the proposed microcontroller application. Finally, in Section 6, we
provide the numerical results, and the paper is concluded in Section 7.

2. Error Correction for IoT End-Node Devices

We assume a communication model (Figure 1) in which a number of low-complexity
IoT devices communicate with a central node—the gateway. Since we consider the gateway
to possess great computational resources, an ECC scheme with a high decoding complexity
can be considered for data blocks sent from devices to the gateway (the uplink direction).
Therefore, LDPC coding seems to be an attractive option because of its great correction
performance, which has the potential to save transmission power. However, in such a
model, the LDPC encoder still needs to be implemented in an IoT node. In this article, we
present the results of an investigation that aims to answer the question of how to optimize
the LDPC encoder’s implementation in a typical microcontroller, as well as to find out what
the memory requirements and timing parameters of such a solution are.

Figure 1. General architecture of IoT communication using LDPC codes for the error correction.

As shown in Figure 1, the presented solution is devoted to a microcontroller-based
IoT device with any physical layer, wired or wireless, requiring computationally efficient
and energy-efficient ECC. Therefore, the details of the protocol are abstracted as a digital
modulation and communication channel in the system model considered. The developed
coding system is utilized in an industrial implementation with a fiber-optic communication
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link, with highly constrained optical power. This is an example of practical application of
the presented ideas.

IoT device nodes are typically based on small microcontrollers with limited resources
and peripherals, such as a universal asynchronous receiver–transmitter (UART), SPI and
I2C serial interfaces, etc. Some of these peripherals are configured to work with very-low-
power modes; most of the time, IoT devices are in sleep mode, waiting for a wake-up,
and then send a message upon the occurrence of some event. Considering ECC message
encoding, the energy efficiency of such a message delivery is dependent on two factors:

• The encoding time, which is connected with encoding complexity;
• The coding scheme gain, which is the possible reduction in transmission power due to

the application of an effective ECC scheme.

These two factors are likely contradictory because an effective ECC scheme that en-
ables transmission power reduction usually has a high encoding—and especially decoding—
complexity. Therefore, we propose the utilization of an LDPC coding scheme in the uplink
direction, and we present how an LDPC encoder can be efficiently realized with a microcon-
troller. As presented in Figure 1, the assumed system model does not fix any specific ECC
scheme for the downlink direction (from the gateway to the IoT node).

3. LDPC Codes
3.1. Preliminaries

A binary (N, K) LDPC code is defined by its binary parity-check matrix H of size
M× N, where N is the code vector length, M = N − K is the number of parity-check bits,
and K < N is the length of an information vector. The code redundancy is indicated by the
code rate, which is defined as R = K/N. In the systematic encoding process, M parity bits
are added to the information vector u = {u1, u2, . . . , uK}, forming the code vector (code
word) c = {c1, c2, . . . , cN}. In the mathematical formulation, the vectors are over the Galois
field GF(q)—specifically, GF(2) for the binary codes considered in this paper.

In the decoder, the received data in a row vector ĉ of length N are recognized as a
correct (error-free) vector if, and only if, they satisfy the parity-check equation HĉT = 0M×1
with GF(2) arithmetic. If the parity-check equation is not satisfied, error-correction decod-
ing is required, which is applied by means of the iterative belief propagation algorithm [7].

To be effectively and efficiently utilized in an IoT system, the LDPC code should usu-
ally satisfy requirements regarding the code rate R = K/N, the code-word length N, decent
error correction performance, and the possibility of implementing an encoder using very
limited resources. Our proposed encoding scheme is versatile; that is, a broad range of N
and R can be engaged, and we will present the results for a number of parity-check matrices
with different N and R. Unlike the frequently considered advanced communication devices
based on custom ICs and FPGAs, we consider an IoT device with highly limited resources:
limited memory and only a single computation core (CPU).

3.2. QC-LDPC Codes

The quasi-cyclic subclass of low-density parity check codes (QC-LDPC) [44] is known
to possess a desirable feature of organized message routing in hardware implementations
of a partially parallel decoder. QC-LDPC codes are used for most LDPC coding system
designs, industrial applications [11,22,37,39,44], etc. Their characteristic feature is the block-
circulant structure of H. The parity-check matrix H of a QC-LDPC code consists of a grid
of square P× P submatrices, with each submatrix being the following:

- An all-zero zero matrix;
- An identity matrix;
- An identity matrix with circularly shifted columns.

