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Abstract: Osteoporosis is a complex bone disease indicating porous bone with low bone mass
density and fragility. Cathepsin K, V-ATPase, and αVβ3 integrin are exhibited as novel targets for
osteoporosis treatment. Our preliminary study uses a state-of-the-art method, including target-
based virtual screening and clustering methods to determine promising candidates with multitarget
properties. Phytochemicals with osteoprotective properties from the literature are used to elucidate
the molecular interactions toward three targets. The binding scores of compounds are normalized
and rescored. The K-means and hierarchical clustering methods are applied to filter and define the
promising compounds, and the silhouette analysis is supposed to validate the clustering method.
We explore 108 herbal compounds by virtual screening and the cluster approach, and find that rutin,
sagittatoside A, icariin, and kaempferitrin showed strong binding affinities against Cathepsin K,
V-ATPase, and αVβ3 integrin. Dockings of candidates toward three targets also provide the protein-
ligand interactions and crucial amino acids for binding. Our study provides a straightforward and
less time-consuming approach to exploring the new multitarget candidates for further investigations,
using a combination of in silico methods.

Keywords: Cathepsin K; V-ATPase; integrin; virtual screening; multitarget

1. Introduction

Osteoporosis is the most common bone disorder arising from an imbalance between
bone formation by osteoblasts and bone resorption by osteoclasts [1]. Reducing the rate
of bone degradation becomes the therapeutic target for osteoporosis treatment due to
its short duration, within 2–4 weeks. Osteoclasts are multinucleated cells derived from
hematopoietic stem cells in the bone marrow to form preosteoclast precursors, and are
activated by various factors, such as inflammatory cytokines, chemokines [2,3].

Focusing on osteoclast function, the pre-osteoclasts from hematopoietic stem cells
(MSCs) adhere to the bone mineral matrix using the cell adhesion integrin receptor [4,5].
The αVβ3 type of integrin receptor is highly expressed in osteoclasts. The inhibition of
the αVβ3 integrin receptor resulted in decreasing bone resorption [5]. After osteoclast
activation, the hydrogen ions were transported to the bone-resorbing compartment via
the vacuolar-type H+-ATPase (V-ATPase) [6]. V-ATPase is a proton pump responsible for
the regulation of intracellular and extracellular pH environments. V-ATPase shows the
capability to maintain the acidic environment of various organelles, such as lysosomes,
secretory granules. The acidifying compartment and extracellular environment are the
predominant roles of V-ATPase, leading to bone resorption and tumor metastasis [6].
Recently, many evidence-based studies proved the correlation of V-ATPase function and
various diseases, especially cancer and osteoporosis [7]. In bone resorption, secretory
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lysosomes with V-ATPase in their membrane fuse with the specialized membrane of
osteoclasts and then release the degrading enzymes and proton ion into the bone-resorbing
compartment [8,9]. Cathepsin K is a lysosomal protease enzyme that mainly degrades type
I collagen and elastin in the bone matrix at a low pH environment [10,11]. The inhibition of
Cathepsin K suppresses the osteoclast function without impairing its viability, indicating
the benefits over current medicines [12]. The current medicines used in the treatment of
osteoporosis are bisphosphonates, such as alendronate, which are targeted in the reduction
of the bone resorption rate. However, bisphosphonates exhibited several side effects
and interrupted the bone remodeling process by induced cell death in osteoclasts. The
alternative medicines for osteoporosis treatment are herbal medicines, especially traditional
Chinese medicines (TCMs).

The use of medicinal plants and natural products in traditional and modern therapy
are gaining more interest nowadays. Many studies exhibited that medicinal plants exert
their therapeutic potential due to a synergistic effect from a combination of phytochem-
icals [13–15]. It was suggested that natural products tend to possess multitarget activity,
and less toxicity than synthetic compounds and therefore are potentially a useful starting
point for multitarget drug discovery. Additionally, the use of current medicines in osteo-
porosis treatment may be limited with the treatment period. Polyphenols were extensively
investigated, according to their wide variety of efficacies on human health, including
antioxidative, anti-inflammatory, anticancer properties, and prevention of cardiovascular
diseases, neurodegenerative, and osteoporosis [16–18]. Polyphenols, specifically flavonoids,
possess a positive impact on bone health. The possible mechanisms of polyphenols to
balance bone metabolism are due to their anti-oxidative and anti-inflammatory properties,
relevant to the number of phenol groups [19].

