
����������
�������

Citation: Tsushima, H.; Matsuura, T.;

Ikeguchi, T. Searching Strategies with

Low Computational Costs for

Multiple-Vehicle Bike Sharing System

Routing Problem. Appl. Sci. 2022, 12,

2675. https://doi.org/10.3390/

app12052675

Academic Editor: Seong-Ik Han

Received: 26 January 2022

Accepted: 2 March 2022

Published: 4 March 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

applied
sciences

Article

Searching Strategies with Low Computational Costs for
Multiple-Vehicle Bike Sharing System Routing Problem
Honami Tsushima 1,* , Takafumi Matsuura 2 and Tohru Ikeguchi 1,3

1 Department of Information and Computer Technology, Graduate School of Engineering,
Tokyo University of Science, 6-3-1 Niijuku, Katsushika-ku, Tokyo 125-8585, Japan; tohru@rs.tus.ac.jp

2 Department of Information and Computer Technology, Faculty of Advanced Engineering,
Nippon Institute of Technology, 4-1 Gakuendai, Miyashiro-machi, Minamisaitama-gun,
Saitama 345-8501, Japan; matsuura@nit.ac.jp

3 Department of Information and Computer Technology, Faculty of Engineering, Tokyo University of Science,
6-3-1 Niijuku, Katsushika-ku, Tokyo 125-8585, Japan

* Correspondence: honami@hisenkei.net

Abstract: We have already proposed a multiple-vehicle bike sharing system routing problem (mB-
SSRP) to adjust the number of bicycles at each port using multiple vehicles in short time. However,
there are many strict constraints in the mBSSRP, thus it is difficult to obtain feasible solutions of
the mBSSRP for some instances. To obtain feasible solutions of the mBSSRP, we have proposed a
mBSSRP with soft constraints (mBSSRP-S) that removes some constraints from mBSSRP and ap-
pends violations to an objective function as penalties, and a searching strategy that explores both
the feasible and infeasible solution spaces. Numerical experiments indicated that solving mBSSRP-S
to obtain feasible solutions of mBSSRP results in better performance than solving mBSSRP directly.
However, mBSSRP-S includes infeasible solutions of mBSSRP, thus the neighborhood solutions and
computational costs increase. In this study, we propose search strategies with low computational
costs while maintaining performance. In particular, we propose two search strategies: the first one
is to reduce neighborhood solutions to obtain a feasible solution in a short time before finding a
feasible solution of the mBSSRP, and the second one is to change the problem to be solved (mBSSRP
or mBSSRP-S) after a feasible solution is obtained and to search good near-optimal solutions in a
short time. As the first search strategy, we propose two search methods for reducing the number
of neighborhood solutions in the Or-opt and the CROSS-exchange and compare their performance
with our previous results. From numerical experiments, we confirmed that a feasible solution can
be obtained within a short time by exploring only the normal order insertion of the Or-opt and the
normal order exchange of the CROSS-exchange as the neighborhood solutions. Next, as the second
search strategy after a feasible solution of mBSSRP is obtained, we propose four search methods
and compare their performance with our previous results. Numerical experiments show that the
search method that only searches for the normal order insertion of the Or-opt and the normal order
exchange of the CROSS-exchange with hard constraints after obtaining a feasible solution can obtain
short tours within a short time.

Keywords: bicycle sharing system; combinatorial optimization problem; tabu search; low computa-
tional costs; Or-opt; CROSS-exchange

1. Introduction

Bicycle sharing systems (BSSs) have been introduced in many cities around the world
as a new public transportation system. Currently, more than 1,700 programs of BSSs are
operating in the world [1], for instance, BIXI in Montréal [2], Velib’ in Paris [3], docomo
bike share in Tokyo [4], citybike in Vienna [5], Citi Bike in New York [6], Capital bikeshare
in Washington D.C. [7], BULEbikes in Boston [8] and Bicing in Barcelona [9].

Appl. Sci. 2022, 12, 2675. https://doi.org/10.3390/app12052675 https://www.mdpi.com/journal/applsci

https://doi.org/10.3390/app12052675
https://doi.org/10.3390/app12052675
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/applsci
https://www.mdpi.com
https://orcid.org/0000-0003-2711-2435
https://orcid.org/0000-0002-8007-0556
https://orcid.org/0000-0001-9280-9541
https://doi.org/10.3390/app12052675
https://www.mdpi.com/journal/applsci
https://www.mdpi.com/article/10.3390/app12052675?type=check_update&version=2

Appl. Sci. 2022, 12, 2675 2 of 21

A BSS consists of many distributed automatic rental ports and many rental bicycles.
A registered user can rent a bicycle at a port, use it for a short trip and return it to a different
port. A BSS is not only a convenient service, but also it can reduce greenhouse gas and
traffic congestion issues. For example, Zhang et al. (2018) [10] have estimated that the
introduction of a BSS at Shanghai saved 8358 tonnes of petrol, and reduced CO2 and NOx
emissions 25,240, and 64 tonnes, respectively in 2016.

In a BSS, almost all ports are in either an empty or full state after a while. An empty
bicycle port implies that a user cannot rent a bicycle, whereas a full bicycle port implies
that a user cannot return a bicycle. Thus, full or empty states lead to dissatisfaction of
users. In addition, broken bicycles are left unattended. Consequently, users’ frustration
is further increased. To address these issues, several capacitated vehicles need to relocate
bicycles among ports so that sufficient bicycles are available at each port. If operators can
execute repositioning works efficiently, users will not have experience that they cannot
rent or return bicycles and BSS companies can reduce labor costs and carbon emissions of
vehicles. Thus, both users and BSS companies benefit.

Recently, many studies have been conducted on repositioning bicycles of a BSS.
The repositioning of BSS can be divided into two cases.

The first one is a static case. In the static case problem, the number of bicycles does
not change at each port while the bicycles are restored by the vehicle, because the system
assumes that the bicycles are not moving much at midnight or after operation hours. As for
the static case problem, Dell’Amico et al. (2014) [11] proposed a bike sharing rebalancing
problem (BRP) and formulated BRP as a mixed integer linear programming problem,
and they solved BRP using the branch-and-cut algorithm for the 22 real world instances
collected from the web sites. Then, they proposed a destroy and repair algorithm for the
BRP, and tested their algorithm on benchmark instances [12]. Although these studies [11,12]
are interesting, they did not consider a time limit constraint: vehicles must return to a depot
within a given time limit. Then, it is not guaranteed that all operations will be finished
within the working hour in BRP.