Additionally, the implementation of a low-complexity encoder using the classic
Richardson–Urbanke method [43] requires an ALT (almost lower triangular) form, prefer-
ably a dual-diagonal structure of H [45]. Let us denote a P× P circulant permutation matrix
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(CPM) as Ps, which is obtained by cyclically shifting the identity matrix IP×P by s positions
to the right. In this article, a class of codes with the following structure of the parity-check
matrix H is considered:

H =


Ps1,1 Ps1,2 · · · Ps1,J

Ps2,1 Ps2,2 · · · Ps2,J

...
...

. . .
...

PsI,1 PsI,2 · · · PsI,J

, (1)

where si,j ∈ {0, 1, . . . , P− 1, ∞}, where P∞ = 0 is used to denote the all-zero matrix [45].
Codes associated with the parity-check matrix as in (1) are (N, K) QC-LDPC codes with
code vector length N = JP, information vector length K = (J− I)P, and rate R = (J− I)/J.

Alternatively to the matrix representation, the LDPC codes can also be represented
by the associated bipartite Tanner graph [7,46]. In the Tanner graph, variable nodes
representing data bits are associated with columns of H, and check nodes representing
parity checks are associated with rows of H. The nonzero elements in H are represented by
the edges in the code graph. The Tanner graph defines the passage of the message through
the iterative decoding algorithm [7], but it is also involved in numerous methods of code
construction with optimized performance [20,47,48].

4. Richardson–Urbanke Encoding Algorithm

A basic encoding method for any linear block codes can be based on a generator matrix.
However, in general, the generator matrix of an LDPC code is a dense N× K matrix, which
in itself is a great amount of data for storing in limited memory, and it requires dense matrix
operations. Therefore, it is desirable to employ a more efficient LDPC encoding method, as
introduced by Richardson and Urbanke [43], who directly utilized the parity-check matrix
H, which is sparse by definition. This method requires an H matrix in an ALT form. Let us
shortly introduce the Richardson–Urbanke method in the context of QC-LDPC codes.

We assume that by making use of some of the known methods [20,24], the parity-check
matrix is constructed in (or converted into) an ALT form, with P× P submatrices of the
QC-LDPC structure. Let the H in ALT form be partitioned as follows:

H =

[
A B T
C D E

]
, (2)

where A is of size (I − g)P× (J − I)P, B is (I − g)P× gP, T is (I − g)P× (I − g)P, C is
gP× (J− I)P, D is gP× gP, and E is gP× (I − g)P, where g is the gap size, that is, the size
of the non-triangular part. The structure of the T matrix is essential, which should be lower
triangular, that is,

T =


P0 0 0 · · · 0

Ps2,(J−I+g+1) P0 0 · · · 0
Ps3,(J−I+g+1) Ps3,(J−I+g+2) P0 0

...
. . .

...
Ps(I−g),(J−I+g+1) Ps(I−g),(J−I+g+2) · · · Ps(I−g),(J−1) P0

 (3)

where P0 is an identity matrix of size P× P. An important feature is that T−1 multiplica-
tion by any vector can be performed with linear complexity through a back-substitution
operation [43].

The systematic encoding process of an information vector u = {u1, u2, . . . , uK} is
based on determining two parity sub-vectors p1 and p2 with lengths gP and (I − g)P,
respectively, such that the obtained code vector is c = [u, p1, p2]. Considering (2), the
parity-check equation HcT = 0 can be divided into two parts:
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AuT + BpT
1 + TpT

2 = 0, (4)

CuT + DpT
1 + EpT

2 = 0. (5)

After simple algebraic transformations with GF(2) arithmetic, the expressions for
calculating p1 and p2 are obtained:

pT
1 = Φ−1(ET−1AuT + CuT), (6)

pT
2 = T−1(AuT + BpT

1 ), (7)

where Φ = ET−1B + D. The multiplication by the sparse sub-matrices A, B, C, E, and
T−1, which is realized through back-substitution, is an operation with complexity that is
linearly dependent on the code length N. More importantly, as will be presented below, for
QC-LDPC matrices, as in (1), the encoding can be implemented with just two elementary
operations: the GF(2) addition and circular shifting of sub-vectors.

However, straightforward multiplication by Φ−1 can be problematic. The first reason
is that Φ is not guaranteed to be an invertible matrix. In such a case, in order to use
the Richardson–Urbanke encoding method, H must be rearranged by row and column
permutations such that an invertible Φ is achieved. The second reason is that Φ−1 is not
sparse in general, and the complexity of the multiplication is quadratic on N. This is (for
large block sizes) the most computationally demanding part of the encoder. However, it
was shown that for QC-LDPC codes with a dual diagonal structure, Φ can be reduced to
an identity matrix, eliminating the need for multiplication by Φ−1 [45]. The additional
constraint on the T and E submatrices is that only nonzero elements (submatrices in QC-
LDPC) are organized in a dual diagonal in T [45]. In the article [45], it was shown how
circular shifts si,j in matrices B and D of the dual-diagonal QC-LDPC H could be calculated
to make Φ an identity matrix. Dual-diagonal codes are used in several industrial standards,
e.g., WiMAX [37] and Wi-Fi [38].

