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Abstract

:

High rates of inappropriate use of surgical antimicrobial prophylaxis were reported in many countries. Auditing the prophylactic antimicrobial use in enormous medical records by manual review is labor-intensive and time-consuming. The purpose of this study is to develop accurate and efficient machine learning models for auditing appropriate surgical antimicrobial prophylaxis. The supervised machine learning classifiers (Auto-WEKA, multilayer perceptron, decision tree, SimpleLogistic, Bagging, and AdaBoost) were applied to an antimicrobial prophylaxis dataset, which contained 601 instances with 26 attributes. Multilayer perceptron, SimpleLogistic selected by Auto-WEKA, and decision tree algorithms had outstanding discrimination with weighted average AUC > 0.97. The Bagging and SMOTE algorithms could improve the predictive performance of decision tree against imbalanced datasets. Although with better performance measures, multilayer perceptron and Auto-WEKA took more execution time as compared with that of other algorithms. Multilayer perceptron, SimpleLogistic, and decision tree algorithms have outstanding performance measures for identifying the appropriateness of surgical prophylaxis. The efficient models developed by machine learning can be used to assist the antimicrobial stewardship team in the audit of surgical antimicrobial prophylaxis. In future research, we still have the challenges and opportunities of enriching our datasets with more useful clinical information to improve the performance of the algorithms.
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1. Introduction


The incidence of surgical site infections (SSIs) is estimated to be ~2–5% in patients undergoing surgery [1]. SSIs are SSI are associated with increased rates of morbidity and mortality. The financial impact of SSIs is the highest among all healthcare-associated infections. The annual cost of SSIs in the United States of America is estimated to be $3.5–10 billion [2]. About 40–60% of SSIs are preventable by the interventions with evidence-based measures [1,2]. The interventions include antimicrobial prophylaxis, preoperative bathing and showering, glucose control, skin preparation, intraoperative normothermia, and wound closure [1,3,4,5].



Appropriate antimicrobial prophylaxis is the most important and strongly recommended measure to reduce the SSI rates [2,3,6]. To achieve these goals, appropriate practices of preoperative-administration timing, choice and dosing of antimicrobial agents, and duration of antimicrobial prophylaxis are the most important approaches [7]. However, previous studies showed that nonadherence to the guidelines of antimicrobial prophylaxis is a worldwide problem and ranges from 20% to 50% [5,8,9].



Antimicrobial stewardship is an emerging global action plan on antimicrobial resistance. Antimicrobial stewardship implements a series of strategies and interventions to improve appropriate use of antimicrobial agents in healthcare settings [10,11]. The interventions include formulary restriction, audit and feedback, education for prescribers, clinical guidelines, and clinical decision support systems provided by information technology. Audit is the most common intervention of all antimicrobial stewardship strategies. However, the processing and analysis of enormous medical data for the manual audit is time-consuming and labor-intensive. Therefore, it is helpful to develop efficient models by machine learning to analyze the big medical data associated with antimicrobial prophylaxis.



Machine learning creates new and promising opportunities in processing enormous volume of data to provide data classification, clustering, outlier or anomaly detection, and real-time prediction [12]. Machine learning can help clinicians to diagnose infectious diseases, evaluate severity of the diseases, and decide the choice of antimicrobial agents [13,14]. In a narrative review of 60 articles of machine learning for clinical decision support systems, 37 (62%) articles focused on bacterial infections, 10 (17%) on viral infections, and 13 (22%) on other kinds of infections. Among the 60 articles, four (7%) articles addressed the prediction of antimicrobial resistance, and three (5%) addressed the selection of antimicrobial agents [13]. The popular supervised machine learning algorithms, multilayer perceptron and decision tree, were applied to the antimicrobial susceptibility dataset to predict the resistant profile of bacteria, thereby aiding the clinicians in selecting empiric antimicrobial therapy [15,16]. However, they had the limitations of features selection and imbalanced dataset. Application of machine learning to the audit of antimicrobial prophylaxis was never reported. There is strong potential for research to develop machine learning algorithms with excellent performance in this field.



The purpose of this study is to develop accurate and efficient machine learning models for auditing appropriate surgical antimicrobial prophylaxis. Auto-WEKA, multilayer perceptron, and decision tree algorithms were applied to the dataset of surveillance of healthcare-associated infections and antimicrobial use. Sampling and ensemble methods were used to enhance the performance against the imbalanced dataset. We compared the performance measures of these algorithms for the audit of antimicrobial prophylaxis.




2. Materials and Methods


This research was approved by Institutional Review Board at Taichung Veterans General Hospital, with the ethical approval no. SE13130 and SE13130#2 on 17 May 2013 and on 19 May 2014, respectively, waiving the requirement for obtaining informed consent.



2.1. Data Preprocessing


A point prevalence survey of healthcare-associated infections and antimicrobial use was conducted in 25 acute care hospitals in Taiwan. Data were collected according to the protocol version 4.3 of point prevalence survey of healthcare-associated infections and antimicrobial use in European acute care hospitals [17]. If the patient receiving at least one antimicrobial drug at the time of survey, the antimicrobial use data were recorded. For surgical patient, if any surgical prophylactic antimicrobial agent was given in the 24 h before 8:00 a.m. on the day of the survey, the antimicrobial use data were collected.