On the other hand, Rainer-Harbach et al. (2013) [13] proposed a general variable
neighborhood search (VNS) with an embedded variable neighborhood descent for finding
efficient vehicle tours of a balancing bicycle sharing system (BBSS). In the BBSS, they
considered the time limit constraint, and that a vehicle can visit a port multiple times. Then,
they tested their algorithm on benchmark instances of real-world data provided by Citybike
in Vienna with up to 90 ports, and the result of numerical experiments showed that their
algorithm obtained good solutions in a reasonable time. In addition, Raidl et al. (2013) [14]
proposed efficiently determining optimal loading operation of VNS method for finding
efficient vehicle tours of the BBSS. They tested the same instances with Rainer-Harbach et al.
(2013), and they reported that their method showed better performance than the original
VNS. Moreover, Papazek et al. (2013) [15] also address the BBSS, and they proposed
two GRASP (Greedy Randomized Adaptive Search Procedure) heuristic approaches and
conducted numerical experiments by varying sizes of instances that ranged from 30 to
700. The numerical experiments show that combined PILOT (Preferred Iterative Look
Ahead Technique) and GRASP method obtained good performance than VNS for large size
instances. In the BBSS, when vehicles start and come back to a depot, the vehicles must be
empty. However, if broken bicycles are found in the process of rebalancing operation, they
must be repaired at the depot after the rebalancing operation, because the depot has many
spare bicycles. Thus, the constraint that vehicles must be empty when vehicles start and
come back to the depot is not realistic [13–15].

The second one of the repositioning of the bicycle sharing system is a dynamic case.
In the dynamic case problem, the number of bicycles is changed at each port while the
bicycles are restored by the vehicle. Kloimüllner et al. (2014) [16] extended the BBSS to
a dynamic case problem, and proposed a model of a dynamic balancing bicycle sharing
system (DBBSS). Then, they applied their previous approach to the DBBSS. The numerical
experiments showed that their approach was also effective to DBBSS. Chiariotti et al.

Appl. Sci. 2022, 12, 2675 3 of 21

(2018) [17] also addressed the dynamic case problem. Then, they tested instances with
280 ports generated by New York City’s CitiBike, and the result of numerical experiments
showed that their dynamic strategy obtained better performance than static approach. In
the numerical experiments for the dynamic repositioning of BSS, Kloimüllner et al. (2014)
and Chiariotti et al. (2018) used Vienna and New York City’s data, respectively. However,
it is not clear whether their approaches can be applied to other cities. Table 1 summarizes
the related literatures.

Table 1. Summary of the related literatures.

Paper Static or Dynamic Maximum Number of Port Size

Rainer-Harbach et al. (2013) static 90
Raidl et al. (2013) static 90
Papazek et al. (2013) static 700
Kloimüllner et al. (2014) dynamic 90
Dell’Amico et al. (2014) static 116
Dell’Amico et al. (2016) static 564
Chiariotti et al. (2018) dynamic 280
This study static 100

In our previous study, we formulated a new bicycle sharing system routing problem
as “multiple-vehicle bike sharing system routing problem (mBSSRP).” The mBSSRP finds
tours within the shortest travel time when multiple vehicles load and unload bicycles
at each port. In the mBSSRP, we consider the time limit constraint, and vehicles can
start and finish at the depot with bicycles. Although we treated the static case problems,
the mBSSRP is close to a real-life situation. As a result of solving the mBSSRP using
a mixed-integer linear programming (MIP) solver [18], an optimal solution is obtained
for small-size instances. However, we cannot obtain an optimal solution for large-size
instances within a reasonable time frame. Thus, we proposed local search methods to obtain
approximate solutions of mBSSRP within a short time [19]. Nevertheless, owing to some
strict constraints of mBSSRP, the proposed methods could not obtain feasible solutions
for some instances. Therefore, we proposed a “multiple-vehicle bike sharing system
routing problem with soft constraints (mBSSRP-S) ” that removes some constraints from the
mBSSRP and appends violations of the mBSSRP to the objective function as penalties [20].
In Ref. [20], we also proposed a method that controls the execution of the Or-opt [21]
and the CROSS-exchange [22] with the tabu search method [23–25] for solving mBSSRP
and mBSSRP-S. Numerical experiments show that solving mBSSRP-S to obtain feasible
solutions of mBSSRP achieves good performance when compared to solving directly
mBSSRP [20]. However, computational costs increase because neighborhood solutions
increase as a result of including infeasible solutions of mBSSRP. Thus, it is necessary to
reduce the computational costs while maintaining the performance.

Regarding the reduction in computational costs, there are several discussions for
the combinatorial optimization problems. For example, Hasegawa et al. (2002) [26] and
Matsuura et al. (2008) [27] introduced a method of limiting the search space to short paths
when they solved the TSP (Traveling Salesman Problem). In particular, Hasegawa et al.
(2002) used only the 10% nearest neighbors of the cities. Then, Matsuura et al. (2008)
used only the near neighbors of the cities. This is because most good TSP solutions have
short paths. Motohashi et al. (2008) [28] used a neighborhood list to efficiently solve
the TSP. Moreover, Motohashi et al. (2009) [29] used two different candidate lists, that is,
the nearest neighbors and quadrant neighbors to solve a large scale TSP. Finally, Taillard et al.
(2019) [30] showed that the computational costs of heuristic methods can be significantly
reduced by constructing a set of edges that are considered to be included in the optimal
solution at first.

Appl. Sci. 2022, 12, 2675 4 of 21

Regarding the BSS, Pal et al. (2016) [31] used a candidate list based on nearest neigh-
bors to efficiently solve the static complete rebalancing problem. Then, Dell’Amico et al.
(2016) [12] used some formulations to determine whether constraints are satisfied or not to
speed up the computation of bike sharing rebalancing problem. Thus, it is important to
reduce the computational costs for finding a good rebalancing tour of the BSS, because a
BSS has hundreds of ports and it is not practical to wait for hours to find a rebalancing tour
of the BSS. Then, the goal of this study is to propose efficient search strategies with low
computational costs while maintaining the performance of the mBSSRP.

To reduce computational costs in this study, we focused on the search process and
investigated the rate of the Or-opt and the CROSS-exchange executions. The execution rate
of the Or-opt that inserts ports in the normal order was 66%, that of the CROSS-exchange
that exchanges ports in the normal order was 20%, and the reverse orders of insertion of the
Or-opt and exchange of the CROSS-exchange were rarely executed. In addition, we found
that once a feasible solution of the mBSSRP is obtained, our conventional method [20]
searches for the feasible solutions successively.

From these results of the investigation, in this paper, we propose two search strategies:
the first one is to reduce neighborhood solutions to obtain a feasible solution in a short
time before finding a feasible solution of the mBSSRP from the mBSSRP-S, and the second
one is to change the problem to be solved (mBSSRP or mBSSRP-S) after a feasible solution
is obtained and to search good near-optimal solutions in a short time. As the first search
strategy, we propose two search methods for reducing the number of neighborhood so-
lutions in the Or-opt and the CROSS-exchange, and compare their performance with our
previous results. The results of the numerical experiments indicate that by limiting the
neighborhood solutions to the normal order insertion of the Or-opt and the normal order
exchange of the CROSS-exchange, we obtained feasible solutions within a short time while
maintaining the performance.

Next, as the second search strategy after obtaining a feasible solution, we proposed
four methods in which the searching space is further reduced. The problem to be solved is
changed from mBSSRP-S to mBSSRP to explore only feasible solutions. The results of the
numerical experiments show that by reducing the number of the neighborhood solution,
only searching for the normal order insertion of the Or-opt and the normal order exchange
of the CROSS-exchange with hard constraints after obtaining a feasible solution can obtain
short tours within a short time. From these numerical experiments, we have succeeded in
reducing the computational time while maintaining the performances. Furthermore, we
found that after finding a feasible solution, we could find short tours within a short time by
solving the hard constraint problem instead of the soft constraint problem.

