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Abstract: Presence is the sense of being in a virtual environment when physically situated in another
place. It is one of the key components of the overall virtual reality (VR) experience, as well as other
immersive audio applications. However, there is no standardized method for measuring presence. In
our previous study, we explored the possibility of using electroencephalography (EEG) to measure
presence by using questionnaires as a reference. It was found that an increase in the subjective
presence level was correlated with an increase in the theta/beta ratio (an index derived from EEG). In
the present study, we re-analyzed the original data and found that the peak alpha frequency (PAF),
another EEG index, may also have the potential to reflect the change in the subjective presence level.
Specifically, an increase in the subjective presence level was found to be correlated with a decrease in
PAF. Together with our previous study, these results indicate the potential use of EEG for the objective
measurement of presence in the future.
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1. Introduction

Presence is the participant’s physiological sense of “being there” in the virtual en-
vironment while physically situated in another place [1,2]. As one of the factors that
contribute most to the overall experience of virtual reality (VR), presence has been investi-
gated in the context of VR in many studies [1,3–11]. In addition to VR, research on presence
could also benefit other fields such as video games, audio production, and immersive
audio technologies.

Generally, presence is measured using questionnaires, of which the two most widely
used are the presence questionnaire (PQ) by Witmer and Singer [2,6] and the SUS question-
naire by Slater, Usoh and Steed [1,3,7]. Subjective measurement based on questionnaires
is both valid and reliable since it reflects the subjective evaluation of the participants.
As an alternative, researchers have been exploring and improving objective methods of
measuring presence. Objective measurement uses physiological signals from the body
directly, and can be straightforward and in real time if conducted under strictly controlled
conditions. Furthermore, it can prevent the break in presence (BIP) [3,12,13] caused by the
act of answering the questionnaires, since participants are no longer required to leave the
virtual environment.

Since presence is a sensation generated by the brain, objective measurement could
possibly utilize electroencephalography (EEG) as a tool to reveal physiological changes.
EEG records brain activities through multiple electrodes placed on the scalp. It has already
been used in research on presence [8–11,14,15] and in other fields [16–20].

In our previous study [21], we explored the possibility of measuring presence objec-
tively using EEG. Two experiments were carried out, in which a loudspeaker array of eight
loudspeakers was used to reproduce urban soundscapes as the only stimuli for presence.
Subjective measurements (by questionnaires) and objective measurements (by EEG) were
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both conducted during the process. It was found that the presence score (the result of the
questionnaire) and the theta/beta ratio (an index derived from EEG) could both indicate
a change in the perceived presence level, and that they were positively correlated with
each other.

In addition to the theta/beta ratio, several other indices were also investigated in the
previous study, and we observed a dramatic change in the power of the alpha band as the
presence level varied. In this study, we therefore re-analyzed the original data, focusing on
the alpha band.

Alpha is the dominant oscillation in the brain’s EEG. Numerous studies have demon-
strated that the alpha band plays an important role in cognitive processing [22–25]. Peak
alpha frequency (PAF) is the predominant frequency of alpha-band oscillations (i.e., the
maximal power value in the alpha band), and it can be viewed as a neurophysiological trait
of cognitive functions [26–28]. It shows inter-individual differences [29–33], and also varies
intra-individually with age [34–36], fatigue [37], and cognitive load or task demands [38,39].
For this reason, the present study used PAF specifically as an EEG index to investigate the
correlation between EEG and subjective presence level.

In summary, the present study investigated the objective measurement of auditory
presence using EEG on the basis of the previous study. Specifically, PAF was examined to
determine whether it could reflect changes in the perceived presence level.

The rest of the paper is organized as follows. Section 2 explains the methodology of
this study, and Section 3 presents the results of the experiments. Following that, Section 4
provides a discussion of the results. The conclusion and suggestions for future work are
then presented in Section 5.

2. Materials and Methods

This study used the same experiment as that described in our previous paper [21].
The previous study focused on investigating the relationship between presence and the
theta/beta ratio, whereas this study used the same raw data (i.e., the recorded raw EEG
data and the results of questionnaires) to investigate the relationship between presence and
another EEG index, the peak alpha frequency (PAF). Therefore, this section summarizes the
experimental design while focusing on introducing the specific method for acquiring PAF.
Details about the other aspects of the experimental design can be found in [21].

