
����������
�������

Citation: Muñoz-Cervera, M.C.;

Rodriguez-Garcia, M.Á.; Cañaveras,

J.C. Aesthetic Quality Properties of

Carbonate Breccias Associated with

Textural and Compositional Factors:

Marrón Emperador Ornamental

Stone (Upper Cretaceous, Southeast

Spain). Appl. Sci. 2022, 12, 2566.

https://doi.org/10.3390/

app12052566

Academic Editor: Giuseppe Lazzara

Received: 23 January 2022

Accepted: 27 February 2022

Published: 1 March 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

applied  
sciences

Article

Aesthetic Quality Properties of Carbonate Breccias Associated
with Textural and Compositional Factors: Marrón Emperador
Ornamental Stone (Upper Cretaceous, Southeast Spain)
Maria Concepción Muñoz-Cervera, Miguel Ángel Rodriguez-Garcia and Juan Carlos Cañaveras *

Department of Earth and Environmental Sciences, University of Alicante, 03690 Alicante, Spain;
mc.munoz@ua.es (M.C.M.-C.); ma.rodriguez@ua.es (M.Á.R.-G.)
* Correspondence: jc.canaveras@ua.es

Abstract: The aesthetic properties of ornamental stones, including colour, texture, and the presence
or absence of discontinuities, are influential in their use and marketing. This is particularly critical
in brecciated rocks such as the Marrón Emperador (ME) ornamental stone, a dark brown breccia
dolostone (Upper Cretaceous, southeast Spain). ME shows a high chromatic and textural variability,
which is one of its most appreciated commercial features. Through a petrographic, mineralogical,
geochemical and colourimetric study of samples obtained from quarries, outcrops and/or drilling
cores, several quality categories have been established, as well as the relationship between the
aesthetic properties of ME ornamental stone with its compositional and textural factors. Three main
types of breccia constitute the ME exploitable lithotect: crackle and mosaic packbreccias, and rubble
floatbreccias. Breccia clasts are mainly composed of hypidiotopic-idiotopic medium- to coarsely-
crystalline dolosparites, microcrystalline dolosparites and dolomicrites. Results show that diagenetic
processes are mainly responsible for the colour of ME dolostones, revealing that the Sr content is
a key factor. The darker brown dolomites always show a higher Sr content, where other typical
chromophore elements in dolomites, such as Fe and Mn, do not present this correlation. This study
provides evidence for the complexity of processes and factors that are responsible for aesthetic quality
features in ornamental stones.

Keywords: ornamental stone; dolostone; breccia; colour; Upper Cretaceous

1. Introduction

Natural ornamental stones possess beauty, durability and stability properties that have
made them widely used as decorative and construction rocks throughout history [1–3].
There are different factors or criteria for selecting an adequate building rock, such as
strength, hardness, porosity, durability or appearance. Importantly, the colour, type and
size of grains/crystals, petrofabric features and the presence of “defects” (veins, joints,
altered areas, etc.) have great influence on its aesthetic properties, which largely define the
market value of these commercial rocks [4–7].

Carbonate breccias constitute a type of ornamental rock widely used for decorative
and architectural purposes since historical times given their particular and attractive visual
appearance. Dolomitic breccias are a relatively abundant petrological type in the marine
series from different geological periods. These are complex facies with a wide diagenetic
history reflected by the presence of clastic characteristics and secondary porosity. Moreover,
they show several cementing phases, generally of different compositions and textures.
These features entail colour variations that positively affect their ornamental properties.

There are various characteristics of the exploitable lithostratigraphic units as ornamen-
tal stone that are directly related to their textural and structural characteristics (geometry
of the lithotect, fracturing, homogeneity, colour, etc.) and that determine the dimensions
of the blocks to be extracted and the subsequent treatments (cut, polished, etc.) [8–11].

Appl. Sci. 2022, 12, 2566. https://doi.org/10.3390/app12052566 https://www.mdpi.com/journal/applsci

https://doi.org/10.3390/app12052566
https://doi.org/10.3390/app12052566
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/applsci
https://www.mdpi.com
https://doi.org/10.3390/app12052566
https://www.mdpi.com/journal/applsci
https://www.mdpi.com/article/10.3390/app12052566?type=check_update&version=4


Appl. Sci. 2022, 12, 2566 2 of 21

Nevertheless, the aesthetic criteria are one of the main parameters that define the market
quality of ornamental stones. It is particularly important in brecciated stones, where the
size, shape and colour of the clasts are keys to set quality categories and prices.

Marron Emperador (ME) commercial marbles are Mesozoic brown brecciated dolo-
stones with high structural complexity, quarried for more than a century in a wide area
along External Prebetic Domain (southeast Spain) [9,12]. Because of the attractive appear-
ance of the dark dolostone clasts within the white sparry calcite, this breccia has been widely
used as a dimension stone [13]. According to the MIA (Marble Institute of America) classi-
fication [14], these materials belong to group C, which correspond to commercial marbles
with some variations in their physical properties, commonly used to repair these variations,
using adhesives that fill the natural voids and discontinuity surfaces. In dolomitic facies
of the Upper Cretaceous, the dark colour is exclusive of some dolostones of the External
Prebetic Domain. In other areas, similar dolomitic facies present lighter colours (e.g., “Beige
Serpiente” commercial marble) [9].