This paper is structured as follows. In Section 2, we describe the mBSSRP and mBSSRP-
S. In Section 3, we present the heuristic method. Then, Section 4 presents the computational
costs reduction method. Numerical experiments are reported in Section 5. Finally, conclu-
sions and future works are provided in Section 6.

2. Problem Description

To determine tours that efficiently relocate bicycles using multiple vehicles, we have
already proposed mBSSRP and mBSSRP-S [20]. In mBSSRP, the search is executed with
satisfying hard constraints of the time and capacity of the vehicles. In mBSSRP-S, these
constraints are removed and violations of these constraints are added to the objective
function as penalties.

Appl. Sci. 2022, 12, 2675 5 of 21

In mBSSRP and mBSSRP-S, given are one depot, n ports and m vehicles. Each port
is classified into two types: pickup and delivery ports. In the pickup ports, the number
of bicycles is excess and bicycles must be loaded on the vehicle. In the delivery ports,
the number of bicycles is lack and bicycles must be delivered. In mBSSRP and mBSSRP-S,
vehicles relocate the bicycles from the pickup port to the delivery port. The rules of mBSSRP
and mBSSRP-S as follows:

(1) The vehicles can load bicycles at the depot, because the depot has spare bicycles
available.

(2) All vehicles must leave the depot and return to the depot.
(3) The number of bicycles does not change during the repositioning process.
(4) Each port can be visited only once by one vehicle.

Under these rules, reposition of bicycles is executed using vehicles. For details, we
refer to Tsushima et al. [20].

2.1. Multiple-Vehicle Bike Sharing System Routing Problem (mBSSRP)

In addition to the rules, the solution of the mBSSRP must satisfy the following
two constraints:

(i) time limit constraint: vehicles must return to the depot within the time limit.
(ii) capacity constraint: vehicles cannot load more bicycles than their capacity, and the

capacity of a vehicle cannot be less than zero.

The purpose of the mBSSRP is to find the tour that minimizes the total travel time
of the vehicles among the routes that satisfy the rules (1) to (3) and the constraints of (i)
and (ii).

2.2. Multiple-Vehicle Bike Sharing System Routing Problem with Soft Constraints (mBSSRP-S)

In the mBSSRP-S, the hard constraints (i) and (ii) are removed from mBSSRP and
these constraints are added to the objective function as penalties if they are violated. Then,
the objective function of mBSSRP-S is defined as follows:

minimize T + α × PT + β × (PB+ + PB−) (1)

where T denotes the total travel time and is the objective function of mBSSRP, PT denotes
the time that vehicles worked over the time limit, PB+ and PB− are the number of bicycles
that could not be loaded or supplied, and α and β are the weight coefficients of the penalty.
If PT , PB+ and PB− are equal to zero, the solution is a feasible solution for mBSSRP.

3. Heuristic Methods

To obtain good approximation solutions of mBSSRP, we proposed a method using
the tabu search method [23–25]. In the proposed method [20], first, we generate an initial
solution by the construction method based on the farthest insertion method. Second, we
improve the initial solution by the local searches: the inserting method and the swapping
method. Finally, good approximate solutions are searched by the tabu search method,
which is one of the metaheuristic methods. The neighborhood solution of the tabu search is
constructed by the Or-opt and the CROSS-exchange. Figure 1 represents the flow of the
proposed method.

Appl. Sci. 2022, 12, 2675 6 of 21

Construction

method

Tabu search method

Obtained feasible solution

2-opt

Yes

i =1; i < iteration; i++

No

Finish

end

Inserting method,

Swapping method

Local search method Or-opt,

Cross-exchange

Neighborhood Solutions

Inserting method,

Swapping method

Local search method

Start

Figure 1. Flow of the proposed framework [20]. First, we construct an initial tour using the con-
struction method. Then, we improve the initial tour using the inserting and the swapping method.
Next, the Or-opt and the CROSS-exchange are controlled by the tabu search and aim to transition to
a feasible solution of mBSSRP. The red rectangle corresponds to the computational cost reduction
part. The details are described in Section 4. After feasible solutions of mBSSRP are obtained in the
tabu search process, the 2-opt is executed. If we cannot obtain a feasible solution, the 2-opt method
is not executed. Finally, to obtain better solutions, we executed the inserting and the swapping
method again.

3.1. Construction Method for Generating an Initial Solution

First, to generate an initial solution, we use the construction method based on the
farthest insertion method. It is often used as one of the construction methods for the
combinatorial optimization problem. The procedure of the construction method is described
as follows:

1. We randomly select p ports, where p denotes the number of available vehicles.
2. Each vehicle constructs a subtour with the depot and one of the selected p ports.
3. An unvisited port k, which is the farthest from the depot, is selected.
4. The port k is inserted between ports i and j in the subtour where ∆ikj = tik + tkj − tij

is minimized.
5. Steps 3 and 4 are repeated until all ports are visited once by one vehicle.

When we solve mBSSRP, we continue this operation while the constraints of mBSSRP
are satisfied. On the other hand, when we solve mBSSRP-S, we consider only the travel
time between ports i and j.

3.2. Local Search Methods for Improving the Initial Solution

To improve the initial solutions, we use the following two local search methods: the
inserting method and the swapping method. The inserting and the swapping methods
improve a single tour. The inserting and the swapping methods are used after constructing
an initial tour and after improving the tour by the tabu search.

In the inserting method, a partial tour i − j, whose length covers a maximum of three ports
in a tour is inserted into an edge (k, l) in the same tour (Figure 2). Then, there are two types of
insertion operations as follows: the normal order (Figure 2b) and the reverse order (Figure 2c).

i j

kl

ij

kl

i j

kl
(a) (b) (c)

Figure 2. Example of the inserting method. Black squares represent depots and gray circles represent
ports. (a) A tour before the inserting method is executed. (b) A partial tour i − j is inserted into k − l
as the normal order (the orange rectangle). (c) The partial tour i − j is inserted into k − l as the reverse
order (the green rectangle).

Appl. Sci. 2022, 12, 2675 7 of 21

The swapping method swaps a partial tour i − j for a partial tour k − l (Figure 3). Then,
there are four types of swapping operations: both partial tours i − j and k − l are exchanged
with the normal order (Figure 3b), only the tour i − j is the reverse order (Figure 3c), only
the tour k − l is the reverse order (Figure 3d), and both partial tours i − j and j − k are
exchanged with the reverse order (Figure 3e).

kl

i j

k l

j i

k l

ji

kl

j i

kl

ji
(a) (b) (c) (d) (e)

Figure 3. Example of the swapping method. Black squares represent depots and gray circles represent
ports. (a) A tour before the swapping method is executed. (b) Both partial tours i − j and k − l are
exchanged with the normal order (the orange rectangles). (c) Only a partial tour i − j is exchanged
in the reverse order (the green rectangle). (d) Only a partial tour k − l is exchanged in the reverse
order (the green rectangle). (e) Both partial tours i − j and k − l are exchanged with reverse order
(the green rectangles).