One or more antimicrobial agents were used for surgical prophylaxis in 601 of the 7377 surveyed patients. The characteristics of dataset are listed in Table 1. The dataset of 601 instances contained 26 attributes, including age (numeric), gender (binary) hospital type (nominal), patient specialty (nominal, 29 distinct values), diagnosis (nominal, 20 distinct values), central vascular catheter in place on survey date (binary), peripheral vascular catheter in place on survey date (binary), urinary catheter in place on survey date (binary), under endotracheal intubation on survey date (binary), under tracheostomy intubation on survey date, ventilator used on survey date (binary), patient has active healthcare-associated infection (binary), blood stream infection present on survey date (binary), urinary tract infection present on survey date (binary), pneumonia present on survey date (binary), surgical site infection present on survey date (binary), antimicrobial agents used (nominal, 15 distinct values), indication for antimicrobial use (nominal, three distinct values), diagnosis sites for antimicrobial use (nominal, 16 distinct values), and finally the class label attribute (nominal, five distinct values). There were three attributes for antimicrobial agents, with their corresponding indications for antimicrobial use and diagnosis sites for antimicrobial use. The class label attribute was the type of compliance with the guidelines for antimicrobial prophylaxis.



The values of class label attribute were determined by infectious disease specialists, based on the common principles and procedure-specific guidelines [7,18]. For reading comprehension, the recommendations of guidelines for antimicrobial prophylaxis were briefly stated in Table 2. For details, please refer to the articles that are more complex [7,18].



If the choice of prophylactic antimicrobial use was in concordance with the recommendations in the practice guidelines, then the compliance with choice of prophylactic antimicrobial agents was determined as “Yes”; otherwise, it was determined as “No”. The duration of prophylactic antimicrobial agents had the following three observed values, i.e., single dose encoded as SP1 (surgical prophylaxis 1), one day encoded as SP2, and more than one day encoded as SP3. If the duration of prophylactic antimicrobial agents was SP1 or SP2, the compliance with duration of prophylactic antimicrobial agents was determined as “Yes”. If the duration was SP3, the compliance was determined as “No”. The values of class label attribute, i.e., compliance with guidelines for antimicrobial prophylaxis, were then classified into five types (i.e., A, B, C, D, and E), according to the compliance with both choice and duration of prophylactic antimicrobial agents in Table 3.



In this study, cefazolin was the most common first-generation cephalosporin used for surgical prophylaxis. The second-generation cephalosporins included cefoxitin mostly, but also cefuroxime. The aminoglycosides included gentamicin and amikacin. Amikacin was used for treatment of infection rather than surgical prophylaxis. The fluoroquinolones included ciprofloxacin and levofloxacin. The β-lactam/β-lactamase combinations included amoxicillin/clavulanic acid, ampicillin/sulbactam, and piperacillin/tazobactam.




2.2. Sampling Methods


Imbalanced dataset contains instances that are distributed unequally among the different classes, i.e., there are more instances in some classes than in other classes. Classifiers perform well with the majority class, but poorly with the minority class. Sampling approach is one of the useful methods to manage imbalanced data. The sampling techniques include two subgroups, i.e., undersampling and oversampling.



Undersampling method removes instances from the majority class to make the datasets balanced. SpreadSubsample is a supervised filter that produces a random undersampling. The relative distribution difference between the majority and the minority class can be adjusted [19].



Oversampling is a sampling method that involves replicating the instances of minority class to make the dataset balanced. SMOTE is a supervised filter that oversamples the minority class to produce synthetic instances utilizing k-nearest neighbor [20]. The oversampling percentage and the number of neighbors can be adjusted when creating synthetic instances.



Both SpreadSubsample and SMOTE algorithms were proposed to improve the predictive capability of decision tree.




2.3. Machine Learning Techniques


Among the available machine learning systems, we used WEKA as the data mining software to aid the audit of antimicrobial prophylaxis [19]. WEKA provides implementations of various machine learning algorithms that can be easily applied to a dataset. The dataset is divided into 10 approximately equal partitions (also called 10 folds). In each turn, nine-tenths were used for training and one-tenth for testing. The process was repeated 10 times. Finally, every instance would be used exactly once for testing. This is called 10-fold cross-validation. Cross-validation is widely used as a reliable approach to evaluate the performance of machine learning techniques when data are all in one set [19].



The multilayer perceptron and decision tree algorithms were applied to evaluate the appropriateness of antimicrobial prophylaxis in this study. Ensemble methods with bagging and boosting algorithms were used to improve the performance of decision tree. Auto-WEKA is a system automatically searching through the WEKA’s algorithms and their respective hyperparameter settings, by a Bayesian optimization method to achieve optimal performance [21]. SimpleLogistic was the optimal classifier selected by Auto-WEKA for the whole dataset in this study. SimpleLogistic is a classifier that employs the LogitBoost algorithm to build the logistic regression functions at the nodes of a tree and uses the CART algorithm for pruning. The most relevant attributes in the dataset are selected by performing a simple regression in each iteration. The optimal number of iterations is determined by cross-validation [22]. We compared the performance metrics and execution time of all these algorithms.