Multitarget drug discovery is a new paradigm in drug design and development [20].
The multitarget approach has been increasingly interesting for complex disease drug
development recently, particularly cancer and Alzheimer’s disease [21]. Conceptually, mul-
titarget agents possessing modest activity at more clinically relevant targets may produce
similar or better in vivo bioactivities than high target-selective compounds [22]. Several
in silico methods were applied to find multitarget candidates. Virtual screening is an in
silico method used to randomly screen a vast amount of conformations from a large chemi-
cal library to identify the high probability candidates bound to the target of interest [23].
Target-based virtual screening is carried out by docking small molecules to the 3D structure
of the targeted site, followed by optimizing binding configurations and evaluating binding
feasibility based on molecular interactions. However, identifying promising candidates
from many docked poses generated from virtual screening is still critical for successful
drug discovery. Clustering is an unsupervised machine learning method for partitioning
the dataset into a set of groups or clusters. Ideally, the similarity within a same cluster
should be higher than distinct clusters. Several clustering approaches are extensively
used in the field of molecular modeling, especially k-means [24,25] and hierarchical al-
gorithm [26]. However, each clustering method has its limitations, such as sensitivity to
outliers, and identifying the number of clusters in advance. To avoid these limitations, we
used a combination of these methods for analyzing the molecular results and visualizing
the relationships between top predictive features.

Our study aimed to find the multitarget candidates from the herbal substances that
reported the osteoprotective effects. To find an insight into the osteoclastic activity at a
molecular level, we focused on studying proteins involving bone resorption in the different
stages of osteoclasts, including Cathepsin K, V-ATPase, and αVβ3 integrin receptor, by
performing the virtual screening. The top 26 hits from each protein–ligand docking were
filtered by several clustering methods to find the promising candidates for these three
target proteins. The final candidates were defined from our proposed method. Our
method would provide a straightforward and reasonable strategy to identify the promising
multitarget ligands for further use in other investigations by being less time-consuming.
An overview of the study for screening the multitarget compounds with anti-osteoclastic
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activity was shown in Figure 1. The phytochemicals with the osteoprotective activity from
the previous literature [27,28] were selected to be used in this work. The in silico methods,
such as a molecular docking, and a cluster approach were utilized to explore the promising
multitarget candidates for further studies.
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Figure 1. Schematic representation of this study. The potential targets in different osteoclast stages
were identified, including Cathepsin K, V-ATPase, and αVβ3 integrin receptor. These targets were
investigated to find the interaction with phytochemicals from the previous literature through molecu-
lar docking. The docking results were clustered to find the potential cluster based on the AutoDock
binding interactions. The compounds in the selected cluster were subclustered using the clustering
method incorporated with the heatmap analysis to find the promising compounds for further studies.

2. Materials and Methods
2.1. Target Selection and Protein-Protein Interaction Analysis

The targets used in this study were selected based on the specificity and necessity
for the osteoclast function. With regard to the stages of osteoclast function, αVβ3 integrin
receptor was a potential target in the polarizing stage, whereas V-ATPase and Cathepsin K
were presented as the crucial targets in the resorbing stage. After that, we analyzed the con-
nectivity of these proteins through the protein–protein interaction (PPI) network analysis.
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We performed the PPI network analysis using the STRING (Search Tool for the Re-
trieval of Interacting Genes) database [29] by assigning the gene targets of particular proteins,
including Cathepsin K (CTSK), V-ATPase (V0 domain: ATP6V0A1, ATP6V0A2, TCIRG1,
ATP6V0A4, ATP6V0B, ATP6V0C, ATP6V0D, ATP6V0D2, ATP6V0E1, ATP6V0E2; V1 do-
main: ATP6V1A, ATP6V1B1, ATP6V1B2, ATP6V1C1, ATP6V1C2, ATP6V1D, ATP6V1E1,
ATP6V1E2, ATP6V1F, ATP6V1G1, ATP6V1G2, ATP6V1G3, and ATP6V1H), and αVβ3 inte-
grin receptor (ITGAV, ITGB3) with the species defined to “Homo sapiens”, and a confidence
cut-off of 0.4. STRING was utilized to search for the neighboring interactions and then
generate the PPI network based on the interactions occurring from the input proteins. The
PPI analysis was visualized by Cytoscape software [30].

2.2. Data Collection and Ligand Preparation

A total of 108 herbal substances with the osteoprotective activity from previous liter-
atures [27,28] were selected for use in this work, including flavones, flavonoids, phenyl-
propanol, terpenoids, flavanones, isoflavones, and miscellaneous compounds. The three-
dimensional structures of selected herbal substances were downloaded from the PubChem
database (https://pubchem.ncbi.nlm.nih.gov/, (accessed on 14 January 2021)). All ligands
were geometrically optimized using the Gaussian09w [31] program with the B3LYP method
at 6–31 G(d,p) levels [32]. The hydrogen atoms were assigned. Aromatic carbons and
rotatable bonds of each ligand were identified through AutoDockTools 1.5.6 program [33].