Several categories are established in the industrial sector, which produces and markets
Marrón Emperador (ME) commercial marble. In outcrops, Marrón Emperador shows wide
chromatic and textural variations, both laterally and vertically, which make it difficult to
draw correlation with brecciaed bodies or lithotects. However, this extreme chromatic and
textural variability is very attractive and constitutes one of the most appreciated features of
this ornamental stone. Not all brecciated dolostone chromas or varieties are commercial;
preferences tend towards mosaic breccia textures, with dark to very dark brown colours
(Figure 1). The presence of white calcite veins is another of the characteristics of this
material, the customers preferring that this vein network is rather scarce or not very
abundant. In the classification by categories, the excessive presence of white veins is
assigned a lower commercial category (Figure 1). Moreover, non-breccia or fine-grained
textures as well as light colours (e.g., pale brown) are excluded from the commercial
preference. Other petrological features that may be present in these stones and that cause
them to be excluded in the commercial preference are the presence of [15] (i) calcite enclaves
or nodules of up to 10 cm in diameter, sometimes without any filling, which requires the
addition of resins in the factory, thereby increasing production costs; (ii) reddish calcite
veins enriched in clays from decalcifying processes, and (iii) clay infills, known in mining
slang as “dry”, that leads to extremely weak areas and produce a large number of breaks in
both loom and tiles.
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aesthetic properties such as colour, texture and the degree of homogeneity of both in the
stone, are objective and technically measurable parameters, so their study is particularly rel-
evant in ornamental stone exploration tasks, especially for the dimensioning of ornamental
stone deposits [4–6,9,10]. The main objective of this study is to evaluate the mineralogical,
geochemical and petrological factors that affect or control aesthetic quality parameters of
Marrón Emperador commercial marble, in order to support the tasks of exploration and
even exploitation and processing of these raw materials.

2. Materials and Methods

The geographical area of exploitation of Marrón Emperador (ME) is in the Prebetic
domain, the northernmost part of the eastern region of the Betic Cordillera, between the
provinces of Murcia, Albacete and Alicante (southeast Spain) [9,12] (Figure 2). Stratigraphi-
cally corresponds to the areas in which the Sierra de Utiel Fm, of Upper Coniacian-Upper
Santonian age [16,17]. It is dolomitised presenting a massive aspect, very brecciated and a
coloration that oscillates between black and gray [18].
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“Marrón Emperador” commercial marbles are concentrated. The Mesozoic tecto-sedimentary do-
mains of the Betic Margin, the main tectonic accidents and the situation of the studied sampling out-
crops and quarries are indicated. Northeast Sector: FHI-Fuente la Higuera (Valencia); EN-La Encina
(Alicante); Central Sector: SC-Sierra del Cuchillo (Albacete); SP- and SPS-Sierra del Príncipe (Murcia);
Y-Sierra de la Magdalena Este (Yecla, Murcia); FU-Sierra de la Magdalena Oeste (Murcia); Southwest
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Marrón Emperador is a brecciated dolostone essentially formed by dolomite (~70%)
and calcite (~30%). This variety is a strongly fissured dolostone that consists mainly of
angular micro- and mesocrystalline dolomite clasts with 2 mm to 40 mm in size delimited
by fissures (Figure 1). Fissures are frequently filled with calcite (~90%, according to [19])
and dolomite cements, and minority mineral components such as iron and manganese
oxides can be present. This stone shows an anisotropic behavior of water transport that
depends strongly on fissure orientation and has an essential influence on their quality
and durability properties [20–24]. Thus, brecciated dolostones with a preferential fissure
orientation present the highest anisotropy.

Marrón Emperador samples (average weight of sample: ≈600 g) were selected from
different quarries and outcrops located at north-northeast–south-southwest (NNE–SSW)
morfostructural alignment in the provinces of Alicante, Valencia and Murcia (southeast
of Spain) (Figure 2). A total of 9 sampling areas or sections (distributed in 3 sectors)
were studied. Most of samples were obtained from the quarries where their exploitation
occurs. In order to delimit the extension and morphology of the breccia bodies, the
sampling area was expanded outside the exploitation areas. Likewise, the investigation
was complemented by analysing drilling core samples from prospecting campaigns.

Among the criteria considered during ornamental stones exploration, lithologic char-
acteristic, such as mineral and chemical composition, texture and petrofabric, control their
aesthetic properties. As mentioned, colour and homogeneity (colour, texture, discontinu-
ities, etc.) are relevant aesthetic properties in the Marrón Emperador ornamental stone
market. In order to know how compositional (mineral and chemical) and textural (crystal
size, breccia type, etc.) factors interrelate and control the aesthetic quality parameters
(colour, homogeneity, etc.) of the Marrón Emperador commercial marble, a petrological,
mineralogical and geochemical characterisation and colourimetric analysis of sampled
breccias were carried out.

For the description of the breccia facies, Morrow [25] and Mort and Woodcock [26]
classification schemes were followed, whereby the main criteria are the proportion of
clast concentration, their degree of rotation and the degree of nesting or adjustment of
the clasts, as well as the compositional variety. Thus, the main breccia types were dis-
criminated between clast-supported breccia and matrix-supported breccia, as well as the
degree of concentration/rotation of the clasts (from crackle, mosaic and rubble breccia
types). The existence and nature of matrix and/or cement in inter-fragmental position was
also considered. The classification and description of dolomitic textures was performed
according to Gregg and Sibley [27] and Friedman [28] for the nomenclature of dolomite
crystal sizes.

Petrographic analyses were accomplished on 150 samples, corresponding to all the
sections (outcrops, quarries and boreholes) studied and representative of all the textural
types that constitute the ME commercial marble. Thin sections were obtained by standard
methods and observed under a Zeiss Axiscop microscope for definition of compositional
and textural features. Potassium ferricyanide and alizarin red S staining method was used
distinguishing between carbonate minerals [29].

The mineral composition of the samples was determined by X-ray diffraction (XRD) us-
ing a Phillips PW1710/00 diffractometer (30 kV, 25 mÅ), using CuKα radiation (1.54054 Å),
in the XRD Laboratory of the Department of Geology of the National Museum of Natural
Sciences (MNCN-CSIC, Madrid, Spain). For the calculation of % mol MgCO3 of the differ-
ent carbonate phases, the methods of Goldsmith and Graf [30] and Goldsmith et al. [31]
were applied, using quartz as an internal standard and measuring the position of the d(104)
peak of the carbonate phases. To establish the degree of ordering of the dolomite crystals,
the intensity ratio between 015 and 110 peaks was used [32].