5. LDPC Encoder Design for a Microcontroller Implementation

The application of dual-diagonal QC-LDPC codes with Richardson–Urbanke encod-
ing can be an attractive option for the transmission system under consideration. In this
section, we present a developed implementation of an efficient QC-LDPC encoder for a
computational core of a typical microcontroller device.

Similarly to the majority of embedded software solutions, the experimental application
is implemented in the C language using the GCC (GNU compiler collection) compiler
delivered with an IDE (independent development environment) from STMicroelectronics,
version for STM32–9-2020-q2-update. The encoder is compiled for Cortex-M4 core, with
optimization for size (-Os flag), which increases the possible size of applicable parity check
matrices. All drivers for HAL (hardware abstraction level) were delivered by ST company.
The experimental hardware is based on the STM32L476 microcontroller; however, the
proposed solution can be adapted for other devices from numerous vendors. The device
utilized for experiments has 1 MB of flash memory and 128 KB of static RAM, operating
with an 80 MHz clock frequency.

5.1. Elementary Computations

In this section, we present how the encoding process can be decomposed into elemen-
tary operations that are suitable for a typical microcontroller CPU, as well as how the code
specification, i.e., the structured parity-check matrix, can be efficiently memorized.

An efficient sparse matrix representation of H can utilize indexes of nonzero elements,
ind(H), which is a matrix with the same number of rows as H, but only a few columns
with indexes of nonzero elements in every row of H. For regular codes, with every
row of H that has weight dc, this representation requires the storage of M × dc index
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values. However, for the QC-LDPC codes applied in our research, an even more efficient
representation is possible, similar to hardware implementation of, for example, [32], in
which H is represented by the following:

• Indexes of nonzero submatrices Psi,j in (1);
• Circular shift values si,j in (1) gathered in matrix representation S.

This way, the storage is reduced to (M/P)× dc indexes plus (M/P)× dc circular shift
values, which gives, in total, 2(M/P)× dc integer values, which can often fit into an 8-bit
(uint8_t) representation if P < 256 and N/P < 256.

In our implementation, the Richardson–Urbanke algorithm, according to expressions
(6) and (7), is partitioned into steps that are realized sequentially in a CPU, as we illustrate
in Figure 2.

uT

CuT

in p1 part p2 part out

AuT

Bp1T

+

+

T-1a-1 EbT

ΦeT p1

uT

p2T -1hT

u p1 p2

A B T

C D E
H =

u

c

a b d
e p1

g
h p2

u

p1

p2

Φ

H
A B T

EDC

AuT

CuT

Bp1T

ΦeT+
EbTT -1aTAuT

CuT

+

+

+

1 2 3 4 5 6 7 8 9 10

Figure 2. Block diagram presenting consecutive steps in the efficient encoding algorithm.

The first step is the preparation of the input information vector uT , that is, buffering
the incoming data into a vector uT of length K. Then, in the following steps, intermediate-
result vectors denoted by a, b, . . . , h, as well as final parity bit vectors p1, p2 are calculated
sequentially. The required partial operations can be categorized into three types:

• Sparsely structured matrix by vector multiplication over GF(2), e.g., a := AuT ;
• Inverse of a lower-triangular sparse matrix by vector multiplication over GF(2), e.g.,

b := T−1aT ;
• Addition over GF(2), e.g., e := c + d.

Let us discuss these types of operations, beginning with the sparsely structured matrix
by vector multiplication. The expression is

a := AuT (8)

For the QC-LDPC codes with a structured parity-check matrix, as in (1), this can be
formulated as follows:
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aT

1
aT

2
...

aT
I−L

 :=


Ps1,1 · · · Ps1,J

Ps2,1 · · · Ps2,J

...
. . .

...
PsI−L,1 · · · PsI−L,J

 ·


uT
1

uT
2
...

uT
I−L



=


Ps1,1 uT

1 · · · Ps1,J uT
I−L

Ps2,1uT
1 · · · Ps2,J uT

I−L
...

. . .
...