2.3. Target Preparation and Binding Site Identification

The three-dimensional structures of all targets were retrieved from the Protein Data
Bank (RCSB database). The structures with a high resolution and domain completeness
were selected in this study. All native ligands, water molecules, and metal ions were
removed. Hydrogen atoms and Gasteiger partial charge were assigned by AutoDockTools
1.5.6. The binding site of the native ligand was defined as the ligand-binding site for the
molecular docking study.

In this study, a PDB structure of human Cathepsin K was 4 × 6 H with a resolution of
1.0 Å [34]. Prior to performing the molecular docking study, the protonation state of protein
was adjusted by PROPKA to provide a structure of amino acids at pH 5.5 and then checked
by Biovia Discovery Studio Visualizer [35]. Subsequently, AutoGrid 4.0 was used to define
the binding site by creating a grid box with a size of 60 × 60 × 60 Å3. A grid center was set
at 17.552, 8.018, −19.098 at XYZ-dimension with a grid spacing of 0.375.

The protein structure of V-ATPase used in this study was 5KNB, which cocrystallized
with ADP ligands [36]. This structure is a V1 domain which contains subunit A and B.
The active site of ADP is located between the two subunits, A and B. A grid box size of
60 × 60 × 60 Å3 centered at −11.539, 23.975, −18.976 with a grid spacing of 0.375 Å was
set as the binding site of this docking set.

The αvβ3 integrin receptor used in this experiment was a PDB code of 4G1M [37]. A
center of the native ligand was set as a grid box center at dimensions −19.145, 44.449, and
43.944. The grid box size of 80 × 80 × 80 Å3 with a grid spacing of 0.375 Å was set as the
parameters for this study.

2.4. Target-Based Virtual Screening

In all experiments, the genetic algorithm (GA) search method was applied to determine
the best pose of each ligand within the active site of the receptor. All ligands were docked
into the defined binding site. Top 100 docked conformations generated from 300 population
sizes were performed by the Lamarckian genetic algorithm (LGA). Simulations were
performed with a maximum of 2,500,000 evaluations and a maximum of 250,000 generations.
Overall conformations were ranked by order of binding energy. The redocking of native
ligand with the root–mean–square deviation (RMSD) tolerance within 2.0 was used to
validate the docking method. The docked conformations with the lowest binding score
were selected as a model for cluster analysis.

https://pubchem.ncbi.nlm.nih.gov/
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2.5. Cluster and Subcluster Analyses

The clustering analyses of a data set were performed using RStudio version 3.6.3 [38].
This experiment used the k-means and hierarchical methods to classify the clusters. The
first clustering method is a k-means algorithm based on the clustering through nearest
distances within a clustered group and the largest distance between different cluster groups.
The second algorithm is a hierarchical clustering algorithm, using an algorithm of average
distances, which generates a dendrogram that offers the possibility to explore sequentially
the groups that demonstrate the best candidates with the high binding affinities against
three receptors. Lastly, a combination of hierarchical and k-means called hybrid hierarchical
k-means (hkmeans) was used in this study. This approach showed advantages over the two
methods above due to not necessarily defining the optimal number of clusters in advance.
Additionally, a hierarchical method enables the interactive visualization groups through
a heatmap incorporated with the dendrogram. The heatmap plot with the implemented
gradient color bar efficiently identified the clusters with greater affinities toward targets
and determined which clusters hold a greater number of observations. Interestingly, the
dendrogram showed detailed analyses of the hierarchical clustering, which also helped to
differentiate each cluster and conformation according to the docking results. The optimal
numbers of clusters were defined from the Nbclust function [39], which was implemented
in RStudio. This function was used to identify the best number of clusters and suggest the
best clustering scheme.

The clusters were validated using the silhouette method [40] and demonstrated in
terms of an average silhouette width. Further, the existing data from the cluster analysis
were performed the principal component analyses (PCA) in order to show the isolated
cluster. The color coding and dendrograms in the clustered heatmap were calculated from
the hierarchical clustering algorithms.

2.6. Data Interpretation and Visualization

All structural proteins and the binding modes were generated from Pymol [41] and Dis-
covery Studio Visualizer 2017R [35]. The binding affinities of compounds were presented
in the box plot. The clustering heatmap was done in RStudio [38], using the pheatmap [42],
ComplexHeatmap [43] and Factoextra [44] packages. The LigandScout version 4.4 [45]
was used to generate the 2D and 3D structure-based interactions of ligands toward an
isolated target.