Major-element and minor-element concentrations were determined by inductively
coupled plasma atomic emission spectroscopy (ICP–AES) at ACME Analytical Laboratories
(Vancouver, Canada) and by means of X-ray fluorescence (XRF) MNCN Laboratories (CSIC,
Madrid, Spain). The list of the analysed elements can be consulted in Tables S1 and S2
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(Supplementary Materials). The samples were introduced into the spectrometers once
pulverised, compacted and pressed to perform a qualitative and semi-quantitative analysis
with a series of standards to calibrate any element. Loss on ignition or calcination (LOI)
was obtained by calcining the sample in a flask up to 1000 ◦C and maintaining this tem-
perature for 1 h, and for a series of samples with a small amount of sample, automatic
thermogravimetry/differential thermal analysis (TG/DTA) equipment was used.

In the ornamental rock manufacturing industry, the determination of colour is a
key aspect for the classification and employability of rocks. The colour determination of
the different stone samples was carried out through the use of Munsell’s Rock Colour
Chart, both in the field and in the laboratory, and the use of a Minolta CR300 colourimeter.
With the colourimeter, colours were measured in the form of three variables: L* (light-
ness), a* (red/green colour component) and b* (blue/yellow colour component), using the
CIELAB measurement method (International Commission on Illumination). This technique
was used in circular samples, with a diameter of 60 mm and a thickness of 20 mm, which
are perfectly adapted to the measuring equipment, thus avoiding the entry of external light.
For the calculation of the chromatic differences (total colour, ∆E) we used the following
expression [15,33,34]:

∆E =

√
(∆L)2 + (∆a)2 + (∆b)2 (1)

To adapt the colour determinations, the Munsell system was used to carry out statisti-
cal calculations; a conversion of H V/C (hue value/chroma) Munsell Colour Coordinates
under illuminat C to Cie-L*a*b* System was performed [35–37].

3. Results
3.1. Spatial Distribution of Dolomitic Breccia Bodies

The distribution of brecciated facies is comprised in a narrow strip along the Jumilla–
Yecla–Caudete–Fuente de la Higuera structural alignment (Figure 2). This tectonic align-
ment, roughly northeast–southwest (NE–SW), strongly controlled sedimentation in some
Upper Cretaceous intervals [18] and also seemed to have played a major role in the dolomi-
tisation and brecciation processes [38–40]. At the outcrop scale, the limits of the dolomitic
bodies are irregular, locally exceeding the limits of the Sierra de Utiel Fm. itself.

The limestones that surround the dolomitic body locally are also brecciated, indicating
that: (i) brecciation and dolomitisation are not genetically related or (ii) at least one phase
of brecciation is subsequent to the dolomitisation of the Sierra de Utiel Limestones Fm.
That means the distribution of the dolomitic bodies indicates that during brecciation
and dolomitisation processes, the sedimentological or stratigraphic control was not the
main factor.

The central sector of the study area comprises four sections (Figure 2), three of them
located in the province of Murcia (Sierra de la Magdalena, Yecla and Sierra del Príncipe)
and one in Albacete (Sierra del Cuchillo). At the Sierra de la Magdalena (FV) quarry and
the boreholes samples from the Sierra del Cuchillo area, dolostone packbreccias arranged
in metric-thick beds are the main dolostone facies. In the outcrops studied in the Sierra
del Principe section (SP, SPS), in addition to the most abundant brecciated types, complex
brecciated dolostone facies and micritic packbreccias with incipient dolomitisation are
present. At the Yecla quarries (Y) (Figure 3A), conglomerate facies are also recognised.

The southeast (SE) sector of the study area comprises three sections (Figure 2) located
in the province of Murcia, which correspond to three quarries where the Marron Emperador
commercial marble is exploited or prospected. At Jumilla quarry (JUM), dolostone breccias
are arranged in metric-thick beds with a dip varying 20 to 30◦ to the north. At Sierra
de la Fuente quarry (FUEN), dolostone breccias are recognised in decimetric to metric-
thick beds, as well as locally, polymictic conglomerate levels. At the Hermanos Jimenez
quarry (Sierra de Cingla, JIM) (Figure 3B) dolostone packbreccia beds are characterised by
the abundance of veins and/or macrocrystalline calcite infillings (“flowers”) showing a
subvertical decimetric development that highlights the stratification in the quarry fronts.
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Figure 3. Field images of the main outcrops and breccia types recognised in the study area. (A) Gen-
eral view of Marrón Emperador quarry at Sierra de la Magdalena (Yecla, Murcia) (Y section, central
sector). (B) General view of Marrón Emperador quarry at Sierra de Cingla (Murcia) (JIM section,
southeast sector). (C) Crackle breccia (Sierra del Príncipe, Murcia) (SP section, central sector). (D) Mo-
saic breccia (La Encina, Alicante) (EN section, northeast sector). (E) Chaotic breccia (La Encina,
Alicante) (EN section, northeast sector).
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The northeast sector of the study area comprises two sections or groups of outcrops.
At La Encina quarries (EN), dolostones appear as dark massive metric-thick beds with great
lateral continuity, where the main dolostone breccia types are recognised. Late Cretaceous
outcrops in the Fuente de la Higuera (FHI) area consist of a succession of clear massive
decimetric to metric-thick dolostone beds. Within the fractured areas, irregular dolostone
breccia bodies appear showing darker tones.