PsI−L,1uT
1 · · · PsI−L,J uT

I−L


(9)

where u1, u2, . . . and a1, a2, . . . are the subvectors of, respectively, u and a of size 1× P.
In (9), every subvector calculation of

aT
i := Psi,1 uT

1 + Psi,2 uT
2 + . . . + Psi,J−I uT

J−I (10)

requires the performance of elementary operations of the type Psi,j uT
j , as well as additions

over GF(2). Every Psi,j for the QC-LDPC code is one of the following:

• A zero matrix (si,j = ∞); then, Psi,j uT
j = 0.

• A circular shift of an identity matrix by si,j; then it can easily be verified that Psi,j uT
j is

a circular shift of uT
j by si,j positions.

Therefore, computing (10) for QC-LDPC codes requires elementary operations of
circular shifts of subvectors of uT of length P, as well as modulo-2 additions of subvectors
of length P, which are equivalent to additions over GF(2). Similar elementary operations
can be indicated for the other sparsely structured matrices by vector multiplications in
Figure 2.

The T−1 by vector multiplication, e.g., bT := T−1aT , can be realized due to the
equivalency:

bT = T−1aT ⇔ TbT = aT (11)

which, in the matrix form, is expressed as
P0 0 0 · · · 0

Ps2,(J−I+g+1) P0 0 · · · 0
...

. . .
...

Ps(I−g),(J−I+g+1) Ps(I−g),(J−I+g+2) Ps(I−g),(J−I+g+3) · · · P0

 ·


bT
1

bT
2
...

bT
I−L

 =


aT

1
aT

2
...

aT
I−L

 (12)

Examining (12), it can be noticed that subvectors b1, b2, . . . can be subsequently com-
puted. First, b1 is computed according to:

P0bT
1 = aT

1 ⇒ bT
1 = aT

1 (13)

Then, b2 is computed according to:

Ps2,(J−I+g+1)bT
1 + P0bT

2 = aT
2 ⇒ bT

2 = (Ps2,(J−I+g+1))bT
1 + aT

2 (14)

and then every subsequent ith subvector bT
i is computed according to the following

expression:

Psi,(J−I+g+1)bT
1 + Psi,(J−I+g+2)bT

2 + · · ·+ P0bT
i = aT

i ⇒
bT

i = Psi,(J−I+g+1)bT
1 + Psi,(J−I+g+2)bT

2 + · · ·+ Psi,(J−I+g+i−1)bT
i−1 + aT

i
(15)

This last expression shows that computing every subsequent subvector bT
i requires

only circular shift operations of previously calculated subvectors bT
1 , . . . , bT

(i−1) and addi-
tions over GF(2).
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The subvector additions over GF(2) are equivalent to the vector-wise binary exclusive-
or (XOR) operations. The last step of encoding, as shown in Figure 2, is assembling a code
vector c as follows:

c =
[
u p1 p2

]
(16)

We can conclude that the whole encoding process can be partitioned into the following
elementary operations:

• Circular shift operations of subvectors of length P;
• Subvector additions over GF(2) realized with XOR operations.

We remark that a classic encoding that employs a generator matrix can also be realized
with just GF(2) additions, but the generator matrix representation is not sparse. Meanwhile,
the presented formulation operates directly on a sparse parity-check matrix; therefore, many
of the submatrices are all-zero, thus significantly reducing the computational complexity.

All vectors computed as intermediate results and their sizes are summarized in Table 1.
During the operation of the encoding algorithm, the system RAM can be dynamically
interchanged for the storage of the intermediate vectors; for example, after step 2, vectors a
and c are memorized, after step 3, vectors a, b, and c are memorized, and so on, as can be
easily read in Figure 2. It can be verified that the greatest memory consumption is after
step 7, when the following vectors are memorized: a, g, p1, and u. The memory utilization
is quantified by experimental results in the next section.

Table 1. Comparison of intermediate computation vector sizes.

Vector Length Vector Length

a (I − g)P u (J − I)P

b gP g (I − g)P

c gP h (I − g)P

d gP p1 gP

e gP p2 (I − g)P

5.2. Parity-Check Matrix Representations in Memory

Basically, three different representation methods can be considered. The first method
is the direct representation with a Boolean variable table storing the binary parity-check
matrix, as shown on the left side of Figure 3 (basic representation). Direct parity-check
matrix storage would require an unnecessarily large amount of memory, e.g., 524,288 B for
a 512× 1024 matrix.