Multilayer perceptron is an artificial neural network composed of multiple layers of perceptrons. The layers include one input layer, one or more hidden layers, and one output layer. Multilayer perceptron is usually trained by minimizing the squared-error loss function of network output to make a best estimate of the class probability. The weights of the connections between neurons are modified by a backpropagation algorithm, which is computed by a standard mathematical optimization algorithm, called gradient descent, to minimize the squared-error loss function [19]. The gradient descent algorithm requires derivatives of the squared-error loss function [19].



The squared-error loss function, E, is defined as:


  E =  1 2    ( y − f  ( x )  )  2   



(1)




where x is the weight of the input, f(x) is the neural network’s prediction function obtained from the output unit, and y is the observed value of instance’s class label.



The derivative of f(x) with respective to x is as the following:


    d f  ( x )    d x   = f  ( x )   (  1 − f  ( x )   )   



(2)







The classification algorithm classifier J48 in WEKA provides the application of decision tree C4.5 algorithm [19]. The decision tree C4.5 algorithm is widely used because of its fast classification and high precision. Decision tree C4.5 uses gain ratio for feature selection and construction of a decision tree. Decision tree C4.5 can handle both continuous and discrete features [12,23].



The decision tree algorithm applies attribute selection measure to determine the splitting criterion to partition the instances in D into individual branches and nodes. If the instances in a partition are all of the same class, the node becomes a leaf and is labeled with that class. The attribute with the least information entropy (or the least information impurity) has the highest information gain [12].



The dataset, D, is a class-labeled training dataset. Let the class label attribute has k distinct classes, Ci.



  I n f o  ( D )    is the information entropy of D:


  I n f o  ( D )  = −   ∑   i = 1  k   p i    log  2   (  p i  )    



(3)




where    p i    is the nonzero probability that a subset in D belongs to the corresponding class Ci.



  I n f  o    A    ( D )    is defined as the expected information entropy generated by splitting the training dataset, D, into v partitions, corresponding to the v values of attribute A:


  I n f  o    A    ( D )  =   ∑   j = 1  v     |   D j   |     | D |      x   I n f o  (   D j   )   



(4)







  G a i n    ( A )    is the information gain:


  G a i n    ( A )  = I n f o  ( D )  − I n f  o A   ( D )   



(5)







The highest information gain in the partitions is chosen as the splitting attribute for node, and partitioning this attribute can produce the best classification [12].



Imbalanced dataset is a common problem in machine learning algorithms. The ensemble method (for example, Bagging and Adaboost) can be sued to enhance the performance measure against imbalanced data [24]. An ensemble for classification is made up of a combination of classifiers (models) to improve the prediction. If one classifier obtains more votes than others, it is taken as the correct one. Predictions will become more reliable, if they obtain more votes [19,24]. Both Bagging and boosting adopt this voting approach, but they derive the models in different ways. In Bagging, the models have equal weight, whereas in boosting, the base weak learners receive more weights, and the simple weak learners are combined into a more complex strong ensemble [25]. In this study, Bagging and AdaBoost approaches were implemented on the dataset to improve the classification performance of decision tree.




2.4. Performance of Machine Learning Techniques


2.4.1. Confusion Matrix


To assess the performance of a classifier, we considered the following results reported by WEKA: true positive (TP), true negative (TN), false positive (FP), and false negative (FN) [12]. TP and TN are correct identification by the classifier. An FP is an outcome predicted incorrectly as being positive when it is actually negative. An FN is an outcome predicted incorrectly as being negative when it is actually positive. The quality of a classifier is judged by the following formulas [12,19].



True positive rate: the number of TP is divided by the total number of actual positives, also called sensitivity:


  True   positive   rate =   TP   TP + FN    



(6)







False positive rate: the number of FP is divided by the total number of actual negatives, also equal to 1—specificity:


  False   positive   rate =   FP   FP + TN    



(7)







Specificity: the number of TN is divided by the total number of actual negatives, also equal to 1—false positive rate:


  Specificity =   TN   TN + FP    



(8)







Precision: the number of true positive predictions divided by the total number of positive predictions, also referred to as positive predictive value (PPV):


  Precision =   TP   TP + FP    



(9)







Accuracy: the probability that the model prediction is correct:


  Accuracy =   TP + TN   TP + TN + FP + FN    



(10)







Area under the receiver operating characteristics curve (ROC curve): the ROC curve is created by plotting the true positive rate (also called sensitivity) against the false positive rate (also called 1-specificity) at various threshold settings. The area under the ROC curve is also called area under curve (AUC), or ROC area. The AUC can be used to evaluate the prediction performance of a classifier system. The value of AUC varies between 0 and 1. If the AUC is 0, all the predictions will be wrong. If AUC = 1, the classifier can predict perfectly. If 0.7 < AUC ≤ 0.8, it is defined as acceptable discrimination If 0.8 < AUC ≤ 0.9, it is defined as excellent discrimination. If 0.9 < AUC ≤ 1.0, it is defined as outstanding discrimination [26].