3.2. Breccia Types

According to the clast concentration ratio and the degree of mutual proximity and
rotation of clasts [25,26], the main types of breccia recognised are (Table 1): crackle pack-
breccias (clast-supported, little relative displacement of clasts; CB) (Figure 3C), mosaic
packbreccias (clast-supported, largely but not wholly displaced clasts; M) (Figure 3D) and
chaotic or “rubble” floatbreccias (matrix-supported, completely disordered and no clast
boundaries match; RB) (Figure 3E). These main types of identified breccias are widely
represented in all sectors of the study area (Table 1). Associated with them, the other three
types of breccia/conglomerate facies recognised with a more local spatial distribution are:
conglomerate facies (FUEN section, at the southwest sector; Y section, at the central sector),
complex brecciated facies (Mv) (JUM section, at the southwest sector; SP section, at the
central sector) in which several brecciation phases are recognised, and Micritic mosaic
packbreccia with incipient dolomitisation (Mm) (SP section, at the central sector) (Table 1).

In the recognised clast-supported breccia types, the presence of mineral cement com-
pared to the fine-grained matrix is significantly higher (Figure 3C–E). Mainly, cements are
arranged in a network of white veins and venules (Figure 3C–E), mainly composed of
micro- to mesocrystalline calcite crystals (50–800 µm) showing blocky or drusy textures.
To a lesser extent, these venules are formed by idiotopic to subidiotopic mesocrystalline
dolomite cements (50–250 µm). Reddish calcite veins enriched in clays are relatively abun-
dant in some mosaic breccia types (Mv, Mm). Likewise, some small micritic-clay fill and/or
ferruginous patina associated with the cements are observed. The fine-grained matrix
has a lighter colouration than dolomite clasts and is mainly composed of dolosparite and
dolomicrite grains, with a very scarce presence of siliciclastic grains (e.g., quartz). Locally,
this matrix is relatively rich in clays and/or iron oxide-hydroxides.

3.3. Dolostone Types

Table 2 shows the main features of the dolostone fabrics recognised in breccia clasts.
The predominant dolomite textures are medium- to coarsely-crystalline dolosparites com-
posed of hypidiotopic (planar-s) mosaics with crystals rich in impurities (Figure 4A,B), the
idiotopic (planar-e) (Figure 4C,D) and microcrystalline types (Figure 4E,F) being less abun-
dant. The dolomite crystals sometimes show rhombic and subrhombic zones (delimited
by alignments of inclusions or impurities) (Figure 4A,C,D) or simply emphasised nuclei
(more or less of rhombic morphology) (Figure 4E), the existence of limpid edges being
common, either in planar-e and planar-s dolosparites (Figure 4A,D,E). Likewise, ghosts of
allochems and venules are relatively frequent (Figure 4B), as well as textures of mimetic
and non-mimetic dedolomitisation (Figure 4D).

The morphology and distribution of the porous system is predominantly intercrys-
talline (0.01–1 mm) and bound to dissolution surfaces of clear crystallographic control. In
addition to intercrystalline porosity, fissure and stylolite porosity types have also been
recognised. The network of fissures, sometimes linked to venules and stylolites, is locally
dense and complex, crossing or delimiting dolomitic clasts and reflecting several fracturing
processes (Figure 5A,B). These fissures (mesoscale fractures) can be found partially open
with openings that rarely exceed 1 mm in width. Mártinez-Mártinez et al. [19] determined
that total porosity in these materials ranges between 1 and 8%, depending on the pres-
ence of fissures and the matrix content. The mean radius of the pores is greater than
2 µm. The permeability of these materials is relatively low (<1 mD) [22], reflecting a low
interconnection in the porous system.
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Table 1. Types and distribution of breccia facies in the study area. The number of collected samples
for each breccia category in the studied sections is included.

BRECCIA TYPES

CONGLOME
RATE

Clast-Supported Matrix-
Supported

CRACKLE MOSAIC RUBBLE

CB M Mv Mm RB
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The morphology and distribution of the porous system is predominantly 
intercrystalline (0.01–1 mm) and bound to dissolution surfaces of clear crystallographic 
control. In addition to intercrystalline porosity, fissure and stylolite porosity types have 
also been recognised. The network of fissures, sometimes linked to venules and stylolites, 
is locally dense and complex, crossing or delimiting dolomitic clasts and reflecting 
several fracturing processes (Figure 5A,B). These fissures (mesoscale fractures) can be 
found partially open with openings that rarely exceed 1 mm in width. Mártinez-Mártinez 
et al. [19] determined that total porosity in these materials ranges between 1 and 8%, 
depending on the presence of fissures and the matrix content. The mean radius of the 
pores is greater than 2 μm. The permeability of these materials is relatively low (<1 mD) 
[22], reflecting a low interconnection in the porous system. 
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As aforementioned, one of the main features of these rocks that adds aesthetic value
as an ornamental stone is that the dolomitic clasts are frequently surrounded by crystalline
calcite cement (Figure 5C,D). These cements, which constitute the networks of white venules
of different development, occur mainly in the clast-supported breccia facies (crackle and
mosaic packbreccias) (Figure 3). Multiple phases of calcitic cementation are recognised,
mainly blocky or equidimensional type, in some cases growing on previous dolomite
cements (Figure 5D).

3.4. Mineral Composition

The different microfacies studied have different contents in carbonate mineral phases
(calcite and dolomite) (Table 3) and generally show very low content in other types of
minerals. Content > 5% in quartz or feldspar is rarely detected. The “crackle” breccias,
which show a concentration of clasts of more than 75%, show the highest percentages in
dolomite, in some cases close to totality. Mosaic and chaotic (rubble) breccias also have
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high contents of dolomite, but it must be taken into account that both matrix and cements,
at least partially, may have a dolomitic composition. Given the low or no content in other
mineral phases that are not calcite or dolomite, the calcite content of all breccia types is
inversely proportional to the dolomite content, the matrix-supported types being the richest
in calcite, reaching 45%.

The analysed dolomites are not stoichiometric, and show an enrichment in Ca with
% molCaCO3 values ranging from 50.3 to 56.1 (62% of samples between 53 and 55%
molCaCO3). No relation between the stoichiometry of the dolomites, the dolomite textural
types or the breccia fabric has been recognised (Figure 6). Both the calcitic crystals associ-
ated with dolosparites, as well as those that make up venules and speleothems are LMC
(<4% molMgCO3).