The second method is an index representation, in which indexes of nonzero elements
in every row are memorized, which is shown in the middle of Figure 3, where −1 indicates
a lack of nonzero indexes in the macro-column. The third method is the representation of
circular shift values, as shown on the right side of Figure 3 (efficient QC-LDPC), where
all-zero matrices are indicated by −1 and non-zero CPMs are represented by their cyclic
shift values, which are stored in an integer table.

We claim that the third (shift values) representation is the most suitable for our
implementation, not only because it utilizes memory efficiently, but also because it explicitly
defines the circular shift values introduced in the previous section as the components of
elementary encoding operations in the described algorithm.
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Figure 3. Illustration of the size of the H matrix with three different representations in the microcon-
troller memory.

5.3. Implementation of Elementary Operations

The elementary operations of the circular shift of QC-LDPC encoding algorithm can
be implemented in the C language by using a bit-wise shift operation and bit-wise OR
operation, as in the following example:

output = ( input << o f f s e t ) | ( input >> ( s i z e − o f f s e t ) ) ;

where offset is the cyclic shift value and size is equivalent to the submatrix size P.
Using this instruction for the circular shift, the input value needs to be of the uint32_t

type (if P ≤ 32), while the size and offset can usually be of the uint8_t type. The output
value is in the same format as the input. An example for shifting 8-bit values with offset 2
is presented in Figure 4.

Figure 4. Example of a circular shift operation.

The possible circular shift is limited to P ≤ 32, because the typical microcontrollers
use 32-bit cores, and hence the elementary operations are efficiently executed for up to 32b
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subvector sizes. However, this limitation does not influence the achievable performance,
because the LDPC codes with short-to-moderate submatrix sizes can be optimized at least
as effectively as the codes with greater submatrix sizes if the codeword length remains the
same [24].

The second elementary operation, the addition of the GF(2) subvectors, can be realized
directly with an XOR operator in the C language applied to variables representing the
subvectors.

5.4. Microcontroller Implementation Issues

We implemented the encoder for LDPC codes with a broad range of code vector and
information vector sizes (N, K). The encoder operates according to the block diagram
shown previously in Figure 2.

The algorithm implemented in the microcontroller (the low-power STM32L476 men-
tioned above was used in the experimental design) was divided into four parts: input data
preparation, two parts for calculating the p1 and p2 vectors, and the output assembly. The
parity-check matrix H was divided into A, B, T, C, D, and E for the LDPC and QC-LDPC
encoding, and this way, it was stored in the memory. For the experimental comparison, we
implemented encoding for both LDPC codes with index representation and for QC-LDPC
with cyclic shift representation. The H matrix was a constant initialized variable and was
stored in flash memory.

In the first part of the algorithm, data were prepared to start the encoding procedure.
The information vector u is a parameter of the encoding function and stored in the stack;
likewise, every buffer and variable during the encoding process is stored in stack memory
in the RAM. The available RAM memory in the current microcontroller is 128 KB; thus, the
operations needed to use memory efficiently. The buffer usage was minimized; in most
cases, one main and one temporary buffer were used to execute the operations.

6. Numerical Results

Our research is supported by the experimental results, which cover three aspects:
memory utilization, encoding time, and error-correction performance. The optimized
memory enables the use of smaller, lower-cost, and more energy-efficient microcontroller
devices; optimized timing can potentially decrease energy consumption, and likewise, the
error-correction performance, which is greater than in the case of typical block codes, can
enable lower transmission power in wired or wireless transmission systems.

The QC-LDPC codes used for encoder verification and system performance simulation
were obtained with a code graph optimization method, consisting of two phases:

1. Base graph construction, that is, a graph corresponding to the I × J base matrix W
indicating non-zero submatrices in H in (1).

2. Cyclic lifting of the base graph, with cyclic shift values si,j in (1) obtained with an
iterative search algorithm.

The code construction algorithm is summarized as Algorithm 1.
Several different parity-check matrices (H1, . . . , H8) with diversified block lengths,

regular and irregular, as listed in Table 2, were used for the experimental study. For example,
the parity-check matrix of a regular (3, 6), (1024, 512) code with submatrix size P = 32 is
provided in Figure 5. This matrix, referred to as H1 in Table 2, corresponds to an optimized
graph, free of length-4 and length-6 cycles and a minimized number of length-8 cycles.
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Algorithm 1: QC-LDPC parity-check matrix construction.
Input: Base matrix size I × J, submatrix size P, variable nodes degree distribution

λ = [λ2, λ3, . . . , λdV max ]
Output: Binary matrix HIP×JP consisting of I × J circulants of size P× P

1 {Base matrix construction}
2 If possible (that is, if λ2 ≥ I/J), insert dual diagonal at the right side of the base

matrix W.
3 Utilizing the PEG algorithm [20], progressively add edges into the base graph

(ones into the remaining part of W), subject to the degree distribution λ.
4 {Cyclic shift values determination}
5 If W is not dual diagonal, then by row and column permutations, convert it to the

ALT (almost lower triangular) form.
6 If W is dual diagonal, then fix the cyclic shift values on dual diagonal such that

Φ = I, according to the expressions in [45].
7 In the base graph corresponding to W, identify all short closed walks (if the length

of the shortest cycle is g, then closed walks up to length at least g + 4 should be
identified).