2.4.2. Weighted Average of Performance Metrics


The weighted average for multiclass model is calculated by micro-average method, i.e., weighted arithmetic average of performance metrics for all classes, where the weight of each class is the prevalence of the class in the whole dataset [27].



For example, an AUC is calculated for each class in the dataset. The weighted average AUC is calculated by class-reference formulation, also called AUCCR [28]. AUCCR is defined as the weighted average of the class-reference AUCs, where the weight is the prevalence of the reference class.


    AUC   CR      ∑   i = 1  n    AUC   C i     P  C i     



(11)




where AUCCi is the area under the class-reference ROC curve for class Ci. Ci is the corresponding class in class label attribute. CR denotes the class reference. PCi is the prevalence of each class.




2.4.3. Comparison of the Execution Time for Machine Learning Algorithms


We compared the execution time of machine learning algorithms and manual review for the dataset, by using a stopwatch to measure execution time from the moment after we had loaded the data files and started the filter and/or classifiers. The execution time included time for manual operation of the software and computation of the algorithms.






3. Results


The distributions of values of class label attribute with regard to choice and duration of prophylactic antimicrobial agents for the whole dataset are listed in Table 4. In Class A, cefazolin was the most common prophylactic antimicrobial agent and compliant with recommendations of guideline for the correct choice and duration. In Class B, cefazolin, cefoxitin, clindamycin, and ciprofloxacin were correctly chosen for different surgical procedures with risks of infections. However, the duration was longer than one day and not compliant with recommended duration of antimicrobial prophylaxis. In Class C, the combination of cefazolin and gentamicin was identified as the most common type of non-compliance with choice of antimicrobial agent, because there were no special clinical indications for prophylaxis of Gram-negative bacterial infections for their surgical procedures. In Class D, the combination of cefazolin and gentamicin was identified as the most common type of non-compliance with the correct choice and duration of antimicrobial agent. In Class E, the prescriptions of ampicillin–sulbactam and third-generation cephalosporins were classified as not compliant with the recommended choice of antimicrobial agents. Their indications were identified as treatment of other infections rather than prophylaxis.



The performance metrics of machine learning techniques for the whole dataset are shown in Table 5. Classification accuracy alone can be misleading if there is an unequal number of observations in each class (type) in the dataset. Therefore, we had to look at other performance metrics in the Table 5. Multilayer perceptron had the best performance measures. SimpleLogistic was selected by Auto-WEKA as the optimal classifier for the whole dataset. However, the performance measures of SimpleLogistic were the second best among the algorithms in this study. The weighted average sensitivity, specificity, precision, and AUC of decision tree were 0.932, 0.972, 0.931, and 0.985 respectively. Bagging with decision tree, AdaBoost with decision tree, decision tree with SMOTE could increase the performance measures of decision tree, except the AUC of AdaBoost was a little less than that of decision tree. The performance measures of decision tree with SpreadSubsample were lower than those of decision tree alone.



The performance metrics (sensitivity, specificity, precision, and AUC) of the seven algorithms for the whole dataset (601 records) were shown in Figure 1. The seven algorithms (decision tree with SpreadSubsample, decision tree, Bagging with decision tree, Adaboost with decision tree, decision tree with SMOTE, SimpleLogistic, and multilayer perceptron) are plotted in increasing order of performance with regard to sensitivity, specificity, and precision. All the algorithms presented with outstanding discrimination, i.e., AUC > 0.97.



In this study, 544 instances were classified as surgical prophylaxis, 57 instances were classified as treatment of infections rather than surgical prophylaxis. The confusion matrix of decision tree algorithm for class-label attribute is shown in Table 6. Between-class imbalance was observed in this study, i.e., unequal number of observations in each class. Class C (5%) and E (9.5%) were much smaller subsets, as compared with that of Class A (42.6%), B (25.8%), and D (17.1%). There were also unequal sample sizes and minority instances within each labeled class, i.e., within-class imbalance. The sample sizes of minority instances were too small to be identified accurately by the machine learning tools, especially in Class E, as shown in Table 6.



For the 544 instances of antimicrobial prophylaxis (Class A, B, C, and D), 75.6% (411/544) of antimicrobial choices (Class A and B) were classified as consistent with guidelines, 52.6% (286/544) of antimicrobial prescriptions (Class A and C) were discontinued within 24 h after surgery completion.