3.3. Method by Using the Tabu Search

In the local search methods, a solution moves to only good solutions that are better
than the current solution. Thus, the solutions get stuck at local optimal solutions. To
escape from the local optimal solutions, we use the tabu search method in this study as
well as in our previous study [20]. Namely, we used the tabu search to propose search
strategies with low computational costs while maintaining the performance for the mBSSRP
in this study. The tabu search is one of the powerful meta-heuristic strategies for solving
the combinatorial optimization problem. The tabu search is successively used for the
vehicle routing problem, which is a similar combinatorial optimization problem to mBSSRP.
Moreover, the tabu search also has some advantages, because it has few parameters, leads
to easy implementation and has low computational costs. To avoid repetitive operations,
a tabu list is used in the tabu search. The tabu list records the previous search history.
Thereafter, the solution in the tabu list cannot be selected for a certain temporal duration.
This duration is known as a tabu tenure.

In this study, a current solution moves to the best neighborhood solution generated
by the Or-opt and the CROSS-exchange. The Or-opt and the CROSS-exchange methods
improve the total length of the tours using two different tours. The Or-opt inserts a partial
tour i − j of a tour in an edge (k, l) in another tour (Figure 4). There are two types of
insertions: the normal order (Figure 4b) and the reverse order (Figure 4c). The CROSS-
exchange replaces a partial tour i − j in one tour with a partial tour j − l in the other tour
(Figure 5). There are four types for swap operations: both partial tours i − j and k − l are
exchanged in the normal order (Figure 5b); the partial tour i − j is in the normal order,
and the partial tour k − l is in the reverse order (Figure 5c); the partial tour i − j is in the
reverse order, and the partial tour k − l is in the normal order (Figure 5d); and both partial
tours i − j and k − l are exchanged with the reverse order (Figure 5e). If a neighborhood
solution of the CROSS-exchange that exchanges the partial tours i − j and k − l is selected,
the combination i and k is memorized in the tabu list. If a neighborhood solution of the
Or-opt is selected that inserts the partial i − j into the edge (k, l) is selected, the combination
i and k is memorized. Thus, the selection of the neighborhood solution that connects port i
and port k is prohibited during a certain temporal iteration.

If a feasible solution of mBSSRP is found, the 2-opt method is executed to obtain better
solutions than the current one. The 2-opt method replaces two edges by two other edges
(Figure 6). If we have never obtained a feasible solution of mBSSRP at once in the tabu
search process, the 2-opt method is not executed.

Appl. Sci. 2022, 12, 2675 8 of 21

i j

k l

i j

k l

ij

k l
(a) (b) (c)

Figure 4. Example of the Or-opt. Black squares represent depots and gray circles represent ports.
The red and blue lines represent each tour. (a) Tours before the Or-opt is executed. (b) A partial tour
i − j is inserted into another tour k − l in the normal order (the orange rectangle). (c) The partial tour
i − j is inserted into another tour k − l in the reverse order (the green rectangle).

i j

k l

i j

k l

i j

kl

ij

k l

ij

kl
(a) (b) (c) (d) (e)

Figure 5. Example of the CROSS-exchange. Black squares represent depots and gray circles represent
ports. Orange rectangles express normal order and green rectangles express a reverse order. Red and
blue lines represent each tour. (a) Tours before the CROSS-exchange is executed. (b) Partial tours
i − j and k − l are exchanged with the normal order. (c) Only the partial tour k − l is exchanged in the
reverse order. (d) Only the partial tour i − j is exchanged in reverse order. (e) Partial tours i − j and
k − l are exchanged in the reverse order.

i

j

k

l

i

j

k

l
(a) (b)

Figure 6. Example of the 2-opt method. Black squares represent depots and gray circles represent
ports. (a) A tour before the 2-opt method is executed. (b) A tour after the 2-opt method is executed.

3.4. Dynamically Changing Weight of Penalties

To move good solutions of mBSSRP from the solution of the mBSSRP-S, we must set
appropriate values of the weight parameters α and β in the objective function (Equation (1))
of the mBSSRP-S. If we set the parameters to small values, we cannot obtain feasible
solutions owing to the small values of the parameters. Because the penalty becomes
weak even when the solution has many constraint violations. Meanwhile, if we set the
parameters to large values, the power of the parameters will be excessively strong, which
is the same situation for solving mBSSRP. Thus, we dynamically change the parameters α
and β according to the solution state.

To adjust the weight parameters α and β dynamically, the objective function of the
mBSSRP-S was modified as follows:

minimize T(t) + α(t)× PT(t) + β(t)× (PB+(t) + PB−(t)) (2)

where α(t) and β(t) represent weight parameters for the time limit, loading and supplying
constraints at the tth iteration, T(t) denotes the total travel time at the tth iteration, PT(t)
denotes the excess working time beyond the time limit at the tth iteration, PB+(t) denotes
the loading violation of the bicycles at the tth iteration and PB−(t) denotes the supplying
violation of the bicycles at the tth iteration.

The adjustment of the parameters is determined by comparing α(t) × PT(t) and
β(t)× (PB+(t) + PB−(t)) at the tth iteration. If the penalty of the time limit α(t)× PT(t) is
larger than the sum of penalties loading and supplying constraints β(t)× (PB+(t)+ PB−(t)),
α(t) is increased and β(t) is decreased. If the penalty β(t)× (PB+(t)+ PB−(t)) is larger than
α(t)× PT(t), α(t) is decreased and β(t) is increased. If PT(t) = 0 or PB+(t) + PB−(t) = 0,
a corresponding weight α(t) or β(t) is not updated. Then, the followings are used for
adjusting the parameters:

Appl. Sci. 2022, 12, 2675 9 of 21

if pT(t) = 0,

α(t + 1) = α(t), (3)

otherwise

α(t + 1) =


α(t) if α(t)pT(t) = β(t)(pq+(t) + pq−(t)),
λα(t), if α(t)pT(t) > β(t)(pq+(t) + pq−(t)),
µα(t), if α(t)pT(t) < β(t)(pq+(t) + pq−(t)),

(4)

and if pq+(t) + pq−(t) = 0,

β(t + 1) = β(t), (5)

otherwise

β(t + 1) =


β(t), if α(t)pT(t) = β(t)(pq+(t) + pq−(t)),
λβ(t), if α(t)pT(t) < β(t)(pq+(t) + pq−(t)),
µβ(t), if α(t)pT(t) > β(t)(pq+(t) + pq−(t)),

(6)

where λ is an increasing parameter (λ > 1) and µ is a decreasing parameter (0 < µ < 1).
If the value of the weights is less than 1.0, the weights are set to unity (α(t + 1) = 1 or
β(t + 1) = 1).

