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1. Introduction

The development of innovative gas-sensing systems is fundamental in diverse re-
search fields such as physics, chemistry, biology, medicine and environmental science [1–3].
Sensors based on quartz-enhanced photoacoustic spectroscopy [4,5] or photothermal spec-
troscopy [6,7] have the merit of combining high spectral selectivity provided by laser
sources, high sensitivity guaranteed by sharply resonant quartz tuning forks (QTF), and
a field-proven level of robustness and compactness. These characteristics—together with
the no-cost impact of QTFs employed as sound and/or light detectors, and their capability
of efficiently working in harsh environments—make sensors relying on tuning forks the
leading-edge technologies for in-situ and real-time detection of gas species [8,9]. Hence,
we dedicated a Special Issue to the most recent advances and state-of-the-art applications
of quartz-enhanced photoacoustic and photothermal spectroscopy. A total of 15 paper
submissions were received. Among them, one manuscript was rejected by the editor in
the initial checking process, and two manuscripts were rejected by the reviewers. The
remaining manuscripts underwent a peer-reviewing process and were evaluated by at least
two reviewers widely acknowledged as experts in their research. Finally, 11 manuscripts
were accepted for publication in Applied Sciences—Basel. We would like to sincerely thank
for their effort these numerous reviewers from across the world—in particular, from China,
the USA, Italy and Germany—who contributed to the high quality and success of this
Special Issue.

2. Main Content of the Special Issue

The recent advances in, and development of, custom quartz tuning forks and laser
sources, as well as narrowband laser absorbers, has opened up new opportunities for gas
sensing and detection techniques based on quartz-enhanced photoacoustic spectroscopy
(QEPAS) and/or quartz-enhanced photothermal spectroscopy (QEPTS). Therefore, the
research papers published in this Special Issue mainly focus on novel approaches exploiting
QTFs as core sensitive elements, and their implementation in real world applications.

In particular, three articles of the Special Issue investigate and exploit the photothermal
effect. The first article, authored by S. Li et al. presents a non-destructive method to analyze
the thermodynamics of polymer microwire samples, bridged across the prongs of the
tuning fork, at the nanogram level [10]. Compared with the traditional method, the analysis
method exposed in this paper does not require annealing before measurement, which is an
essential process for conventional thermal analysis, and results in a fast analysis time. The
second article, submitted by H. Zheng et al., reports on an original approach for trace-gas
detection, by combining photo-thermal and photo-acoustic spectroscopy, and relying on a
quartz tuning fork as a light-intensity and sound-wave detector, simultaneously [11]. In the
third article, authored by G. Lan et al., a narrowband perfect absorber based on a dielectric-
metal metasurface for wide-band surface-enhanced infrared sensing was investigated.
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This study offers a promising approach to designing high-performance surface-enhanced
resonators to be employed as optical detectors in the infrared region [12].

Two manuscripts were dedicated to the design, development and optimization of
high-performance electronics devoted to the QTF piezo-current transduction in a voltage
signal. Piotr Z. Wieczorek et al. analyzed the influence of the crucial parameters of the low-
noise operational preamplifier design, and discussed the characteristics of transimpedance
and voltage configurations [13]. G. Menduni et al. investigated the possibility of using a
differential input/output configuration with respect to single-ended configuration, and
discussed the related signal-to-noise ratios in QEPAS spectra obtained by means of a water
vapor sensor [14]. Two more articles focus on the physical interaction between the target
analyte excited and the gas matrix. The manuscript authored by J. Hayden et al. explains
the peculiar trend of carbon monoxide QEPAS signals in a nitrogen-based gas matrix,
obtained by changing the water vapor concentration. The kinetic model, discussed in
detail, can be used to identify optimized experimental conditions for sensing CO, and
can be readily adapted to include further collision partners [15]. The effects of gas-matrix
variations are also addressed in the article authored by M. Mordmueller et al., who reported
on the latest results obtained with an auto-triggered QEPAS approach. This configuration
works without external frequency generators, and ensures permanent locking to the current
resonance frequency of the tuning fork [16]. The phase-optimized photoacoustic technique
mentioned above avoids a calibration procedure and permits the continuous monitoring of
a targeted trace gas. The remaining three papers all focus on optimized configurations of
the laser beam shape and improved acoustic detection modules, mounting custom QTFs to
further enhance the sensitivity of QEPAS-based sensors [17–19]. These new results set the
basis for a further twist in the development of technology, to more efficiently address the
challenges provided by the sensor market and environmental monitoring applications.
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