Five specialties, orthopedics (22.5%), neurosurgery (13.8%), general surgery (14.0%), obstetrics/gynecology (13.1%), and urology (9.7%) had the greatest number of instances. The dataset was further stratified and analyzed by specialty. The compliance with the recommendations of guideline for antimicrobial prophylaxis by the five major specialties is plotted in Figure 2. The compliance with recommended choice of prophylactic antimicrobial agents for neurosurgery, obstetrics and gynecology, general surgery, orthopedics, and urology were 64.5%, 71.6%, 80.0%, 80.5%, and 81.0%, respectively. The compliance with duration of surgical prophylaxis for neurosurgery, urology, general surgery, orthopedics, and obstetrics and gynecology were 36.8%, 46.6%, 54.7%, 67.9%, and 77.0%, respectively.



The AUC of six algorithms for five major surgical specialties are plotted in Figure 3. Multilayer perceptron was the best algorithms among the five specialties. Bagging with decision tree, decision tree with SMOTE could increase the performance of decision tree for the datasets of most specialties, except for urology dataset. SimpleLogistic worked better than decision tree with sampling methods for the datasets of obstetrics and gynecology and urology, but not for neurosurgery dataset.



The hyperparameters and execution time of machine learning algorithms and manual review are shown in Table 7 (Whole dataset in Supplementary Materials). Auto-WEKA and multilayer perceptron took more execution time as compared with that of decision tree. The execution time of decision tree with SpreadSubsample and SMOTE is longer than that of decision tree alone. All the algorithms were more efficient in execution time than manual review.




4. Discussion


The National Healthcare Safety Network (NHSN), the CDC surveillance system, provides information on incidence rates for healthcare-associated infections. The NHSN cannot provide national-scale data on the antimicrobial use. Point prevalence surveys provide valuable information on healthcare-associated infections and antimicrobial use globally, and they may facilitate comparisons among different countries [29]. Although the duration of point prevalence survey in a single hospital is limited to three weeks, the criteria of compliance with duration of antimicrobial prophylaxis are less than one day or longer than one day, and the short duration of prevalence survey does not limit the analysis of data or presentation of useful information [17]. The surgical prophylaxis guideline by Bratzler et al. remains a standard and is still cited by the recent publications [7,18].



Among the 7377 patients, 1981 patients were never subjected to a surgical procedure, but only 601 instances with antimicrobial prophylaxis were collected. Because only the antimicrobial agents used on the day of survey were recorded, the dataset did not include the data of antimicrobial use for every patient who had been subjected to a surgical procedure before this survey. Some commentators may suggest that some of these patients should have been subjected to surgical prophylaxis, though they were not. If that is the case, such cases are of major importance for the purposes of this work. This issue was not described in the previous publications [8,9,30]. However, it is not a major concern in real-world practice except for human error. This is because the question, “Has antibiotic prophylaxis been given within the last 60 min before skin incision?”, is an item in the time-out surgical safety checklist proposed by WHO [8,31]. Surgeons will confirm that antibiotic prophylaxis was given within the last 60 min before surgical incision. More importantly, the appropriate use of antimicrobial prophylaxis (choice of antimicrobial agents and duration of antimicrobial use) is not on the checklist and needs to be clarified in the audit. However, we do not have data to verify this issue caused by human error, and we will take it into consideration for a perfect audit in a future study.



In this study, 544 instances were surgical prophylaxis. A total of 75.6% (411/544) of antimicrobial choices (Classes A and B) were classified as consistent with guidelines, while 52.6% (286/544) of antimicrobial prescriptions (Classes A and C) were discontinued within 24 h after surgery completion. The combination of cefazolin and gentamicin was the most common type of noncompliance with guideline. Cefazolin was widely used as an appropriate drug for many surgical procedures with its wide spectrum of susceptibility (e.g., against Gram-positive Staphylococcus species and Gram-negative bacilli) and adequate concentrations in the tissue. Therefore, gentamicin is used only if Gram-negative bacteria infection is a concern of postoperative infections and the patient is allergic to cefazolin. In comparison, antimicrobial agents compliant with guidelines were used for 92.6% of patients in U.S. hospitals [7] and 78.4% in Italian hospitals. [9] Prolonged surgical prophylaxis longer than 24 h was common in the worldwide surveys, including 54.2% in the European hospitals, 52.4% in the global survey, 45.7% in Australia hospitals, and 20.7% in US hospitals [8,29,30,32]. Compared with that of surgical prophylaxis used for 24 h or less, prophylactic antimicrobial agent used for more than 24 h for most surgical procedures does not reduce postoperative infections but increases the risk of antimicrobial resistance and adverse effects. In the absence of preoperative infection or postoperative complications, prolonged postoperative antimicrobial prophylaxis is not necessary [2,32]. International collaborative works are needed to improve appropriate antimicrobial use for surgical prophylaxis, such as optimal antibiotic choice, dosage, and length of prophylaxis.