Table 2. Main features of dolostone petrofabrics and their distribution in the study area.

Hypidiotopic
Dolosparites

Idiotopic (Rhombic)
Dolosparites Dolo-Microsparites Dolomicrites
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as an ornamental stone is that the dolomitic clasts are frequently surrounded by 
crystalline calcite cement (Figure 5C,D). These cements, which constitute the networks of 
white venules of different development, occur mainly in the clast-supported breccia 
facies (crackle and mosaic packbreccias) (Figure 3). Multiple phases of calcitic 
cementation are recognised, mainly blocky or equidimensional type, in some cases 
growing on previous dolomite cements (Figure 5D). 
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cementation are recognised, mainly blocky or equidimensional type, in some cases 
growing on previous dolomite cements (Figure 5D). 
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cementation are recognised, mainly blocky or equidimensional type, in some cases 
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Figure 4. Dolomitic textural types and their distribution by sections. (A,B) Mesocrystalline
dolosparites. Medium- to coarsely-crystalline dolosparites composed of hypidiotopic (planar-s)
mosaics with crystals rich in impurities, often showing zoned and emphasised nuclei (A). Ghost of
allochems and venules (B) are also recognised, as well as mimetic and non-mimetic dedolomitisation
textures. (C,D) Rhombic dolosparites. Medium- to coarsely-crystalline dolosparites composed of
idiotopic (planar-e) mosaics with rhombic crystals rich in impurities. Often these rhombic and
subrhombic dolomite crystals are zoned, have internal holes, or are dedolomitised (D). Mimetic and
non-mimetic dedolomitisation textures are present (D). (E) Microscrystalline dolosparites. Finely-
crystalline dolosparites composed of unimodal (20–150 µm) hypidiotopic mosaics with subhedral
to anhedral (plana-s) crystals. Generally, the thickest crystals show impurity-rich internal areas.
(F) Dolomicrites composed of crypto-microcrystalline (4–20 µm) hypidiotopic mosaics with disperse
subrhombic dolomite crystals. Non-mimetic dedolomitisation textures are present. (A) (JUM section);
(B,C,E) (Y section); (D) (SP section); (F) (JIM section).
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Figure 5. Discontinuities and cements in Marrón Emperador breccia facies. (A) Network of fissures
and veinlets in mesocrystalline hypidiotopic dolosparite (Y section). (B) Stylolite in mesocrystalline
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(Y section).

Table 3. Mineralogical composition of brecciated microfacies in the study area.

BRECCIA TYPE

Clast-Supported Matrix-Supported

CRACKLE MOSAIC RUBBLE

CB M Mv Mm RB

Appl. Sci. 2022, 12, x FOR PEER REVIEW 12 of 21 
 

Table 3. Mineralogical composition of brecciated microfacies in the study area. 

   

BRECCIA TYPE 
Clast-Supported Matrix-Supported 

CRACKLE MOSAIC RUBBLE 
CB M Mv Mm RB 

 

     

BR
EC

C
IA

 

DOLOMITE 
% 80–98 65–90 65–80 60–90 55–95 

%molCaCO3 50–56 50–55.5 52–55 54–56 50–54 

CALCITE 
% 0–20 10–35 20–35 10–40 5–45 

%molMgCO3 1–3.5 1–4.5 1.5–2.5 1–4 <2 
Veins * %molMgCO3 0.5–4.5 0.5–5.5 - - - 

Speleothems %molMgCO3 <2 <2 1.5–2.5 0.5–4 0.5–4.5 
* Only veins >5 mm thick. 

 
Figure 6. Degree of ordering of the analysed samples. Order ((I (015)/I (110)) vs. stoichiometry (% 
molCaCO3). 

Regarding the degree of ordering of the dolomites, a direct relationship with their 
stoichiometry is not observed (Figure 7). The main recognised breccia types show the 
same variability in the degree of ordering (Figure 6), it can only be noted that the 
dolosparitic mosaics associated with the “crackle” breccias appear less ordered. 

Appl. Sci. 2022, 12, x FOR PEER REVIEW 12 of 21 
 

Table 3. Mineralogical composition of brecciated microfacies in the study area. 

   

BRECCIA TYPE 
Clast-Supported Matrix-Supported 

CRACKLE MOSAIC RUBBLE 
CB M Mv Mm RB 

 

     

BR
EC

C
IA

 

DOLOMITE 
% 80–98 65–90 65–80 60–90 55–95 

%molCaCO3 50–56 50–55.5 52–55 54–56 50–54 

CALCITE 
% 0–20 10–35 20–35 10–40 5–45 

%molMgCO3 1–3.5 1–4.5 1.5–2.5 1–4 <2 
Veins * %molMgCO3 0.5–4.5 0.5–5.5 - - - 

Speleothems %molMgCO3 <2 <2 1.5–2.5 0.5–4 0.5–4.5 
* Only veins >5 mm thick. 

 
Figure 6. Degree of ordering of the analysed samples. Order ((I (015)/I (110)) vs. stoichiometry (% 
molCaCO3). 

Regarding the degree of ordering of the dolomites, a direct relationship with their 
stoichiometry is not observed (Figure 7). The main recognised breccia types show the 
same variability in the degree of ordering (Figure 6), it can only be noted that the 
dolosparitic mosaics associated with the “crackle” breccias appear less ordered. 

Appl. Sci. 2022, 12, x FOR PEER REVIEW 12 of 21 
 

Table 3. Mineralogical composition of brecciated microfacies in the study area. 