3. Results
3.1. Protein–Protein Interaction (PPI) Network

The PPI network was constructed with 25 proteins (Figure 2a). As defined by color,
the CTSK gene is mostly found in bone tissues represented in dark blue color, related to the
highly expressed in osteoclast from bones. The PPI network using STRING v11.0 showed
molecular cross talk from all genes in this study. Evidence suggesting a functional link
is made from various data, particularly in co-expression, co-mentioned in PubMed data,
and the curated database. We first constructed the PPI network from 25 nodes, 237 edges
with an average node degree of 19, and an average local clustering coefficient of 0.936. The
PPI enrichment p-value is less than 1 × 10−16, suggesting that these proteins have more
interactions among themselves than the expectation for a random set of proteins. Such
an enrichment indicates that the proteins are at least partially biologically connected as a
group. Further, the PPI network was reconstructed by collecting the nodes showing the
intramolecular edges with the STRING score cut-off of 0.5 (Figure 2b). This network was
generated from particular nodes, such as CTSK, ITGAV, ITGB3, TCIRG1, ATP6V0D2, and
ATP6V1D, with a p-value of 4.78 × 10−11. Based on the interaction score calculated from the
data mining and co-expression data, CTSK showed strong connectivity with ATP6V0D2,
followed by TCIRG1. These two genes belong to the V-ATPase family. CTSK also showed
the connectivity with ITGAV and ITGB3 genes, which belong to the αVβ3 integrin receptor.
Additionally, ITGAV also exhibited strong connectivity to ATP6V1D. According to these
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results, it was suggested that this PPI network could be considered small relative to the
random one, and the proteins might be biologically relevant.
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Figure 2. The input genes present in the different box styles such as ellipse for Cathepsin K, triangle
for integrin receptor, and round rectangle for V-ATPase. Nodes represent protein, and edges represent
interactions. (a) The gene expression in bone tissues are mapped to the node color; nodes with high
expression are colored dark blue, while those of low expression are colored gray. The blue gradient is
used to define the location of genes in bone tissue. A total of 25 enriched modes with PPI enrichment
p-value of <1.0 × 10−16. (b) The most significant genes from the PPI network (node color: yellow
indicates the Cathepsin K gene, green indicates the V-ATPase genes, and red indicates the αVβ3

integrin genes).

3.2. Target-Based Virtual Screening Using AutoDock

Traditional Chinese medicines (TCMs) areused in the treatment of several diseases.
The polyphenols possess activities that inhibit the adhesion of the osteoclast to the bone
matrix, affect the proton transportation relevant to a less acidic environment, and inhibit
the degrading enzymes, which should be considered multitarget candidates.

All 108 selected compounds were docked into the active site of three targets: Cathepsin
K, V-ATPase, and αVβ3 integrin receptor. The binding energies of docked compounds
were presented in terms of AutoDock score. A set of docking scores toward the individual
enzyme showed no difference among groups in a range of −3.0 to −14.5 kcal/mol. The
validations of the docking set were made by redocking the native ligands, and the rmsd
tolerance of native ligands was less than 2.0 Å.

Considering the binding affinities of compounds against the individual target, the
top 20 docked scores of compounds are depicted in Figure 3. Kushenol F was used as a
positive control for Cathepsin K with a dock score of −8.3 kcal/mol. According to the
result, rutin exhibited the highest binding affinity at −13.75 kcal/mol, followed by icariin,
kaempferitrin, acteoside, and salvialic acid with the binding affinities of −11.93, −11.35,
−11.23, and −11.22 kcal/mol, respectively.



Appl. Sci. 2022, 12, 2621 7 of 17

Appl. Sci. 2022, 12, x FOR PEER REVIEW 7 of 17 
 

 

Figure 3. The binding energies of phytochemicals. A heatmap represents top 20 molecular docking 

score of herbal compounds against Cathepsin K, V-ATPae, and αvβ3 integrin receptor. Color values 

correspond to binding energy assessed with AutoDock scoring function. The normalized value (z-

score) of each docked compound represents an individual dot plot in the scatter plot. 

As a docking result of V-ATPase, the compounds were docked into the binding site 

of ATP (or ADP), as mentioned in the Material and Method section. Diphyllin was used 

as a positive control for V-ATPase [46] with a dock score of −8.56 kcal/mol. Among the top 

five candidates, kaempferitrin showed the highest binding affinity of −14.00 kcal/mol to-

ward V-ATPase, followed by rutin, sagittatoside A, and icariin with the binding affinities 

of −13.91, −13.67, and −13.26 kcal/mol, respectively. 

The top 20 binding energies of compounds bound to an active site of αVβ3 integrin 

receptor are presented in Figure 3. A binding site is defined according to the location of 

the native ligand. Artemisinin was used as a positive control for αVβ3 integrin receptor 

[47] with a dock score of −6.41 kcal/mol. The docking result indicated that rutin exhibited 

the strongest binding affinity of −13.76 kcal/mol toward an integrin receptor, followed by 

sagittatoside A, icariin, kaempferitrin, and oleuropein with the binding affinities of −12.93, 

−11.76, −11.57, and −11.21 kcal/mol, respectively. 