8 For every closed walk, formulate a condition involving cyclic shift values si,j such
that corresponding cycles in the lifted code graph do not exist [24].

9 For every condition, iteratively modify associated si,j values in order to satisfy the
greatest possible number of conditions for the non-existence of corresponding
cycles.

10 {Matrix construction}
11 From the obtained W and si,j, i = 1, . . . , I, j = 1, . . . , J, construct H as in (1).

The parameters of the RS and BCH codes, which are counterparts of LDPC H1, . . . , H8,
are also presented in Table 2. These codes were used for an experimental comparison of the
developed QC-LDPC scheme with classical block codes. Every RS code is clearly defined
by its (N, K) parameters and for BCH codes, we also provide the correction capability
parameter tBCH , defined as in [49]. The generator polynomials of RS and BCH codes are
obtained as described in [49].

Figure 5. Parity-check matrix of a (1024,512) QC-LDPC code with submatrix size P = 32. The cyclic
shift values are provided for non-zero submatrices.
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Table 2. Parameters of the experimental parity-check matrices H for LDPC. The λd represents the
fraction of degree-d variable nodes in the code graph.

Matrix K N P R Distribution NRS,BCH KRS RRS KBCH tBCH RBCH

H1 512 1024 32
1
2

Reg., λ3 = 1 1023 511 ≈ 1
2

- - -

H2 512 1024 32
1
2

Irreg., λ2,3,7 1023 511 ≈ 1
2

- - -

H3 256 512 32
1
2

Reg., λ3 = 1 511 255 ≈ 1
2

259 30 ≈ 1
2

H4 256 512 32
1
2

Irreg., λ2,3,6 511 255 ≈ 1
2

259 30 ≈ 1
2

H5 320 512 32
5
8

Reg., λ3 = 1 511 321 ≈ 5
8

322 22 ≈ 5
8

H6 384 512 32
3
4

Reg., λ3 = 1 511 383 ≈ 3
4

385 14 ≈ 3
4

H7 144 288 16
1
2

Reg., λ3 = 1 255 143 ≈ 1
2

147 14 ≈ 1
2

H8 144 288 16
1
2

Irreg., λ2,3,6 255 143 ≈ 1
2

147 14 ≈ 1
2

The RS encoder we use for comparison is a byte-size (8 bit) LSFR (linear-feedback
shift register) implementation, following the source codes provided in [50], while the BCH
encoder we base on the description provided in [51].

The encoding process in each algorithm is based on three steps: data preparation,
encoding algorithm execution and storing the results. The encoding in all cases is based
mostly on operations: XOR, OR and register shift. The basic LDPC, RS and BCH algorithms
need to execute a similar order of the number of operations. Meanwhile, the inherent
advantage of QC-LDPC is due to the following reasons:

• The encoding combines operation for a blocks of P bits because multiplication by a
whole submatrix can be done in a single shift operation;

• The QC-LDPC parity-check matrix, which can be used directly for encoding, is by
definition sparse; therefore, the number of multiplications by submatrices is also
relatively small.

This explains the reduction in time processing, which is shown in the following results.

6.1. Memory Utilization

Figure 6 shows the memory utilization observed in our experimental framework for
eight different LDPC parity-check matrices (H1, . . . , H8), as well as their Reed–Solomon (RS)
and Bose–Chaudhuri–Hocquenghem (BCH) counterpart block codes (with similar block
lengths and code rates R). Three LDPC encoder implementation methods were investigated.
The basic implementation refers to the direct H matrix stored in the Boolean table. The
memory requirement is too huge to be applicable with the STM32 device mentioned here
due to the stack overflow error.

The second solution, referred to as an efficient LDPC, is based on the index representa-
tion of the H matrix and the developed encoding algorithm written in the C programming
language. The algorithm is versatile. The memory utilization is roughly 20 times less than
with the basic representation.