   

BRECCIA TYPE 
Clast-Supported Matrix-Supported 

CRACKLE MOSAIC RUBBLE 
CB M Mv Mm RB 

 

     

BR
EC

C
IA

 

DOLOMITE 
% 80–98 65–90 65–80 60–90 55–95 

%molCaCO3 50–56 50–55.5 52–55 54–56 50–54 

CALCITE 
% 0–20 10–35 20–35 10–40 5–45 

%molMgCO3 1–3.5 1–4.5 1.5–2.5 1–4 <2 
Veins * %molMgCO3 0.5–4.5 0.5–5.5 - - - 

Speleothems %molMgCO3 <2 <2 1.5–2.5 0.5–4 0.5–4.5 
* Only veins >5 mm thick. 

 
Figure 6. Degree of ordering of the analysed samples. Order ((I (015)/I (110)) vs. stoichiometry (% 
molCaCO3). 

Regarding the degree of ordering of the dolomites, a direct relationship with their 
stoichiometry is not observed (Figure 7). The main recognised breccia types show the 
same variability in the degree of ordering (Figure 6), it can only be noted that the 
dolosparitic mosaics associated with the “crackle” breccias appear less ordered. 

Appl. Sci. 2022, 12, x FOR PEER REVIEW 12 of 21 
 

Table 3. Mineralogical composition of brecciated microfacies in the study area. 

   

BRECCIA TYPE 
Clast-Supported Matrix-Supported 

CRACKLE MOSAIC RUBBLE 
CB M Mv Mm RB 

 

     

BR
EC

C
IA

 

DOLOMITE 
% 80–98 65–90 65–80 60–90 55–95 

%molCaCO3 50–56 50–55.5 52–55 54–56 50–54 

CALCITE 
% 0–20 10–35 20–35 10–40 5–45 

%molMgCO3 1–3.5 1–4.5 1.5–2.5 1–4 <2 
Veins * %molMgCO3 0.5–4.5 0.5–5.5 - - - 

Speleothems %molMgCO3 <2 <2 1.5–2.5 0.5–4 0.5–4.5 
* Only veins >5 mm thick. 

 
Figure 6. Degree of ordering of the analysed samples. Order ((I (015)/I (110)) vs. stoichiometry (% 
molCaCO3). 

Regarding the degree of ordering of the dolomites, a direct relationship with their 
stoichiometry is not observed (Figure 7). The main recognised breccia types show the 
same variability in the degree of ordering (Figure 6), it can only be noted that the 
dolosparitic mosaics associated with the “crackle” breccias appear less ordered. 

Appl. Sci. 2022, 12, x FOR PEER REVIEW 12 of 21 
 

Table 3. Mineralogical composition of brecciated microfacies in the study area. 

   

BRECCIA TYPE 
Clast-Supported Matrix-Supported 

CRACKLE MOSAIC RUBBLE 
CB M Mv Mm RB 

 

     

BR
EC

C
IA

 

DOLOMITE 
% 80–98 65–90 65–80 60–90 55–95 

%molCaCO3 50–56 50–55.5 52–55 54–56 50–54 

CALCITE 
% 0–20 10–35 20–35 10–40 5–45 

%molMgCO3 1–3.5 1–4.5 1.5–2.5 1–4 <2 
Veins * %molMgCO3 0.5–4.5 0.5–5.5 - - - 

Speleothems %molMgCO3 <2 <2 1.5–2.5 0.5–4 0.5–4.5 
* Only veins >5 mm thick. 

 
Figure 6. Degree of ordering of the analysed samples. Order ((I (015)/I (110)) vs. stoichiometry (% 
molCaCO3). 

Regarding the degree of ordering of the dolomites, a direct relationship with their 
stoichiometry is not observed (Figure 7). The main recognised breccia types show the 
same variability in the degree of ordering (Figure 6), it can only be noted that the 
dolosparitic mosaics associated with the “crackle” breccias appear less ordered. 

BR
EC

C
IA DOLOMITE

% 80–98 65–90 65–80 60–90 55–95

% molCaCO3 50–56 50–55.5 52–55 54–56 50–54

CALCITE
% 0–20 10–35 20–35 10–40 5–45

% molMgCO3 1–3.5 1–4.5 1.5–2.5 1–4 <2

Veins * % molMgCO3 0.5–4.5 0.5–5.5 - - -

Speleothems % molMgCO3 <2 <2 1.5–2.5 0.5–4 0.5–4.5

* Only veins > 5 mm thick.



Appl. Sci. 2022, 12, 2566 12 of 21

Appl. Sci. 2022, 12, x FOR PEER REVIEW 12 of 21 
 

Table 3. Mineralogical composition of brecciated microfacies in the study area. 

   

BRECCIA TYPE 
Clast-Supported Matrix-Supported 

CRACKLE MOSAIC RUBBLE 
CB M Mv Mm RB 

 

     

BR
EC

C
IA

 

DOLOMITE 
% 80–98 65–90 65–80 60–90 55–95 

%molCaCO3 50–56 50–55.5 52–55 54–56 50–54 

CALCITE 
% 0–20 10–35 20–35 10–40 5–45 

%molMgCO3 1–3.5 1–4.5 1.5–2.5 1–4 <2 
Veins * %molMgCO3 0.5–4.5 0.5–5.5 - - - 

Speleothems %molMgCO3 <2 <2 1.5–2.5 0.5–4 0.5–4.5 
* Only veins >5 mm thick. 

 
Figure 6. Degree of ordering of the analysed samples. Order ((I (015)/I (110)) vs. stoichiometry (% 
molCaCO3). 

Regarding the degree of ordering of the dolomites, a direct relationship with their 
stoichiometry is not observed (Figure 7). The main recognised breccia types show the 
same variability in the degree of ordering (Figure 6), it can only be noted that the 
dolosparitic mosaics associated with the “crackle” breccias appear less ordered. 

Figure 6. Degree of ordering of the analysed samples. Order ((I (015)/I (110)) vs. stoichiometry
(% molCaCO3).