We rearranged and combined these three docking results from Cathepsin K, V-

ATPase, and αVβ3 integrin receptor. The top 20 energy-based compounds were visualized 

in a heatmap plot (Figure 3). The cells with high binding score were given a steel blue 

color, whereas those of a low binding score were shown in white color. Further, these data 

sets were normalized and illustrated in the scatter plot. Each point represented the mean 

normalized score of an individual compound toward three targets, called the z-score. We 

found that some compounds having the highest binding affinities were placed in different 

ranks and orders in each receptor. The selection of candidates for further analysis is a 

critical issue. To avoid selection biases, we used the unsupervised machine learning clus-

ter methods to help in understanding and identifying the promising compounds as mul-

titarget candidates. 

  

Figure 3. The binding energies of phytochemicals. A heatmap represents top 20 molecular docking
score of herbal compounds against Cathepsin K, V-ATPae, and αvβ3 integrin receptor. Color values
correspond to binding energy assessed with AutoDock scoring function. The normalized value
(z-score) of each docked compound represents an individual dot plot in the scatter plot.

As a docking result of V-ATPase, the compounds were docked into the binding site
of ATP (or ADP), as mentioned in the Material and Method section. Diphyllin was used
as a positive control for V-ATPase [46] with a dock score of −8.56 kcal/mol. Among the
top five candidates, kaempferitrin showed the highest binding affinity of −14.00 kcal/mol
toward V-ATPase, followed by rutin, sagittatoside A, and icariin with the binding affinities
of −13.91, −13.67, and −13.26 kcal/mol, respectively.

The top 20 binding energies of compounds bound to an active site of αVβ3 integrin
receptor are presented in Figure 3. A binding site is defined according to the location of the
native ligand. Artemisinin was used as a positive control for αVβ3 integrin receptor [47]
with a dock score of −6.41 kcal/mol. The docking result indicated that rutin exhibited
the strongest binding affinity of −13.76 kcal/mol toward an integrin receptor, followed by
sagittatoside A, icariin, kaempferitrin, and oleuropein with the binding affinities of −12.93,
−11.76, −11.57, and −11.21 kcal/mol, respectively.

We rearranged and combined these three docking results from Cathepsin K, V-ATPase,
and αVβ3 integrin receptor. The top 20 energy-based compounds were visualized in a
heatmap plot (Figure 3). The cells with high binding score were given a steel blue color,
whereas those of a low binding score were shown in white color. Further, these data
sets were normalized and illustrated in the scatter plot. Each point represented the mean
normalized score of an individual compound toward three targets, called the z-score. We
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found that some compounds having the highest binding affinities were placed in different
ranks and orders in each receptor. The selection of candidates for further analysis is
a critical issue. To avoid selection biases, we used the unsupervised machine learning
cluster methods to help in understanding and identifying the promising compounds as
multitarget candidates.

3.3. Cluster Methods Help Identifying the Multitarget Candidates

All sets of the docking result were used to sequentially perform the cluster analysis
using the ‘factoextra’ package in RStudio. First, the docked scores of all compounds were
normalized to equal the weight of all groups. To define the optimal number of clusters (k),
we used the average silhouette width and the most frequent indices as the parameters. The
average silhouette method is used for evaluating the quality of clustering by computing the
average observations (n) for different values of k. Generally, the optimal number of clusters
is the one that maximizes the average silhouette width over a range of possible values of
clusters. Our results showed that two clusters maximize the average silhouette coefficients,
with three clusters coming in as the second optimal number of clusters (Figure 4a). This
study was in agreement with the result of the frequency among indices (Figure 4b). The
bar plot indicated that the most frequent optimal number of clusters for all indices is two.
No difference was observed in the result of both validation methods. We reasoned that
the optimal number of clusters was defined into two clusters that possessed 82 and 26 in
Cluster 1 (blue) and 2 (yellow), respectively. Further, the clustering data were visualized in
the dimension plot (Figure 4c). A clustering data set performed the principal component
analysis (PCA) to demonstrate the dominant features of this model and were plotted;
the data points followed the first two principal components. These two PCs explain
98.5% of the point variability, which obtained the high variations of data. In addition, the
hierarchical clustering algorithm was also used to confirm the accuracy of our clustering
result. A hierarchical dendrogram helps in illustrating the clustering data, for which it was
suggested that our data could be defined into two clusters (Figure 4d). Interestingly, the
compounds with high binding affinities toward three receptors were placed in Cluster 2.
Thus, we selected Cluster 2 for further analysis.

Subsequently, all the observations in Cluster 2 were subjected to the subcluster anal-
ysis using the hierarchical k-means algorithm. This method uses a combination of the
hierarchical and k-means algorithm to determine the cluster groups. The optimal numbers
of clusters were defined as previously described. In the subclustering analysis, the pro-
posed number of clusters was 3, according to the majority rules of all indices calculated
from the nbclust package in R (Figure 5a). Afterward, the silhouette method was used to
evaluate the quality of the clustering result (Figure 5b). This method calculates the distance
between the clusters, called the silhouette width (Si). In general, a high value of Si suggests
the well-clustered observation, whereas the negative value of the observation indicates
that the observation may be placed in the wrong cluster. Then, the cluster groups of the
observations were identified (Figure 5c).