WHO suggests an assessment method for antimicrobial surgical prophylaxis by reviewing the essential variables for evaluation, including indication (type of surgery), age and gender of the patients, comorbidities, antibiotics prescribed as prophylaxis, dose, time of administration, and duration of antimicrobial use [11]. Manual method is not suitable for the audit of enormous data from annual survey in a medical center, interhospital comparison, or national survey. Auditing appropriate antimicrobial use for surgical prophylaxis by manual review of enormous medical data is labor-intensive and time-consuming. It is needed to develop efficient models for the audit of appropriateness of prophylactic antibiotic use. The purpose of this study was to investigate whether machine learning techniques could be used to predict the appropriate antimicrobial use for surgical prophylaxis from a large volume of clinical data. Machine learning techniques facilitate reviewing large volumes of data to discover specific patterns and trends that would usually not be apparent to humans. As shown in the results, with the help of the machine learning techniques, we could easily identify the five types of compliance with recommendations of antimicrobial prophylaxis. In addition, multilayer perceptron, SimpleLogistic, and decision tree algorithms provided high-performance measures for identifying appropriate use (Class A) and inappropriate use (Classes B, C, and D). The appropriateness of prophylactic antibiotic use by different surgical specialties can also be determined rapidly by the efficient models developed in this study.



Imbalanced dataset contains instances that are unevenly distributed among the different classes. Between-class imbalance means unequal numbers of instances between different classes; within-class imbalance occurs when a class consists of different subclasses with unequal numbers of instances [33]. Both between-class imbalance and within-class imbalance are observed commonly in datasets. Between-class imbalances as well as within-class imbalances can affect classification performance.



The between-class imbalance was observed in the dataset in this study, i.e., unequal distribution in each class. Classes C and E were much smaller subsets, as compared with that of Classes A and D. The performance metrics in Classes C and E were not as good as those of Classes A and D. There were also unequal sample sizes and minority instances within each labeled class, i.e., within-class imbalance. The sample sizes of minority instances were too small to be identified accurately by the machine learning tools, especially in Class E, as shown in Table 6.



Imbalanced dataset is a common problem in machine learning classification. This imbalanced data can prevent the machine learning algorithms from building accurate models for these minority classes and lead to prediction errors [25,34]. For example, SimpleLogistic worked better than decision tree with sampling methods for the datasets of obstetrics and gynecology and urology, but not for neurosurgery dataset. There are several methods to solve this problem of imbalanced data, such as resampling the datasets by under-sampling the majority class and over-sampling the minority class, modifying algorithms, and considering a different perspective, such as anomaly [24,25,34]. We used two resampling approaches (Bagging and AdaBoost) to overcome the problem of imbalanced dataset. Bagging increased the precision for decision tree algorithm in this study. AdaBoost could reduce the bias of decision tree, but could be prone to overfitting noisy, as shown in Classes C and E [25].



Overfitting is a common problem in supervised machine learning algorithms. Overfitting occurs if the model performs perfectly on the training dataset, while fitting poorly on the testing dataset. Overfitting happens because of the presence of noise in the training dataset, small size of dataset, and the complexity of classifiers. Various strategies were proposed to reduce overfitting. The first is data sampling methods, including undersampling and oversampling [25,35]. SpreadSubsample randomly removes instances from the majority class to make the dataset balanced. However, because undersampling method could lose useful data for classifiers, decision tree with SpreadSubsample did not achieve better performance than decision tree alone in this study. SMOTE is an oversampling method that has the advantage of no loss of useful data. SMOTE could improve the performance measures of decision tree in this study, as well as other studies [36,37]. However, SMOTE may require additional computational time if the dataset is very large, as shown in Table 7, SMOTE took more execution time as compared with decision alone or SpreadSubsample [25,37]. The other methods for reducing overfitting are cross-validation, ensemble methods, as shown in this study [25,35]. However, overfitting cannot be avoided completely. As with most applications in data science and machine learning algorithms, there is no definitive best approach that always performs excellently. Depending on the characteristics of the dataset, distribution of classes, models, and predictions, some of the above algorithms will perform better than others



It takes about 40 s to review the data of a single instance manually. The estimated execution time of manual review for all the 601 instances will be 24,040 s (6 h, 40 min and 40 s). However, the actual execution time of manual review will exceed 24,040 s, because we cannot continuously concentrate on reviewing the data without rest. Although they have better performance measures, Auto-WEKA and multilayer perceptron require more execution time as compared with that of other algorithms. All the algorithms were more efficient in execution time than manual review.



Finally, this study demonstrated that multilayer perceptron, SimpleLogistic, and decision tree had outstanding discrimination with AUC > 0.9 for identifying the appropriateness of surgical prophylaxis, despite the imbalanced data. However, we still consider a different perspective that the rare instances are anomalies in the dataset. The antimicrobial use of these rare instances was inappropriate as compared to those regular practices which were according to the recommendations of antimicrobial prophylaxis guidelines. With the models determined by all the algorithms, we can easily identify the anomalies or outliers.