Finally, the third solution, marked with the blue bar in Figure 6, involves the developed
QC-LDPC encoding algorithm and the circular shift value representation of H. This
algorithm is available to encode only QC-LDPC parity-check matrices, but with a broad
range of code lengths and rates. The significant memory reduction in the proposed solution
was confirmed by the experimental results. It can also be observed that the memory
utilization was not greater than that of the RS encoder counterpart implemented with
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the same microcontroller equipment. In all the presented charts, the proposed encoder is
shortly denoted as QC-LDPC, while the index representation solution is denoted as LDPC.

Figure 6. Memory utilization of the implemented encoders.

6.2. Block Encoding Time

A similar comparison was made for the encoding time measurements. Figure 7
presents the total encoding time of a single block for different parity-check matrices. The
measured time involved the data preparation, calculation of parity bits p1, p2, and gathering
of the output vector. We included results for standard LDPC encoding with the index
representation (orange bar), as well as the proposed efficient QC-LDPC encoding (blue bar).
A significant encoding time reduction was visible in the case of the developed efficient
QC-LDPC algorithm implementation in comparison with the LDPC with the index matrix
representation, as well as the Reed–Solomon (RS) encoders. This implementation thus
has potential for the reduction in energy consumption in solutions that use sleep modes
after the communication of a message from an IoT node. The relation of the working mode
time to the sleep mode time can be reduced if the block encoding time is reduced.

Figure 7. Single block encoding time periods.
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Basing on the timing measurements, we estimated that energy saving that can be
achieved for the proposed encoder in comparison with the Reed–Solomon encoding. For
this estimation, the following assumptions were made, reflecting real operation of the
microcontroller STM32 used for experiments:

• The voltage supplied to the circuit is 3.6 V.
• The current in the active mode with 80 MHz clock is 33.5 mA.

We calculated the normalized energy needed for encoding a single bit of the QC-LDPC
codes as well as the other reference encoders. The results are presented in Figure 8. Then,
we subtracted the results, obtaining the potential saving that can be achieved, expressed in
[µJ/bit]. These results are presented in Table 3.

Table 3. Energy savings per bit, achieved for QC-LDPC encoding, in comparison with counterpart
Reed–Solomon encoding.

Matrix ID Energy Saved Matrix ID Energy Saved
[µJ/bit] [µJ/bit]

H1 196.81 H2 197.55

H3 48.65 H4 49.59

H5 76.29 H6 108.94

H7 16.75 H8 17.26

Figure 8. Encoding energy needed per bit vs. code length.

6.3. Throughput

The trade-offs between code parameters and the achieved encoder features can be also
illustrated by means of the achieved maximum encoding throughput. This is visualized
in Figure 9. We can observe the advantage of the proposed efficient QC-LDPC encoder
realization over the basic LDPC, BCH and RS encodings. The throughput developed
realization is rather not sensitive to the block length. The throughput in general increases
with the code rate, because the portion of information bits in the code blocks increases.
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Figure 9. Throughput of the encoders vs. code parameters.

6.4. Error-Correction Performance

In order to show the coding gain that can be achieved with the QC-LDPC codes
employed in comparison with typical classic block codes, we performed Monte Carlo
simulations for the QC-LDPC codes, as well as for their RS and BCH counterparts. RS
codes with rate R = 0.5, BCH and QC-LDPC codes with different block lengths were used
for this comparison. A QPSK modulator and an AWGN channel model were used in the
communication system models. The LDPC codes were decoded with a belief propagation
(BP) decoder, the BCH codes were decoded with the hard-decision Berlekamp algorithm,
and the RS codes were decoded using the Berlekamp–Massey decoding algorithm.

Figure 10 presents the results of these experiments in the form of the bit error rate
curve versus the effective signal-to-noise ratio (Eb/N0) in an AWGN channel for three
selected cases: (1024, 512), (512, 256), and (512, 320) LDPC codes and their counterparts, as
shown in Table 2. An additional coding gain of about 2 dB for the QC-LDPC codes is visible
in all of the presented cases. This result represents the amount of transmission power
that can be saved when using iteratively decoded QC-LDPC codes instead of standard
block codes.

1 2 3 4 5 6 7

(Eb/N0) [dB]
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100

B
E
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LDPC (1024,512)

LDPC (512,256)

LDPC (512,320)

Figure 10. Error correction performance of the experimental codes.
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7. Discussion

The ECC-encoding procedure presented in this paper is devoted to error protection
in IoT node devices constructed with microcontroller-type equipment and without strict
throughput requirements, but with the energy efficiency being an important factor. We
showed that QC-LDPC codes, which are usually considered for high-throughput communi-
cation systems and advanced protocols can also be considered for these types of computa-
tionally constrained devices. We provided Richardson–Urbanke LDPC encoding expressed
for QC-LDPC codes, and we showed how the encoding can be decomposed into elementary
operations that are suitable for implementation in a simple microcontroller device.