Appl. Sci. 2022, 12, 2621 9 of 17

Appl. Sci. 2022, 12, x FOR PEER REVIEW 9 of 17 
 

 

Figure 4. Clustering analysis of docking results. The numbers of clusters are identified using (a) 

average silhouette width and (b) frequency among all indices. The clustering shows two groups, 

indicating Cluster 1 (blue) and Cluster 2 (yellow). The groups of clusters are visualized in the (c) 

cluster plot generated by the K-means clustering method, and (d) a dendrogram generated by the 

hierarchical clustering method. 

Subsequently, all the observations in Cluster 2 were subjected to the subcluster anal-

ysis using the hierarchical k-means algorithm. This method uses a combination of the hi-

erarchical and k-means algorithm to determine the cluster groups. The optimal numbers 

of clusters were defined as previously described. In the subclustering analysis, the pro-

posed number of clusters was 3, according to the majority rules of all indices calculated 

from the nbclust package in R (Figure 5a). Afterward, the silhouette method was used to 

evaluate the quality of the clustering result (Figure 5b). This method calculates the dis-

tance between the clusters, called the silhouette width (Si). In general, a high value of Si 

suggests the well-clustered observation, whereas the negative value of the observation 

indicates that the observation may be placed in the wrong cluster. Then, the cluster groups 

of the observations were identified (Figure 5c).  
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plot generated by the K-means clustering method, and (d) a dendrogram generated by the hierarchical
clustering method.
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Figure 5. Subclustering analysis. The compounds in the selected cluster were subclustered using
k-means and the hierarchical approach. (a) Proposed number of clusters, (b) cluster silhouette
calculation for internal clustering validation, (c) cluster dendrogram, and (d) a heatmap clustering
plot defined by color indicates the top 4 compounds.

Further, we performed a clustering heatmap plot. This method provides data visual-
ization by color coding and correlation by using a dendrogram from the clustering method.
The data from the subcluster analysis were prepared for a distance matrix prior to cluster-
ing into several groups using a hierarchical method. The subcluster data were clustered
hierarchically by binding scores and by targets with color coding of dark green indicating
high binding affinity and dark brown indicating low binding affinity (Figure 5d). It can be
noted from the subcluster results that several compounds tended to cluster together. Partic-
ularly in the green color group, the compound including rutin, sagittatoside A, icariin, and
kaempferitrin showed the potent binding affinities toward the individual target. According
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to the heatmap plot and subcluster analysis, only the top four compounds represented the
promising candidates distinguished from our studies.

3.4. Binding Mode Analysis of Candidates to Cathepsin K

The binding interactions of docked complexes were identified from LigandScout
according to the manufacture’s guideline. Briefly, the distance of hydrogen bond form-
ing is in the range of 2.2 to 3.8 angstrom and that of the hydrophobic interaction is
1.0 to 5.9 angstrom.

The binding modes of the promising compounds toward the active site of Cathepsin
K are depicted in Figure 6. The active site showed various amino acids involved in ligand
binding. Cys25 and His162 represented conserved crucial residues for the active site of
Cathepsin K.
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Rutin was located along the V-shape active cleft formed by the R- and L-domains. It
was observed that rutin can interact with Gly19, Gly23, Cys25, Gly66, Tyr67, and Leu160
through the hydrogen bonding formation. The hydroxyl groups of benzene A and C
interact with the sidechain of Gly19, Gly23, and Cys25. Additionally, the glycoside moiety
of rutin can bind to Leu160 using the hydrophobic interaction. Sagittatoside A forms
the hydrogen bonding through the binding of Cys25, Gly66, Tyr67, Asp158, Asn159, and
Leu160. A benzene ring of sagittatoside A core forms the hydrophobic interaction with
Tyr67 and Ala163. Icariin also forms the hydrogen bond through Cys25, Gly66, Met68, and
Asn161. The methyl group of glucoside connected with C3 can interact with Trp184 via
hydrophobic interaction. Kaempferitrin can interact with Cys25, Gly66, and His162 via
the hydrogen bonding formation. This compound also binds to residues Tyr67, Ala134,
Leu160, Trp184, and Leu209 via hydrophobic interactions.

Accordingly, the important interactions were made of the strong hydrogen bond
between the candidates and the residue Cys25 and Gly66, which represents the amino
acid forming catalyzing site of Cathepsin K. Interestingly, the volume of the binding site
of Cathepsin K is limited due to the narrow active cleft formed by the R- and L-domains,
especially the bulky configuration of the phenyl ring of Tyr67. Regarding these binding
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modes, we observed that all candidates fitted well in the active pocket and preferred the
binding at the R-domain more than the L-domain.