4. Computational Cost Reduction Method

To reduce neighborhood solution and computational costs, we investigate the per-
centage of the Or-opt and the CROSS-exchange executions used in the tabu search part.
The feasible neighborhood solutions of the mBSSRP-S include the infeasible neighborhood
solutions of the mBSSRP. Therefore, when we solve the mBSSRP-S, it takes more time
to determine the next solution than in the case of mBSSRP. To reduce the computational
cost of solving mBSSRP-S, we need to remove unnecessary neighborhood solutions. The
percentage of the insertion and exchange operations performed by the proposed method
was approximately 66% for the Or-opt, which inserts ports in the normal order (Figure 4b),
and approximately 20% for the CROSS-exchange, which exchanges ports in the normal
order (Figure 5b), implying that the reverse order of insertion and exchange was rarely
executed. Thus, we did not search for less frequently performed reverse order operations
to reduce the computational costs. In our previous study, we have shown that once a
feasible solution of the mBSSRP is obtained, the proposed method searches for the feasible
solutions successively [20]. Next, to find a good feasible solution of the mBSSRP, we
examine whether we should change the problem to be solved (mBSSRP or mBSSRP-S)
before and after a feasible solution is obtained.

Table 2 summarizes the search strategy before obtaining a feasible solution of the
mBSSRP. We propose two search methods (1B-S and 1C-S) in this case. In Table 2, the first
search method 1A-S searches for all neighborhood solutions of the Or-opt and the CROSS-
exchange. Thus, this search method is the same as the conventional search method [20]. The
second search method 1B-S only explores insertion of the normal order of the Or-opt which
is the most executed (Figure 4b). The third search method 1C-S searches for the insertion of
the normal order of the Or-opt and exchange of the normal order of the CROSS-exchange
(Figures 4b and 5b). The goal of the search methods before obtaining a feasible solution is
to find a feasible solution within a short time for all trials.

In addition, to further reduce the computational costs the search strategy is changed
after a feasible solution of mBSSRP is obtained. In this paper, we propose four new search
methods (2B-S, 2B-H, 2C-S and 2C-H). Table 3 shows the search strategy after finding
a feasible solution of the mBSSRP. In Table 3, the first search method 2A-S involves to
searching for all neighborhood solutions of the Or-opt and the CROSS-exchange with soft
constraints. The second search method 2A-H involves searching for all neighborhood

Appl. Sci. 2022, 12, 2675 10 of 21

solutions of the Or-opt and the CROSS-exchange with hard constraints. The difference
between the search methods 2A-S and 2A-H is whether the instances are solved with
hard or soft constraints. The reason why we introduced both soft and hard constraints is
that we found that once a feasible solution of the mBSSRP is obtained, our conventional
method [20] searches for the feasible solutions successively. Then, 2A-S and 2A-H are the
same as the conventional search method [20]. The third search method 2B-S only searches
for insertion in the normal order of the Or-opt with soft constraints. The fourth search
method 2B-H only searches for insertion in the normal order of the Or-opt with hard
constraints. The fifth search method 2C-S explores the insertion of the normal order of the
Or-opt and the exchange of the normal order of the CROSS-exchange with soft constraints.
Finally, the sixth search method 2C-H explores the insertion of the normal order of the
Or-opt and the exchange of the normal order of the CROSS-exchange with hard constraints.

Table 2. Search strategy before finding a feasible solution of the mBSSRP. The first column shows local
search names, the second column shows the types of the Or-opt or the CROSS-exchange operations,
the third to fifth columns show the name of the search method and the sixth column shows the
percentage of local search methods that are executed.

Local Search Type 1A-S 1B-S 1C-S Executed Rate
(One Decimal Point Omitted)

Or-opt

Normal

i j

k l

3 3 3 66%

Reverse

ij

k l

3 4%

Normal

i j

k l

3 3 20%

CROSS-exchange

One-sided reverse

i j

kl

3 2%

One-sided reverse

ij

k l

3 3%

Reverse

ij

kl

3 4%

Appl. Sci. 2022, 12, 2675 11 of 21

Table 3. Search strategy after finding a feasible solution of the mBSSRP. The first column represents
local search names, the second column shows the types of the Or-opt or the CROSS-exchange
operations, the third to the eighth columns show the name of the search method and the bottom line
indicates whether instances were solved with hard or soft constraints.

Local Search Type 2A-S 2A-H 2B-S 2B-H 2C-S 2C-H

Or-opt

Normal

i j

k l

3 3 3 3 3 3

Reverse

ij

k l

3 3

Normal

i j

k l

3 3 3 3

CROSS-exchange

One-sided reverse

i j

kl

3 3

One-sided reverse

ij

k l

3 3

Reverse

ij

kl

3 3

Constraint Soft Hard Soft Hard Soft Hard

5. Numerical Experiments

To evaluate the performance of the computational cost reduction methods, we gener-
ated benchmark instances. Figure 7 shows an example of these instances. We distributed
100 ports and a depot uniformly in a region measuring 10 km2. The number of bicycles at
each port was set to a random number between −5 and +5 at intervals of 1. A negative
value (“−”) represents the delivery port, and a positive value (“+”) represents the pickup
ports. The capacity of the vehicles was 10, the average moving speed of the vehicles was
30 [km/h], the loading or unloading time of a bicycle was 2 [min] and the time limit (all
vehicles start from the depot and return to it) was 180 [min]. Thereafter, the tabu tenure was
set to 50 and the initial values of weights were set to α(0) = 1 and β(0) = 1. The increasing
λ and decreasing parameter µ were set to 1.07 and 0.3, respectively.

For the search methods 1A-S, 1B-S and 1C-S (before a feasible solution was obtained),
we performed 50 trials per instance and performed 200 [s] of computation for trials. Mean-
while, for the search methods 2A-S, 2A-H, 2B-S, 2B-H, 2C-S and 2C-H (after a feasible
solution was obtained), we started the calculation from 50 feasible solutions per instance
and performed 200 [s] of computation for each solution. These numerical experiments were
performed on a Mac mini with a 3-GHz 6-Core Intel Core i5 processor and 32 GB RAM.

Appl. Sci. 2022, 12, 2675 12 of 21

0 2000 4000 6000 8000 10000
0

2000

4000

6000

8000

1000010,000

8000

6000

4000

2000

2000 4000 6000 8000 10,000

Figure 7. An example of instance. A black square represents a depot, red circles represent pickup
ports and blue circles represent delivery ports.

5.1. Results of Search Strategy before Obtaining a Feasible Solution

Results of the numerical experiments for the search strategy before obtaining a feasible
solution are shown in Table 4. In Table 4a–c, the first column lists the instance numbers,
the second to the fourth columns present the average, the best and the worst objective
function values [min] for each instance, and the fifth column indicates the number of
obtained feasible solutions for each trial. We performed 50 trials; thus, the maximum value
was 50. Table 4a summarizes the result that searches for all neighborhood solutions of
the Or-opt and the CROSS-exchange (the search method 1A-S). From Table 4a, feasible
solutions of the mBSSRP were obtained for almost all trials. From Table 4b, the search
method that searches for only normal order of the Or-opt (the search method 1B-S) cannot
obtain several feasible solutions compared to Table 4a. By contrast, the search method 1C-S
(Table 4c) obtained almost the same number of feasible solutions and the average objective
function values [min] as the search method 1A-S (Table 4a).