This study used ESMA-3D Immersive Soundscape Recordings by Dr. Hyunkook Lee’s
team [40] as programs to stimulate presence. Due to its nature, the 8-channel signal was
reproduced by an 8-channel double-layer quad-speaker array (i.e., cube array) [41] in the
room, as shown in Figure 1. No visual stimuli were used in this study. To shorten the
duration of the experiment, 6 out of 13 scenes were selected from the original file. With
each scene lasting 30 s, the overall duration of the program was three minutes.

As well as the original program described above (denoted Program A), two processed
versions of it were also used to stimulate different levels of presence. Program B was
created by combining signals from all eight channels of Program A and copying the sum
to each channel. Since each channel had the same content, we should expect Program B
to have a similar effect as a mono sound file. Program C was derived from Program A
by muting the upper four height channels. Thus, the ESMA-3D degenerated into ESMA
without height channels. We assumed that these three programs would stimulate presence
levels in the following order: A > C > B. These three programs were then used in the
subsequent experiments.
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Figure 1. Listening room setup.

The study was composed of two experiments. Experiment 1 used Programs A and B
for comparison, involving a total of 18 experienced listeners from the lab (16 males and
2 females, ages ranging from 23 to 27 years old), and Experiment 2 used Programs A and C
for comparison, involving a total of 25 naïve listeners (8 males and 17 females, ranging in
age from 21 to 28 years old).

During each experiment, two programs were presented in succession. In the mean-
time, EEG was recorded using a portable EEG device (Emotiv EPOC X [42]). After that,
participants were required to fill in the questionnaire at the end of the experiment. The
questionnaire used in the study contained four questions as follows:

1. Please rate your sense of being in the virtual environment on a scale of 0 to 10, where
10 represents your normal experience of being in a place;

2. During your experience, did you often think to yourself that you were actually in
the virtual environment? Please rate it on a scale of 0 to 10, where 10 represents you
almost felt you were actually in the virtual environment;

3. How well could you identify sounds? Please rate it on a scale of 0 to 10, where
10 represents you could clearly identify different kinds of sounds;

4. How well could you localize sounds? Please rate it on a scale of 0 to 10, where
10 represents you could easily detect the location of each sound.

The first two questions were taken from the SUS questionnaire. The first question
focuses on assessing how closely the virtual environment resembles the real world, and the
second question aims to evaluate the participants’ subjective impressions of their experience
within the virtual environment. The last two questions were chosen from the presence
questionnaire to evaluate the realism of the sound field of the virtual environment. The
final presence score was the sum of the answers to these four questions. As the questions
suggest, the higher the presence score, the greater the level of presence.

Thus, the subjective assessment of presence (represented by the presence score) and
the objective measurement (represented by EEG) were both acquired. More detailed
descriptions of the program selection, the experimental design, and the EEG apparatus can
be found in [21].

The raw EEG data were preprocessed in MATLAB using a brain signal processing
toolbox called EEGLAB [43] in the following steps. A bandpass filter of 1–50 Hz was first
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applied to the EEG data to remove the noise. The filtered data were further cleaned via a
built-in plugin of EEGLAB called Clean Rawdata, to remove non-physiological artifacts
(e.g., insufficient contact of electrodes with the head surface or sudden large movements).
Then, physiological artifacts such as heart beat (ECG), eye movements (EOG), and muscle
pulsations (EMG) were removed by running an independent component analysis (ICA)
and deploying an automatic classification of artifactual ICA components plugin called
MARA (“Multiple Artifact Rejection Algorithm”) [44,45].

Finally, the peak alpha frequency (PAF) was calculated using the “restingIAF package” [46].
This is an open-source package developed by Corcoran et al. for the estimation of individ-
ual alpha frequencies. This algorithm first calculates the power spectral density (PSD) of
each channel and then deploys the Savitzky–Golay filter to smooth out the signal noise
while preserving the main alpha peaks. Then, peaks within each channel are extracted
and averaged based on their peak quality to obtain the final estimate of the peak alpha
frequency [47].

3. Results
3.1. Experiment 1

First, data for 2 of the 18 participants were excluded since they reported being dis-
tracted during the experiment. Then, data for another 3 participants were excluded by
the algorithm due to the strict criteria for estimating the PAF. The algorithm requires the
following conditions to be met to produce a valid estimate of PAF: (1) the peak frequency
must appear within the alpha band’s frequency range; (2) the peak power must exceed
the minimum amount of normalized power estimated by the algorithm to qualify as a
potential PAF candidate; (3) the peak’s height must exceed all other competitors by at least
20% ; (4) at least three channels should yield valid PAF estimates, in order to calculate
cross-channel averages [47]. Thus, 13 sets of valid data were collected, as shown in Table 1.