3.5. Binding Mode Analysis of Candidates to V-ATPase

Inhibitors of osteoclast V-ATPase are expected to become therapeutic agents for the
treatment of several bone diseases that are caused by an increase in bone resorption. The
assembly of AB complexes requires ATP binding to help the protein fold correctly [48].
The hydrolysis of ATP within AB complex provides the energy for the rotation of the V0
domain, related to the physiological function of V-ATPase. The nucleotide binding site of
V-ATPase is located between subunits A and B. The ATP hydrolysis occurs depending on
the configuration of Arg-finger (Arg350) [49]. The amino acids that involved ligand binding
include Gly235, Ala236, Gly237, Lys238, Tyr239, Val240, Phe425, Gln503, and Ala505 from
subunit A, and Arg350 from subunit B [36]. As depicted in Figure 7, kaempferitrin exhibited
the highest binding affinity toward V-ATPase, followed by rutin, sagittatoside A, and icariin,
respectively. Kaempferitrin can form six hydrogen bonds to amino acids within subunit
A, including Gly235, Lys238, Thr239, Glu261, Arg262, and Arg333, and three hydrogen
bonds to amino acids within subunit B, such as Tyr123, Tyr321, and Arg350. Rutin can
form hydrogen interactions with Gly235 and Gln503 in subunit A, and Arg350 and Asp353
in subunit B. Sagittatoside A attaches with Asn504 and Ala505 in subunit A, and Tyr123
in subunit B, through hydrogen bond formation. Icariin can form the hydrogen bonds
with Phe425 in subunit A, and Tyr123, Arg350, and Lys352 in subunit B. Regarding these
hydrogen bond formations, Tyr123 and Arg350 represent the crucial amino acids in subunit
B. Additionally, these candidates also interact with several residues involving the binding
cavity, especially Phe506 from subunit A and Leu348 from subunit B.
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3.6. Binding Mode Analysis of Candidates to αVβ3 Integrin Receptor

Ligands of integrin αvβ3 are expected to have a major impact on the treatment of
several human diseases, such as osteoporosis, rheumatoid arthritis, and cancer. The RGD
binding site is located at the interface between the β-propeller domain and the β I-like
domain. Amino acids involving ligand interactions include Asp150, Asp218, and Tyr178
from chain A, and Ser121, Ser123, Asn215, and Arg216 from chain B [50]. Our docked
ligands were located in the same location of RGD-native ligand. As in the docking result,
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rutin also presented the high binding affinity against the integrin receptor, followed by
sagittatoside A, icariin, and kaempferitrin, respectively. The binding poses of candidates
are depicted in Figure 8. Rutin can interact with integrin through hydrogen bond formation
with Ala149 from chain A, and Ser121, Ser123, Tyr166, Arg214, Asn215, Arg216, and Asp251
from chain B. Sagittatoside A forms two hydrogen bonds with Ser123, and Asn215 from
chain B. Icariin forms a hydrogen bond via interaction with Tyr178 from chain A, and
Tyr166, Arg214, Asn215, Arg216 from chain B. Meanwhile, kaempferitrin forms hydrogen
bonds with residues from chain A, including Asp148, Asp150, Tyr178, and Asp219, and
those from chain B including Tryr166, Arg214, Asn215, Arg216, and Asp217. Interestingly,
the important hydrogen interactions can be found between all candidates and Asn215 from
chain A, suggesting that Asn215 is a crucial amino acid for this study.
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4. Discussion

Osteoporosis is a complex disorder triggered by several pathways. Even though
the individual target studies are well documented, the investigation on phytochemicals
toward multiple osteoclastic targets has not been yet elucidated. In this present study, we
first studied the herbal substances that reported osteoprotective activities from previous
studies [27,28] with multitarget activity on osteoclasts by performing molecular docking
and cluster analysis.

Defining the potential target is the critical issue for drug discovery nowadays [51].
Therefore, we selected the promising multiple osteoclastic targets [52] in advance, including
Cathepsin K, V-ATPase, and αVβ3 integrin receptor to explore the multitarget compounds
using the target-based virtual screening. Network analysis provides a useful tool to study
the complexity of diseases. Here, we reported an approach to study the PPI network based
on the gene expressed in targeted proteins of osteoclasts. The result we presented here
indicates that proteins, such as Cathepsin K, αVβ3 integrin receptor, and V-ATPase, share
common characteristics and direct interactions. We then hypothesized that the inhibition of
these proteins might promote the synergistic effect in the reduction in osteoclast function.