There are some limitations in this study. First, for the instances with active infection already present at the time of surgery, the antimicrobial agents could then be selected by clinicians according to the clinical data, such as source of infection or microbiology. These antibiotics were used for active infections rather than surgical prophylaxis. Although these instances could be identified as inappropriate use, the models that used machine learning techniques to audit antimicrobial prophylaxis do not override clinical judgment. Once the surgeons obtain the information from the audit, they can review the cases of nonadherence to guideline. Lack of documentation of the reason of antimicrobial prescription is not uncommon (about 20% in European hospitals) [32]. If the variances from standards arise from lack of documentation of pre-existing infection and treatment for infection rather surgical prophylaxis, they can improve the documentation of treatment or surgical prophylaxis on the medical records. In the future study, the instances with treatment for preexisting infection will be excluded to reduce the variances from standards. Second, the small population of outliers used in training set may not sufficiently represent the outlier patterns. The small amount of outlier samples can limit the capability of building an accurate classifier for the detection of outlier patterns, and it may also result in misclassification. Third, before administering any antibiotic prophylaxis regimen, it is necessary to define whether the patient really needs such prophylaxis. Antimicrobial prophylaxis is not recommended for most clean surgical procedures in patients without risk of postoperative infection, such as thyroidectomy or clean plastic surgery [7]. However, the risks of infection for these clean procedures were not included in the attributes. Consensus on this issue is required from the surgical society as well as adding infection risks of surgery to the attributes. Only then will the algorithms be able to provide more useful information for assessing the appropriate antimicrobial use in future studies. Fourth, some features considered in this study were not relevant. Irrelevant features can have an impact on the model performance. Regularization strategy is proposed to enhance the model performance by removing the useless features and selecting only the useful features from the model, and minimizing the weights of the features with little useful information on the classification [35]. In future work, we will focus on the database design and configuration of more useful data to improve the performance of the algorithms. Fifth, we are concerned about the issue of inappropriate surgical prophylaxis or limited antimicrobial options leading to the selection of resistant bacteria. Some strategies were proposed to prevent the emergence of resistant bacteria, such as combination regimens [38,39] and adequate dosing to maintain the serum concentration of antibiotic above the minimal inhibitory concentration of the bacteria during the treatment [39,40]. Machine learning may be used to deal with this issue, which involves alternative surgical prophylactic regimens and emergence of resistant bacteria, based on the hypothesis that the new resistant bacteria may be prevented or treated with new prophylactic regimens. Reinforcement learning is an approach that seems suitable for such a problem. However, more data on antimicrobial resistant patterns and alternative options for surgical prophylactic antimicrobial agents need to be collected before validating reinforcement learning for this issue in future studies.




5. Conclusions


Multilayer perceptron, SimpleLogistic, and decision tree algorithms have outstanding performance measures for identifying the appropriateness of surgical prophylaxis. The Bagging and SMOTE algorithms can improve the predictive power of decision tree classifiers against imbalanced datasets. The efficient models can be used to assist the antimicrobial stewardship team in the audit of surgical antimicrobial prophylaxis. In future work, we still have the challenges and opportunities of investigating the database configuration and enriching our datasets with more useful clinical information to improve the performance of the algorithms.
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Figure 1. Performance metrics of algorithms for whole dataset (601 instances). 
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Figure 2. Compliance with recommendations of guidelines for antimicrobial prophylaxis, plotted by 5 major specialties. 
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Figure 3. Area under receiver operating characteristics curve (AUC) of 7 algorithms for 5 major specialties. 
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Table 1. Characteristics of dataset.






Table 1. Characteristics of dataset.





	Attribute
	Type
	Remarks





	Hospital type
	Nominal
	Primary: 71 instances. Secondary: 258 instances. Tertiary: 271 instances



	Age
	Numeric
	Mean: 56.2 years



	Gender
	Binary
	Female: 297 instances, male: 304 instances



	Patient specialty
	Nominal
	29 distinct values



	Diagnosis
	Nominal
	20 distinct values



	Central vascular catheter in place
	Binary
	Yes: 75 instances

No: 526 instances



	Peripheral vascular catheter in place
	Binary
	Yes: 477 instances

No: 124 instances



	Urinary catheter in place
	Binary
	Yes: 213 instances

No: 388 instances



	Under endotracheal intubation
	Binary
	Yes: 33 instances

No: 568 instances



	Under tracheostomy intubation
	Binary
	Yes: 9 instances

No: 592 instances



	Ventilator used
	Binary
	Yes: 34 instances

No: 567 instances



	Patient has active healthcare-associated infection
	Binary
	Yes: 6 instances

No: 595 instances



	Blood stream infection
	Binary
	Yes: 0 instances

No: 601 instances



	Urinary tract infection
	Binary
	Yes: 0 instances

No: 601 instances



	Pneumonia
	Binary
	Yes: 2 instances

No: 599 instances



	Surgical site infection
	Binary
	Yes: 3 instances

No: 598 instances



	Antimicrobial agents used
	Nominal
	15 distinct values



	Indication of antimicrobial agents
	Nominal
	3 distinct values



	Diagnosis sites for antimicrobial use
	Nominal
	16 distinct values



	Class label attribute
	Nominal
	5 distinct values
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Table 2. Brief recommendations for surgical antimicrobial prophylaxis.
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	Wound Classification
	Choice of Prophylactic Antimicrobial Agents
	Duration of Prophylactic Antimicrobial Agents