Table 1. Presence scores and PAF estimates for Programs A and B in Experiment 1.

Participant Group Presence
Score (A)

Presence
Score (B) PAF (A)/Hz PAF (B)/Hz

1 I 26 10 9.733 9.935
2 I 34 21 9.250 9.776
3 I 28 33 11.506 10.666
4 I 34 16 9.511 9.743
5 I 32 20 10.012 11.629
6 I 34 7 10.137 11.003
7 II 33 27 8.055 7.500
8 II 31 23 11.968 12.483
9 II 35 18 8.500 10.065
10 II 34 20 10.290 10.525
11 II 38 6 9.763 10.267
12 II 33 28 9.539 9.910
13 II 32 15 10.699 11.142

It can be observed that the presence scores for Program A were generally greater than
those for Program B. A paired t-test was carried out, which showed that the difference in
presence scores was significant at a significance level of 0.05 (p = 1.98 × 10−4). In contrast,
the PAF estimates for Program A were generally lower than those for Program B. The
results of the paired t-test also demonstrated that the PAF estimates for Programs A and B
were significantly different (p = 0.040). That is, when participants subjectively experienced
higher levels of presence, they tended to show a lower PAF.

To further investigate the correlation between the change in presence score and PAF, a
McNemar test was conducted. This is a non-parametric statistical test for paired data within
the scope of chi-squared tests [48]. The data were first transformed into a dichotomous
format, as shown in Table 2. The transformation rule was that if the presence score for
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Program A was greater than that for Program B, it would be marked as 1, and otherwise it
would be marked as 0. Likewise, if the PAF for Program A was lower than that for Program
B, it would be marked as 1. Please note that the transformation rules for presence score and
PAF were different to account for their opposite change direction.

Table 2. Data in the dichotomous format for the McNemar test.

Participant Group Presence Score
(A > B) PAF (A < B)

1 I 1 1
2 I 1 1
3 I 0 0
4 I 1 1
5 I 1 1
6 I 1 1
7 II 1 0
8 II 1 1
9 II 1 1
10 II 1 1
11 II 1 1
12 II 1 1
13 II 1 1

In this way, the McNemar test was conducted and revealed no significant differences
(p = 1.000). Furthermore, the Pearson correlation coefficient was 0.677 (p = 0.011). Both
these results indicated that if the presence score for Program A was higher than that for
Program B, it was highly likely that the PAF for Program A was lower than that for Program
B. That is, using the presence score and the PAF to determine the level of presence yielded
nearly the same results. Another statistical metric, Cohen’s kappa, could also be used.
In general, this is used to determine whether different observers would reach the same
conclusion. Kappa is standardized to a scale of −1 to 1. Kappa values of 1 indicate perfect
agreement, kappa values of 0 indicate agreement equivalent to chance, and negative values
indicate agreement less than chance [49]. The results showed kappa = 0.629 (p = 0.015),
which indicated that there was an agreement between these two criteria (presence score
and PAF) for determining the level of presence.

3.2. Experiment 2

In Experiment 2, data for one participant were initially ruled out since she stated
herself that she could not discriminate between the two programs. Then, data for eight
participants were excluded during the estimation of the PAF for the reason outlined in
Section 3.1. Thus, 16 sets of valid data were collected, as shown in Table 3 (the dichotomous
data are not shown in this table).

It can be observed from Table 3 that the trend that “presence score for Program A was
higher than that for the other program, and the PAF for Program A was lower than that
for the other program” from Experiment 1 also held true in Experiment 2, though it was
not as evident as in Experiment 1. This accords with the fact that the difference between
Programs A and C was smaller than that between Programs A and B; that is, Experiment 2
had a more stringent condition than Experiment 1.
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Table 3. Presence scores and PAF estimates for Programs A and B in Experiment 2.