The whole encoding algorithm was implemented and verified for a few QC-LDPC
parity-check matrices. Comparisons with other known block codes (RS and BCH) are also
provided, showing that the memory requirements are not greater than for standard block
codes, while the achievable throughput is increased and the encoding time is reduced,
which enables the energy consumption reduction. At the same time, the error-correction
performance of LDPC codes is significantly better than for standard block codes. This
provides the potential for the reduction in the energy consumption of the communication
links used to connect IoT nodes with IoT gateways.

Author Contributions: Conceptualization, J.H. and W.S.; methodology, J.H. and W.S.; software, J.H.;
validation, J.H., W.S., W.I., L.D. and W.F.; experimental investigation, J.H., W.S., W.I., L.D. and W.F.;
data acquisition, J.H., W.S., W.I., L.D. and W.F.; writing, J.H., W.S., W.I., L.D. and W.F.; supervision,
W.S. All authors have read and agreed to the published version of the manuscript.

Funding: This research was co-financed by the Ministry of Education and Science of Poland under
grant No. DWD/3/7/2019 as well as SUBB.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Swamy, S.N.; Kota, S.R. An Empirical Study on System Level Aspects of Internet of Things (IoT). IEEE Access 2020,

8, 188082–188134. [CrossRef]
2. Dubal, V.A.; Rao, Y.S. A Low-Power High-Performance Sensor Node for Internet of Things. In Proceedings of the IEEE Second

International Conference on Intelligent Computing and Control Systems (ICICCS), Madurai, India, 14–15 June 2018; pp. 607–612.
3. Rajasekaran, C.; Raguvaran, K. Microcontroller Based Reconfigurable IoT Node. In Proceedings of the IEEE 4th International

Conference on Frontiers of Signal Processing, Poitiers, France, 24–27 September 2018; pp. 12–16.
4. Berrou, C.; Glavieux, A.; Thitimajshima, P. Near Shannon Limit Error-Correcting Coding and Decoding: Turbo-Codes. In

Proceedings of the (IEEE) International Conference on Communications, Geneva, Switzerland, 23–26 May 1993; pp. 1064–1070.
5. Arikan, E. Channel Polarization: A Method for Constructing Capacity-Achieving Codes for Symmetric Binary-Input Memoryless

Channels. IEEE Trans. Inf. Theory 2009, 55, 3051–3073. [CrossRef]
6. Gallager, R. Low-density parity-check codes. IRE Trans. Inf. Theory 1962, 8, 21–28. [CrossRef]
7. MacKay, D.J.C. Good Error-Correcting Codes Based on Very Sparse Matrices. IEEE Trans. Inf. Theory 1999, 45, 399–431. [CrossRef]
8. Condo, C. VLSI Implementation of a Multi-ModeTurbo/LDPC Decoder Architecture. IEEE Trans. Circuits Syst. I 2013, 60,

1441–1454. [CrossRef]
9. Nguyen, T.T.B.; Tan, T.N.; Lee, H. Low-Complexity High-Throughput QC-LDPC Decoder for 5G New Radio Wireless Communi-

cation. Electronics 2021, 10, 1–18.
10. Zhu, Y.; Xing, Z.; Li, Z.; Zhang, Y.; Hu, Y. High Area-Efficient Parallel Encoder with Compatible Architecture for 5G LDPC Codes.

Symmetry 2021, 13, 700 . [CrossRef]
11. Hailes, P.; Xu, L.; Maunder, R.G.; Al-Hashimi, B.M.; Hanzo, L. A Survey of FPGA-Based LDPC Decoders. IEEE Commun. Surv.

Tutor. 2015, 18, 1098–1122. [CrossRef]
12. Luo, H.; Zhang, Y.; Li, W.; Huang, L.K.; Cosmas, J.; Li, D.; Maple, C. Low Latency Parallel Turbo Decoding Implementation for

Future Terrestrial Broadcasting Systems. IEEE Trans. Broadcast. 2018, 64, 96–104. [CrossRef]
13. Lazarenko, A. FPGA Design and Implementation of DVB-S2/S2X LDPC Encoder. In Proceedings of the IEEE International

Conference on Electrical Engineering and Photonics, St. Petersburg, Russia, 17–18 October 2019; pp. 98–102.
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