Regarding the degree of ordering of the dolomites, a direct relationship with their
stoichiometry is not observed (Figure 7). The main recognised breccia types show the same
variability in the degree of ordering (Figure 6), it can only be noted that the dolosparitic
mosaics associated with the “crackle” breccias appear less ordered.
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3.5. Geochemistry

Table 4 show the main statistical parameters of the chemical composition of the
dolomitic samples analysed. Geochemical analyses are given in Tables S1 and S2
(Supplementary Materials).

Table 4. Chemical composition of dolostones (n: 48). Statistical parameters. (SD: standard deviation).

Element and
Form

Unit
Concentration Element and

Form
Unit

Concentration

Mean SD Max Min Mean SD Max Min

SiO2 wt% 0.31 0.17 0.74 0.04 Sr ppm 197.19 24.82 267.20 132.00
Al2O3 wt% 0.14 0.09 0.37 0.01 Ni ppm 2.97 1.07 5.00 0.50
Fe2O3 wt% 0.15 0.10 0.42 0.05 Co ppm 4.95 2.01 7.00 <0.20
MnO wt% 0.01 0.00 0.01 <0.01 Ce ppm 1.52 1.03 5.00 0.40
MgO wt% 16.17 1.84 19.43 11.70 Ba ppm 17.87 9.63 40.00 2.00
CaO wt% 35.81 2.51 41.28 29.56 Cr ppm 4.39 3.02 12.00 1.00

Na2O wt% 0.22 0.08 0.42 0.07 V ppm 5.20 3.55 17.00 1.00
K2O wt% 0.03 0.02 0.09 <0.01 Th ppm 4.92 3.83 13.00 <0.20
TiO2 wt% 0.01 0.00 0.02 <0.01 Nb ppm 2.23 1.83 6.00 <0.10
P2O5 wt% 0.07 0.12 0.82 <0.01 La ppm 3.46 2.94 11.00 0.50
LOI wt% 47.04 2.62 58.21 40.97 Cs ppm 3.97 2.92 11.00 <0.10
Zr ppm 8.63 4.36 16.00 1.00 Pb ppm 1.00 0.57 2.00 0.30
Y ppm 0.97 0.49 2.00 0.30 Mo ppm 1.91 1.34 5.00 <0.10

Rb ppm 2.80 1.21 5.00 0.60

Regarding the stoichiometry of the dolomites, the geochemical data are consistent
with those obtained from XRD analyses, that is, the studied dolomites are Ca-rich (Table 4,
Tables S1 and S2—Supplementary Materials). Both Fe and Mn content are relatively
low (% Fe2O3 between 0.1 and 0.42; Mn below 100 ppm in most samples) (Figure 8).
Si and Al contents are also low, indicating the scarce presence of silicate phases in the
studied materials. With respect to the rest of the major elements analysed, Cl contents in
dolosparites are relatively low (>250 ppm), although the dolomicrosparitic subtype shows a
greater range of composition (100–450 ppm). On the contrary, Na concentration is relatively
high (220–3100 ppm).

Sr in the dolomitic phases vary between 132 and 268 ppm (Figure 8), presenting a good
correlation with the Mg and Ca contents. However, no discrimination of the aforementioned
groups (breccia types and dolomitic petrographic types) is observed in terms of Sr content.

The contents in other trace elements are not significant, being on many occasions below
the analytical detection limit. For example, chalcophilic elements sensitive to environmental
redox conditions, such as As, Mo, Ni or Zn have a very low concentration (<10 ppm) as
well as U (<10 ppm), Rb (0.5–5 ppm) and Ba.

The calcite cements analysed, such as the dolomites, show similar values in Fe content
and are significantly lower in Si, Al, Na and K. As in dolomites, the relative high Sr values
(175–610 ppm) also stand out.

3.6. Colour Analysis

Tables S3 and S4 (Supplementary Materials) shows the results of the chromatic analysis
carried out on the Sierra del Cuchillo samples (global samples) and dolomite clasts (all
sections), respectively.

The results of the colourimetric study reveal the great chromatic variety of the samples
studied. Dolostone clasts colour range in lightness (L*) from pale to dark (reddish) brown.
As expected, the studied total samples have a light colour and less colour variability
because of the quantities of matrix and calcite cements, with L* values between 36.9 and
51.3 (Table S3, Supplementary Materials). Lightness of dolomite clasts varies from 20.4 to
80.7 (Table S4, Supplementary Materials). With the classification of the samples according
to the Munsell system, it has been possible to analyse the colour of the dolomitic clasts,
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avoiding the high luminosity effect of the white venules. Figure 9 shows the correlation of
the two systems used by converting the Munsell categories to the L* a* b* scale, as well as
with ∆E (Chromatic or total colour difference), based on the CIElab system analysed with
a colourimeter.
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Analysing only the dolomitic clasts (different shades of brown), the spectrum of Mun-
sell colour categories, and their equivalents in the L* b* a* scale is much larger. For example,
within the browns there are darker terms (5YR3/2; 5YR2/2; 10YR2/2) that correspond
to a numerically lower colour quality (chromatic difference). From the point of view of
the textural types, it is observed that these darker browns correspond to mesocrystalline
dolostones (Figure 9). Regarding the breccia type, no chromatic discrimination is observed.
Regarding the mineralogical composition (ordering and stoichiometry) of the dolomites,
there is no obvious correlation with colour (Figure 10).
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4. Discussion

Ornamental stone is commercially classified on the market according to several factors
related both to intrinsic petrophysical properties and to their aesthetical attributes. The
use of ornamental stones as construction material with decorative functions makes their
aesthetic properties prevail in quality criteria definition and assessment [41]. Colour is
considered one of the most important properties of these materials, and in the case of
Marron Emperador, the dark brown colour is therefore one of the most important features
commercially. Traditionally, the brown colour of dolostones has been attributed to the fact
that iron is present in small amounts replacing magnesium in dolomite. The colour in
carbonate rocks is controlled by depositional and diagenetic conditions (including those
derived from weathering) [42]. In the colouration of soils, sediments and rocks, not only the
existence of certain chemical elements in the structure of the mineral phases is important,
but also the existence and quantity of the non-carbonate fraction present; for example, the
adsorption of Fe and Mn on the surface of intercrystalline clays or as part of compounds
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with Fe3+ (hematite, limonite), all of them directly related to the redox conditions of the
depositional and/or diagenetic environment.