To compare the performance of the search methods 1A-S and 1C-S by statistical
analysis, we used the t-test. Table 5 shows the results of the t-test. In Table 5, the first
column lists the instance numbers, the second and the fourth columns present the average
objective function values [min] for each instance, the third and the fifth columns show the
standard deviations and the sixth column presents the results of the t-test. In the numerical
experiment, the level of significance was 5%. Thus, if p ≥ 0.05, there is no significant
difference between the performance of the search methods 1A-S and 1C-S. By contrast,
if the results show that p < 0.05, there is a significant difference between the performance
of the search methods 1A-S and 1C-S. From Table 5, only for instance No.1 and No.10,
the p-values are smaller than 0.05. However, for instance No.2∼No.9 (Table 5), the p-values
are larger than 0.05. These results indicate that we cannot say that there is a significant
difference between the performance of the search methods 1A-S and 1C-S.

Next, to clarify the difference between the search methods 1A-S and 1C-S, we evaluated
the relationship between the time [s] until a feasible solution was obtained and the number of
obtained feasible solutions (Figure 8). Figure 8a shows the result of the search method 1A-S
(search for all neighborhood solutions of the Or-opt and the CROSS-exchange), and Figure 8b
shows the result of the search method 1C-S (search for normal order insertion of the Or-opt
and normal order exchange of the CROSS-exchange). The horizontal axis shows time [s]
and the vertical axis indicates the number of obtained feasible solutions. We can see that
the highest value of the number of obtained feasible solutions takes approximately 70 [s]
from Figure 8a. Meanwhile, the highest value of the number of obtained feasible solutions
takes approximately 40 [s] from Figure 8b. Thus, although the number of obtained feasible
solutions and the average objective function values [min] for the search methods 1A-S and
1C-S were almost the same as shown in Table 4, the search method 1C-S finds a feasible
solution approximately 30 [s] faster than the search method 1A-S (Figure 8).

To investigate whether there is a significant difference in the average time [s] until
a feasible solution was obtained between the search methods 1A-S and 1C-S, we also
conducted a statistical analysis by the t-test. Table 6 shows the results of the t-test. In Table 6,

Appl. Sci. 2022, 12, 2675 13 of 21

the first column lists the instance numbers, the second and the fourth columns present the
average time [s] until a feasible solution was obtained for each instance, the third and the
fifth columns show the standard deviations and the sixth column presents the results of the
t-test. From the results, the p-values are smaller than 0.05 except for instance No.6. Thus,
we could find a significant difference between the search methods 1A-S and 1C-S for almost
all instances from the viewpoint of a searching speed.

Table 4. Results of search methods before obtaining a feasible solution. (a) Search method 1A-S
(search for all neighborhood solutions of the Or-opt and the CROSS-exchange). (b) Search method
1B-S (search only normal order insertion of the Or-opt). (c) Search method 1C-S (search for normal
order insertion of the Or-opt and normal order exchange of the CROSS-exchange).

(a)

No. Avg. [min] Best [min] Worst [min] # of Feasible Solution

1 243.76 230.85 259.07 50
2 238.16 230.87 252.95 50
3 228.47 218.98 237.25 50
4 242.56 232.38 252.36 50
5 249.06 240.95 260.69 50
6 270.81 260.50 284.04 31
7 238.52 225.12 252.72 34
8 213.15 207.43 226.01 50
9 241.64 231.13 255.18 49

10 243.28 234.40 252.54 45

Avg. 240.94 231.26 253.28 45.9

(b)

No. Avg. [min] Best [min] Worst [min] # of Feasible Solution

1 245.46 234.80 258.63 40
2 242.59 228.66 260.92 50
3 234.57 222.44 249.94 50
4 246.81 236.23 268.79 49
5 254.91 241.88 269.26 42
6 268.45 260.94 276.57 16
7 238.02 222.71 247.85 10
8 213.98 207.79 237.93 49
9 245.18 233.40 260.38 44

10 244.20 236.92 257.74 29

Avg. 243.42 232.58 258.80 37.9

(c)

No. Avg. [min] Best [min] Worst [min] # of Feasible Solution

1 241.63 233.74 251.90 50
2 236.61 227.33 246.43 50
3 228.31 217.29 242.36 50
4 242.15 233.15 254.30 50
5 249.59 241.04 259.27 50
6 269.55 256.99 284.94 32
7 236.17 225.00 252.39 30
8 213.14 205.85 224.93 50
9 239.44 228.72 252.01 50

10 239.80 229.91 253.65 44

Avg. 239.64 229.90 252.22 45.6

To summarize the results, there is no difference in the performance between the search
methods 1A-S and 1C-S (Tables 4 and 5). On the other hand, as for the search speed,
the search method 1C-S (54.53 [s]) can find feasible solutions with shorter time (approxi-

Appl. Sci. 2022, 12, 2675 14 of 21

mately 30 [s]) than the search method 1A-S (85.29 [s]), which means that by using the search
method 1C-S, we can reduce the computation time by (85.29 − 54.53)/85.29 × 100 = 36.1%.
Therefore, we concluded that the search method 1C-S (the search for the normal order
insertion of the Or-opt and the normal order exchange of the CROSS-exchange) is the best
search method before finding a feasible solution.

(a) (b)

Figure 8. Relationship between time until a feasible solution is firstly obtained and the number of
obtained feasible solutions. (a) Search method 1A-S (search for all neighborhood solutions of the
Or-opt and the CROSS-exchange). (b) Search method 1C-S (search for normal order insertion of the
Or-opt and normal order exchange of the CROSS-exchange).

Table 5. Results of the t-test to evaluate the difference of the average objective function values [min]
between the search methods 1A-S and 1C-S.

1A-S 1C-S
No. Avg. [min] SD Avg. [min] SD p

1 243.76 5.72 241.63 4.51 0.041
2 238.16 5.08 236.61 4.34 0.104
3 228.47 4.36 228.31 6.42 0.886
4 242.56 4.92 242.15 4.54 0.668
5 249.06 4.64 249.59 4.38 0.558
6 270.81 6.42 269.55 7.13 0.464
7 238.52 6.27 236.17 6.96 0.163
8 213.15 3.39 213.14 4.00 0.985
9 241.64 6.19 239.44 5.25 0.061
10 243.28 4.62 239.80 5.14 0.001

Avg. 240.94 5.16 239.64 5.27 0.393

Table 6. Results of the t-test to evaluate the difference time [s] until a feasible solution was obtained
between the search methods 1A-S and 1C-S.

1A-S 1C-S
No. Avg. [s] SD Avg. [s] SD p

1 78.76 24.84 44.67 16.83 0.000
2 72.83 16.30 32.84 5.60 0.000
3 66.37 10.68 30.22 5.79 0.000
4 75.37 13.50 36.85 9.72 0.000
5 72.86 10.15 42.23 15.70 0.000
6 123.70 41.62 109.59 45.82 0.205
7 115.36 37.28 89.80 45.26 0.018
8 68.81 19.88 32.74 8.61 0.000
9 75.99 16.51 42.16 16.41 0.000
10 102.82 39.51 84.23 42.42 0.035

Avg. 85.29 23.03 54.53 21.22 0026

Appl. Sci. 2022, 12, 2675 15 of 21

5.2. Results of Search Strategy after Obtaining a Feasible Solution

Results of the numerical experiments using the six search methods after obtaining
the feasible solution are shown in Table 7. In Table 7a–f, the first column lists the instance
numbers, the second to the fourth columns present the average, the best and the worst
objective function values [min] in 200 [s] of each trial, when we started the calculation from
a feasible solution. From Table 7e,f, the search methods of reducing neighborhood solutions
were also effective when the search was started from feasible solutions. The performance
showed no significant differences between soft (Table 7e) and hard constraints (Table 7f).
In particular, the difference of the average objective function values [min] of the search
method 2C-S and the search method 2C-H is only 0.39 [min].