	Class I

(Clean wound)
	
	
Recommended agents: First generation cephalosporins



	
Alternative agents in patients with β-lactam allergy: Clindamycin or vancomycin





	A single dose

or one day



	Class II

(Clean-

contaminated wound)
	
	
Recommended agents: First-generation cephalosporins ± metronidazole or Second-generation cephalosporins



	
Alternative agents in patients with β-lactam allergy: Clindamycin + aminoglycosides or Metronidazole + aminoglycosides





	A single dose

or one day
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Table 3. Description of five types of compliance with recommendations for antimicrobial prophylaxis.
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Types of Compliance with Recommendations for Antimicrobial Prophylaxis Determined by Infectious Disease Specialists

	
Compliance with Choice of Prophylactic Antimicrobial Agents

	
Compliance with Duration of Prophylactic Antimicrobial Agents






	
A

	
Yes

	
Yes




	
B

	
Yes

	
No




	
C

	
No

	
Yes




	
D

	
No

	
No




	
E

	
Antimicrobial agents used for treatment of other infections rather than surgical prophylaxis.
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Table 4. Choice and duration of prophylactic antimicrobial agents for whole dataset.
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	Class
	No. of Instances
	Choice of Antibiotics
	Duration of Prophylactic Antimicrobial Use a

(No. of Instances)





	A
	Total 255
	
	



	
	245
	Cefazolin
	SP1 (178), SP2 (67)



	
	5
	Cefoxitin
	SP1



	
	4
	Cefoxitin
	SP2



	
	1
	Cefuroxime + metronidazole
	SP2



	B
	Total 155
	
	



	
	126
	Cefazolin
	SP3



	
	8
	Cefazolin

+ other antibiotic (for different surgical procedures or risks)
	SP3



	
	10
	Cefoxitin
	SP3



	
	8
	Clindamycin
	SP3



	
	3
	Ciprofloxacin
	SP3



	C
	Total 30
	
	



	
	25
	Cefazolin + gentamicin
	SP1 (13), SP2 (12)



	
	5
	Other antibiotics
	SP1 (2), SP2 (3)



	D
	Total 103
	
	



	
	69
	Cefazolin + gentamicin
	SP3



	
	5
	Cefoxitin + gentamicin
	SP3



	
	2
	Cefoxitin
	SP3



	
	21
	Oral cephalexin
	SP3



	
	6
	Others
	



	E
	Total 57
	
	



	
	17
	Ampicillin–sulbactam
	SP2 (4), SP3 (13)



	
	10
	Third-generation cephalosporins
	SP2 (4), SP3 (6)



	
	30
	Others
	







a Single dose encoded as SP1, one day encoded as SP2, and more than one day encoded as SP3.
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Table 5. Weighted average of performance metrics of algorithms for whole dataset.
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	Spread Subsampl-

Decision Tree
	Decision Tree
	Bagging-Decision Tree
	AdaBoost-

Decision Tree
	SMOTE-

Decision Tree
	Simple-

Logistic
	Multilayer Perceptron





	Sensitivity
	0.895
	0.932
	0.940
	0.945
	0.960
	0.958
	0.967



	Specificity
	0.970
	0.972
	0.968
	0.980
	0.990
	0.990
	0.992



	Precision
	0.908
	0.931
	0.941
	0.944
	0.961
	0.959
	0.967



	AUC a
	0.978
	0.985
	0.991
	0.983
	0.985
	0.987
	0.992







a AUC: Area under receiver operating characteristics curve.
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Table 6. Confusion matrix of decision tree algorithm for whole dataset.
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Predicted Class

	
Actual Class

	
Number of Observations (%)






	
A

	
B

	
C

	
D

	
E

	

	




	
255

	
0

	
1

	
0

	
0

	
A

	
256 (42.6)




	
0

	
144

	
0

	
6

	
5

	
B

	
155 (25.8)




	
5

	
0

	
25

	
0

	
0

	
C

	
30 (5.0)




	
1

	
4

	
0

	
98

	
0

	
D

	
103 (17.1)




	
8

	
6

	
0

	
5

	
38

	
E

	
57 (9.5)




	

	

	
Total: 601 (100)
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Table 7. Hyperparameters and execution time for machine learning techniques and manual review.
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	Classifier
	Hyperparameters
	Sampling Method
	Execution Time (s)





	Decision tree
	Reduced error pruning = false

Confidence factor = 0.2

distributionSpread: 2.0

Percentage: frequency of minor classes adjusted to nearly the same with that of major class

Classifier Choose: J48

Classifier Choose: J48
	No sampling

SpreadSubsample

SMOTE

Bagging

AdaBoost
	7.8

27.9

71.8

16.0

16.1



	SimpleLogistic
	Default
	No sampling
	9.8



	Multilayer perceptron
	Learning rate = 0.3

Training Time = 500
	No sampling
	353.1



	Auto-WEKA
	Default

Time = 15 min
	No sampling
	8586



	Manual review
	
	
	Estimated

24,040
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