Participant Group Presence
Score (A)

Presence
Score (B) PAF (A)/Hz PAF (B)/Hz

1 I 25 18 11.250 11.500
2 I 34 35 10.250 10.250
3 I 35 28 10.078 10.750
4 I 34 26 9.500 9.778
5 I 34 29 9.641 9.385
6 I 39 34 8.313 11.500
7 I 36 34 10.437 10.639
8 I 36 28 10.286 10.500
9 I 39 21 9.250 9.750
10 II 29 35 11.150 11.400
11 II 34 28 10.750 10.842
12 II 35 30 7.450 7.750
13 II 36 35 10.316 10.533
14 II 35 34 12.743 13.000
15 II 29 34 10.710 10.467
16 II 35 34 9.000 9.750

A paired t-test was carried out and showed a significant difference in the presence
score between the two programs (p = 0.016). The difference in the PAF between the two
programs was substantial and close to significant (p = 0.051). Similarly, the correlation
between the change in presence score and the PAF was examined using the McNemar test,
and no significant difference was found (p = 1.000). The Pearson correlation coefficient was
0.590 (p = 0.016) and the value of kappa was 0.590 (p = 0.018). These results indicated that
the correlation observed in Experiment 1 also applied to Experiment 2. That is, using the
presence score (subjective measurement) and the PAF (objective measurement) to determine
the level of presence yielded significantly similar results.

4. Discussion

In Section 3, it was found that an increase in the presence score was correlated with a
decrease in the PAF. The underlying neurological mechanism of this correlation remains un-
clear. However, we found some clues that might shed light on research into this mechanism.

It was found in the previous study that an increase in the subjective presence level was
correlated with an increase in the theta/beta ratio [21]. Neurologically, both the theta/beta
ratio and the alpha-band oscillations have been demonstrated to be associated with atten-
tional processes [24,50–52]. Wittmer and Singer [2] stated that a person’s presence in a
virtual environment depends on them shifting their attention from the physical environ-
ment to the virtual environment. Hence, it is likely that changes in the theta/beta ratio and
the PAF are closely related to changes in attention.

In addition, the theta/beta ratio was found to be negatively correlated with the
PAF [53,54]. Combined with the results of [21] showing that the presence level is positively
correlated with the theta/beta ratio, it can be deduced that the presence level is negatively
correlated with the PAF, which is consistent with the findings of the present study. Further-
more, an increase in theta/beta ratio and a decrease in PAF were observed simultaneously
in patients with attention deficit hyperactivity disorder (ADHD) [32,33], which further
supports the results of this study. Considering that there are relatively few studies that
investigate auditory presence exclusively, particularly using EEG, it is useful to note that
the findings of these two studies are in agreement with each other.

It is interesting to note that an increase in PAF has been found to be associated with
good performance [35,55,56] or an increase in cognitive load (or task demand) [38,39]. We
assume by intuition that when the program that stimulated greater presence was played,
the participants’ attention would rise and the cognitive load would also increase. However,
the results would be just the opposite of those in this study if they were built on this
assumption. We suppose this discrepancy arises from the difference between the brain’s
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top-down processing system and bottom-up processing system, which is reflected in the
experimental design. Top-down processing is related to directed attention, which focuses
on task-relevant information and inhibits the processing of non-essential information [57].
In the above-mentioned studies, the participants were required to complete tasks with
various difficulties, where a better performance (i.e., better memory or shorter reaction
time) should result from an increase in intentional attention. In other words, the causal
relationship should be “the more attention assigned to the tasks, the higher the cognitive
load, and consequently the higher the PAF”. Furthermore, alpha oscillations have been
found to be associated with top-down processing [57,58], which may account for the
relationship between PAF and task-relevant performance. On the other hand, bottom-up
processing is related to involuntary attention (i.e., driven purely by the sensory input) [59].
As in the present study, there were no complicated tasks that required the participants
to intentionally focus their attention in order to complete them. The change in presence
should instead be the natural cause of the change in attention. This might explain the
discrepancy between the results of this study and the previous studies. Nevertheless, the
neurological mechanism of the change in EEG induced by presence should be investigated
in future research.

5. Conclusions

The present study investigated the objective measurement of auditory presence using
EEG, on the basis of the previous study. It was found in the previous study that an increase
in the subjective presence level was correlated with an increase in the theta/beta ratio,
while in this study it was found that an increase in the subjective presence level was
correlated with a decrease in the peak alpha frequency (PAF). These results indicate that
EEG is likely to reflect changes in the perceived presence level. Though limited with
regard to the number of participants, these findings may shed light on research into the
objective measurement of presence. Nevertheless, the neurological mechanism underlying
the correlation between presence and EEG should be addressed in future work. In addition,
future work should involve more participants and possibly develop a model of presence
level estimation using EEG indices.
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