To investigate whether there is a significant difference in performance, the t-test was
used on the average objective function values [min]. Table 8 shows the results of the t-test.
In Table 8, the first column lists the instance numbers, the second and the fourth columns
present the average objective function values [min] for each instance, the third and the fifth
columns show the standard deviations, and the sixth column presents the results of the
t-test. From Table 8, except for instance No.6, the p-values are larger than 0.05. Thus, we
could not find any significant difference between the performance of the search methods
2C-S and 2C-H from the viewpoint of the statistical analysis.

Next, to investigate whether there is a difference in searching process between the two
search methods 2C-S and 2C-H, we evaluated the transition of the most feasible solutions
when solving soft and hard constraints. The results of instance No.1 are shown in Figure 9.
From Figure 9, we can find that there is a difference between these two search methods 2C-S
and 2C-H. From Figure 9a, it takes a long time (38.82 [s]) to update the better solution for
solving the mBSSRP-S. The reason is that to realize an effective search, the weight values of
penalty in Equations (3)–(6) must be adjusted to appropriate values. The average transition
time to a better solution for other instances is shown in Table 9. In Table 9, the first column
lists instance numbers and the second column shows the average transition time [s] to a better
solution. From Table 9, the search method 2C-S takes about 30∼80 [s] to find a better feasible
solution. Meanwhile, from Figure 9b, a solution of the search method 2C-H moves to a better
solution as soon as a search is started because it cannot search for an infeasible solution.

The results of the t-test of the average objective function values of the search methods 2C-
S and 2C-H showed that there was no significant difference in performance (Tables 7 and 8).
However, from Figure 9 and Table 9, the search method 2C-H can find a better feasible solution
in a shorter time (approximately 30∼80 [s]) than the search method 2C-S. Therefore, as for the
search strategy after finding a feasible solution, we concluded that the search method 2C-H
(the search for the normal order insertion of the Or-opt and the normal order exchange of the
CROSS-exchange with hard constraints) is the best search method.

0 50 100 150 200
110000

120000

130000

140000

150000

Time [s]

O
b
je

c
ti
v
e
 f
u
n
c
ti
o
n

300

280

260

240

220

O
b
je

c
ti

v
e
 f

u
n
c
ti

o
n
 [

m
in

]

0 50 100 150 200
110000

120000

130000

140000

150000

Time [s]

O
b
je

c
ti
v
e

 f
u

n
c
ti
o

n

300

280

260

240

220

O
b
je

c
ti

v
e
 f

u
n
c
ti

o
n
 [

m
in

]

(a) (b)

Figure 9. Transition of the best solutions found in case of instance No.1. The red lines show the transition
of the best feasible solution from 50 initial feasible solutions, whereas the blue lines show their average.
(a) Search method 2C-S (search for normal order insertion of the Or-opt and normal order exchange of
the CROSS-exchange with soft constraints). (b) Search method 2C-H (search for normal order insertion
of the Or-opt and normal order exchange of the CROSS-exchange with hard constraints).

Appl. Sci. 2022, 12, 2675 16 of 21

Table 7. Results of search methods after obtaining a feasible solution. (a) Search method 2A-S (search
for all neighborhood solutions of the Or-opt and the CROSS-exchange with soft constraints). (b)
Search method 2A-H (search for all neighborhood solutions of the Or-opt and the CROSS-exchange
with hard constraints). (c) Search method 2B-S (search for only normal order insertion of the Or-opt
with soft constraints). (d) Search method 2B-H (search for only normal order insertion of the Or-opt
with hard constraints). (e) Search method 2C-S (search for normal order insertion of the Or-opt and
normal order exchange of the CROSS-exchange with soft constraints). (f) Search method 2C-H (search
for normal order insertion of the Or-opt and normal order exchange of the CROSS-exchange with
hard constraints).

(a)

No. Avg. [min] Best [min] Worst [min]

1 241.81 232.13 254.94
2 238.45 227.14 245.73
3 228.09 218.60 244.40
4 241.43 231.95 251.71
5 247.58 240.39 256.60
6 266.76 257.19 281.07
7 234.84 222.53 251.80
8 212.02 205.77 220.14
9 240.48 232.09 251.94
10 241.65 230.99 256.75

Avg. 239.31 229.88 251.51

(b)

No. Avg. [min] Best [min] Worst [min]

1 242.53 235.06 251.29
2 237.70 229.25 247.47
3 227.98 219.98 237.32
4 241.36 231.52 250.18
5 248.68 241.96 258.93
6 268.91 253.71 286.59
7 235.25 222.83 255.66
8 211.91 205.99 218.02
9 239.90 227.68 253.67
10 239.90 231.80 252.12

Avg. 239.41 229.98 251.13

(c)

No. Avg. [min] Best [min] Worst [min]

1 244.20 232.75 259.46
2 239.29 228.66 249.19
3 227.79 217.16 238.15
4 242.41 234.88 254.57
5 251.11 242.17 264.62
6 270.60 253.39 284.24
7 236.22 226.03 251.93
8 211.75 206.02 223.83
9 243.22 231.37 258.92
10 241.93 230.33 258.83

Avg. 240.85 230.28 254.37

Appl. Sci. 2022, 12, 2675 17 of 21

Table 7. Cont.

(d)

No. Avg. [min] Best [min] Worst [min]

1 248.89 236.91 270.39
2 241.65 228.40 258.26
3 230.96 221.46 244.89
4 246.12 230.94 263.21
5 252.34 240.32 267.20
6 275.42 263.31 286.62
7 242.98 225.28 262.27
8 212.27 206.68 222.78
9 243.85 233.61 259.85
10 249.20 231.04 266.57

Avg. 244.37 231.79 260.20

(e)

No. Avg. [min] Best [min] Worst [min]

1 240.88 232.42 254.18
2 235.86 228.96 243.84
3 226.88 216.81 235.18
4 240.18 231.96 254.29
5 246.75 241.68 254.52
6 264.58 255.89 276.92
7 234.09 222.51 254.30
8 211.11 205.87 216.95
9 237.62 227.48 249.52
10 238.92 230.84 249.83

Avg. 237.69 229.44 248.95

(f)

No. Avg. [min] Best [min] Worst [min]

1 241.36 232.87 255.56
2 236.58 227.65 249.19
3 225.96 216.81 233.52
4 239.99 231.78 247.36
5 247.18 240.11 255.19
6 267.60 254.18 281.03
7 235.12 222.29 255.66
8 210.42 206.12 215.98
9 238.72 230.49 247.28
10 237.86 230.42 253.19

Avg. 238.08 229.27 249.40

Table 8. Results of the t-test to evaluate the difference of performance between methods 2C-S and 2C-H.