Different diagenetic factors and/or processes that can induce colour in rocks are
compaction, which favors the circulation of oxidizing fluids through the sediments; disso-
lution by pressure (deep-burial diagenesis) that releases Fe from clays; or the replacement
processes (e.g., dedolomitisation) that can mobilise Fe from the dolomites, precipitate of
FeO(OH), that are subsequently oxidised to Fe2O3 with the consequent reddening of the
rock [42,43].

From the colourimetric analysis of the Sierra del Cuchillo samples, a series of categories
were established based on the calculation of the total colour difference (chromatic difference,
∆E) factor. In the specific case of ME, the production and distribution companies establish
categories and varieties based on the colour and homogeneity of the rock, the density and
typology of the calcite veinlets (Figure 1). A review of the categories and qualities created
by the companies in the ornamental stone sector that produces and markets ME, as well
as the reports of consulting companies [15], has enabled a quality category according to
colour for Marrón Emperador in southeastern Spain to be established (Table 5). Three main
commercial categories of Marrón Emperador have been established, from lowest to highest
quality: classic, standard and first. Out of range, and therefore not commercial, are very
dark tones, practically black (with values <36), or too light, with ranges greater than 48.

Table 5. Commercial categories based on chromatic classification in ME ornamental stone.

Quality Category ∆E Colour Quality

No commercial <38 Black
First 38–41 Very good

Standard 42–45 Good
Classic 45–48 Fair

No commercia >49 Poor (clear)

Figure 11 shows the classification of the samples from the Sierra del Cuchillo boreholes.
Most of the samples analysed have a good or very good chromatic quality, which points to
a good potential for the exploitation of this lithotect as an ornamental stone. Figure 10 also
shows the equivalence of the qualities based on the L* a* b* system to the Munsell scale, as
well as the textural typology of the dolostones studied. There is no clear discrimination
between the textural type and the chromatic quality established by the colourimetric
analysis of the samples.

Considering both textural and colour homogeneity as aesthetic quality parameters,
the presence of white calcite veins increases the luminosity and therefore the value of the
chromatic difference, although not its commercial category. This variation in texture means
that some visually attractive samples, due to their vein networks, and that are considered
high quality (price), have a lower quality in terms of colour classification. In contrast, a
non-breccia, uniform, dark brown texture may obtain low luminosity values, although the
sample is of poor commercial quality, and it is therefore assigned to a lower category.

With the classification of the samples according to the Munsell system (Figure 9), it
has been possible to analyse the colour of the dolomitic clasts, avoiding the high luminosity
effect of the white venules. Considering only the dolomitic clasts (different shades of
brown), the spectrum of Munsell colour categories, and their equivalents in the L* b* a*
scale is much larger. For example, within the browns appear darker terms (5YR3/2; 5YR2/2;
10YR2/2) that correspond to a numerically lower colour quality (higher quality). Regarding
the breccia type, no chromatic discrimination is observed. Texturally, these darker browns
correspond to mesocrystalline dolosparites (Figure 11).
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Figure 11. Chromatic characterisation of the Sierra del Cuchillo samples and chromatic classification.

However, some studies describe the effect of grain/crystal size of carbonates (e.g.,
Gaffey [44]), indicating that carbonates commonly have a darker colour the more fine-
grained they are, in part because organic matter can be more homogeneously dispersed in
rocks of small grain size [45]. Tseni et al. [46] suggested that increasing organic components
in carbonate rocks have a negative affection on their brightness or dullness.

The mineralogical and geochemical analyses of the analysed dolostones reveal the
high complexity of the diagenetic history suffered by the Marrón Emperador commercial
marble [39,47]. From a geochemical point of view, Fe content is not directly related to the
chromatic quality of the studied samples (Figure 12) although it is considered as the main
cause of the brown colour of carbonates [35,44,48]. However, there is a direct relationship
with Sr content (Figure 12). Samples with Sr content higher than 200 ppm always corre-
spond to commercial marbles of good and very good quality from the point of view of
their colour. Other chemical elements (transition metals) with potential as chromophores
or those that can induce darkening, such as vanadium, nickel or cobalt [49,50], have not
been detected in significant proportions in the analysed samples.

Sr appears to act as a chromophore element (such as other transition elements), dark-
ening the tone of the dolomites. This darkening action of Sr has been observed in other
mineral compounds, such as talcs [50]. Sr contents in dolomites can be interpreted in terms
of the composition of the diagenetic fluids or the efficiency of recrystallisation processes.
Based on this, the most valuable “Marrón Emperador” types in terms of colour would
correspond to rocks with a lower degree of recrystallisation.
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5. Conclusions

Different types of breccia and dolomitic fabrics constitute the Marrón Emperador
ornamental stone. Through a petrographic, mineralogical, geochemical and colourimetric
analysis of the main commercial varieties of this stone, the relationship of these compo-
sitional and textural factors with its aesthetic properties has been studied. This work
highlights the difficulty of tracing or stablishing the origin of the aesthetic properties of
ornamental stones. The colour of a rock and its variability (changes in hue, chroma, etc.)
depend on the interrelation of several factors. In the case of Marrón Emperador, the re-
sults indicate that Sr content is a determinant factor, which in turn indicates that complex
diagenetic processes are responsible not only for its breccia nature, but also for its colour
properties. Likewise, results showed that other compositional (e.g., dolomite stoichiometry)
or textural (e.g., type of dolospar mosaics) factors of Marrón Emperador ornamental stone
do not clearly control their characteristics of colour and homogeneity, which are considered
to be its main aesthetic quality properties.
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