We further performed the virtual screening of herbal substances toward three osteo-
clastic targets. However, the limitation of molecular docking is due to the low accuracy of
the scoring function [53]. Thus, we performed a predictive model for the selection of the
candidates, utilizing a combination of molecular docking and clustering approaches. The
use of the clustering algorithm in filtering the virtual screening in the preliminary study
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helps to reduce the number of interested compounds with an unbiased algorithm. Several
studies demonstrated the advantages of utilizing the clustering method as an additional
method that efficiently helps in identifying the active compounds [54,55]. Our study used
both k-means and hierarchical clustering methods. These methods allow to find the reliable
cluster and define the phytochemical candidates.

As highlighted in our results, we defined four compounds, namely, rutin, sagittatoside
A, icariin, and kaempferitrin, obtained the multitarget activity against osteoclastic receptors.
Our finding is in agreement with the previous experiments that showed that rutin exhibited
an osteoprotective effect by improving the bone mineral density (BMD) and bone strength
in the ovariectomized (OVX) rat [56,57]. Additionally, rutin reduced the levels of acid
phosphatases secreted during bone resorption in osteoclasts and increased the osteocalcin
activity, a biomarker enzyme for bone formation found in osteoblasts [57].

Sagittatoside A and icariin have been reported as the bioactive compounds from
Herba epimedii extract. The herb extract has gained more interest in various studies due
to its beneficial activities, such as anti-oxidative, anti-inflammatory, and anti-tumor prop-
erties [58,59]. This herb has been used for a decade to treat the cardiovascular disease,
impotence, neurological disorder, and osteoporosis [60]. Given that Epimedii extract to
the OVX rats exhibited significantly increased bone strength via potent inhibiting the
alkaline and acid phosphatase suggesting that the extract of Epimedii helps to improve
postmenopausal osteoporosis [61].

Icariin is a prenylated flavonol glycoside that presents as a main bioactive compound
retrieved form Epimedium extract. Icariin possesses the osteoprotective property through
the stimulating osteogenic differentiation of mesenchymal stem cells (MSCs), which related
to the bone formation, and inhibiting the osteoclastogenic differentiation along with the
bone resorption by osteoclasts [62–64]. Interestingly, icariin showed 64% inhibition toward
Cathepsin K at the concentration of 1 mM [65]. Icariin dramatically increased the ATP
level which was related to the inhibition of mitochondria apoptosis [66]. Insight into the
structure, the presence of a prenyl moiety at the position 8 suggested the relevance to
osteogenic activity [67], and enhanced the anti-osteoclastic activity [68].

Sagittatoside A (or icariin A) is a phytochemical compound from Epimedii extract. Even
a small amount recovered from extract, but sagittatoside A possess the potential effects on
several tissues [61]. Treatment with sagittatoside A reported a strong osteoprotective effect,
as well as icariin, in terms of increasing the proliferation and differentiation of osteoblast
and suppressing osteoclastogenesis.

Kaempferitrin or lespedin is a glycosyloxyflavone, constituted by two rhamnose
molecules bound to kaempferol at positions 3 and 7 through glycosidic linkage. This
compound can be isolated from several plants and fungus. In the OVX rat, the given
kaempferitrin considerably improved the bone mass and microarchitecture and inhibited
the osteoclastic function from in vitro assay [69]. Ye et al. investigated the administration of
Podocarpium extract consisted of kaempferitrin, the most abundant phytochemical, demon-
strated the decreasing of bone resorption markers, acid phosphatase and Cathepsin K, in
osteoclastic cells [69,70].

Our predictive model indicated that rutin, sagittatoside A, icariin, and kaempferitrin
were chosen on the basis of their high energy-based docking scores against osteoclasts on
specific Cathepsin K, V-ATPase, and αVβ3 integrin receptors. We assume that these com-
pounds might show a positive effect on the bone mechanism, particularly anti-osteoclastic
activity. In particular, rutin demonstrated the highest energetically favorable interactions
against three osteoclastic targets, according to molecular docking and clustering studies.
Further investigations are needed to clarify the effects of each promising candidate on indi-
vidual targets, especially molecular dynamics (MD), and the evaluation of anti-osteoclastic
activity from in vitro and in vivo assays should be performed.
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5. Conclusions

In this study, we carried out a virtual screening of 108 herbal compounds and per-
formed the cluster analyses to identify the multitarget herbal compounds against Cathepsin
K, V-ATPase, and αVβ3 integrin receptors. A combination of several in silico methods
helped to reduce the number of interesting compounds with the unbiased algorithm. Thus,
we found that rutin, sagittatoside A, icariin, and kaempferitrin showed to be preferably
binding to selected proteins involving osteoclast function, suggesting the idealistic can-
didates with anti-osteoclastic activity. These candidates, particularly rutin, should be
considered for further evaluation using in vitro and in vivo studies. To sum up, our present
work provides a reliable and straightforward method to identify multitarget candidates for
further experimental analyses.
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