2C-S 2C-H
No. Avg. [min] SD Avg. [min] SD p

1 240.88 4.20 241.36 4.41 0.572
2 235.86 3.89 236.58 5.18 0.432
3 226.88 4.64 225.96 4.39 0.309
4 240.18 4.74 239.99 3.66 0.833
5 246.75 3.26 247.18 3.92 0.550
6 264.58 5.27 267.60 6.45 0.016
7 234.09 7.27 235.12 8.14 0.518
8 211.11 2.86 210.42 2.54 0.209

Appl. Sci. 2022, 12, 2675 18 of 21

Table 8. Cont.

2C-S 2C-H
No. Avg. [min] SD Avg. [min] SD p

9 237.62 5.09 238.72 4.64 0.262
10 238.92 3.91 237.86 4.27 0.203

Avg. 237.69 4.51 238.08 4.76 0.390

Table 9. Results of the average transition time to a feasible solution for the search method 2C-S.

No. Avg. [s]

1 38.82
2 31.54
3 31.71
4 36.01
5 34.17
6 77.78
7 68.04
8 29.10
9 35.56
10 59.94

Avg. 44.27

6. Conclusions

In this study, we proposed two search strategies with low computational costs while
maintaining the performance of the mBSSRP: the first one is to reduce neighborhood
solutions to obtain a feasible solution in a short time before finding a feasible solution
of the mBSSRP, and the second one is to change the problem to be solved (mBSSRP or
mBSSRP-S) after a feasible solution is obtained and to search good near-optimal solutions
in a short time.

As the first search strategy before obtaining a feasible solution, we propose two search
methods (the search methods 1B-S and 1C-S) and compare their performance with our
previous method (the search method 1A-S) [20]. The search method 1A-S searches for all
neighborhood solutions of the Or-opt and the CROSS-exchange [20]. The search method
1B-S searches only the normal order insertion of the Or-opt. The search method 1C-S
searches for the normal order insertion of the Or-opt and the normal order exchange of the
CROSS-exchange. The results of the numerical experiments showed that the search method
1C-S that only searches for the normal order insertion of the Or-opt and the normal order
exchange of the CROSS-exchange is the best search method, because the search method
1C-S obtained many feasible solutions within a short time.

Next, as the second search strategy after a feasible solution of mBSSRP is obtained, we
propose four search methods (2B-S, 2B-H, 2C-S and 2C-H) and compare their performance
with our previous methods (2A-S and 2A-H) [20]. The search method 2A-S searches for
all neighborhood solutions of the Or-opt and the CROSS-exchange with soft constraints.
The search method 2A-H searches for all neighborhood solutions of the Or-opt and the
CROSS-exchange with hard constraints. The search method 2B-S searches for insertion in
the normal order of the Or-opt with soft constraints. The search method 2B-H searches
for insertion in the normal order of the Or-opt with hard constraints. The search method
2C-S searches for the insertion of the normal order of the Or-opt and the exchange of the
normal order of the CROSS-exchange with soft constraints. Finally, the search method
2C-H searches for the insertion of the normal order of the Or-opt and the exchange of the
normal order of the CROSS-exchange with hard constraints. The results of the numerical
experiments showed that the search method 2C-H that searches for the normal order
insertion of the Or-opt and the normal order exchange of the CROSS-exchange with hard
constraints is the best search method, because the search method 2C-H obtained short

Appl. Sci. 2022, 12, 2675 19 of 21

tours within a short time. These results indicate that the search method 1C-S reduces the
neighborhood solutions in the Or-opt and the CROSS-exchange and that the search space
was shifted from soft constraints to hard constraints after a feasible solution is obtained
is effective.

In this study, we used a dynamically changing method for weight parameters (α and
β) to find good solutions of mBSSRP from the solution of the mBSSRP-S. To adjust these
weight parameters α and β, we used an adjustment method (Equations (3)–(6)). Then,
from the results of numerical experiments (Figure 9a), it takes a long time to update the
better solution for solving the mBSSRP-S (for example, 38.82 [s] for instance No. 1). The
results of other instances are shown in Table 9. From Table 9, the search method 2C-S takes
about 30∼80 [s] to find better feasible solutions. In this temporal duration of 30∼80 [s],
the weight values α and β must be adjusted to appropriate values by Equations (3)–(6). If
we can set optimal parameters for an initial state, the search method 2C-S can find a better
solution more efficiently and quickly than the search method 2C-H. Thus, one of the future
works is to determine the parameters by using a parameter optimization approach.

In the numerical experiment, we used randomly distributed ports. However, some
bicycle sharing repositioning studies have used real BSS data. For instance, Rainer-
Harbach et al. (2013) [13], Raidl et al. (2013) [14] and Papazek et al. (2013) [15] use
data from Vienna, and Chiariotti et al. (2018) [17] use data from New York. Thus, it is an
important work to use real BSS data in a future study.

Moreover, we need to address the dynamic cases because the number of bicycles in
each port changes while restoring bicycles in the real BSS. The studies of static BSS (Rainer-
Harbach et al. (2013) [13], Raidl et al. (2013) [14] and Papazek et al. (2013) [15]) have been
extended to dynamic BSS by Kloimüllner et al. (2014) [16]. Thus, we also aim to extend this
study to a dynamic case. The completion of the dynamic case would have a great impact
on solving an issue inherent in BSS: users cannot rent or return a bicycle at an empty or a
full port. A solution to this issue would lead to the development of BSS in the future, and it
is expected that BSS will be used for a wide range of purposes such as commuting to work,
daily life, and even in times of disaster. It will also have an effect to promote the spread of
the next generation system called MaaS (Mobility as a Service), which has been attracting
attention recently: all public transportation systems are connected by IT technology. To
address the dynamic case, we have to consider forecasting future demands of bicycles from
actual data and repositioning them based on the forecast data by investigating statistical
characteristics of real data of BSSs [32].

In our previous study [20], we proposed a heuristic method by using the tabu search.
Then, in this paper, we also used the tabu search to propose search strategies with low
computational costs while maintaining the performance of the mBSSRP. However, it is
important to use not only the tabu search but also the other approaches (for example,
simulated annealing) and compare these approaches. In addition, we only focus on the
operation of the rebalancing bicycles [19,20] and statistical analysis of BSS usage history [32].
However, Kabak et al. (2018) [33] focus on the location of bicycle ports. It is an impor-
tant idea to evaluate the existing BSS ports and suggest alternative places for additional
BSS ports.

Author Contributions: Conceptualization has been carried by H.T., T.M. and T.I. The numerical
experiments and performance analysis have been carried by H.T. The paper was written by H.T., T.M.
and T.I. All authors have read and agreed to the published version of the manuscript.

Funding: The research of T.M. was supported by JSPS KAKENHI Grant Numbers JP19K04907 and
JP21H03514. The research of T.I. was supported by JSPS KAKENHI Grant Numbers 20H00596
and JP21H03514.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Appl. Sci. 2022, 12, 2675 20 of 21

Data Availability Statement: Not applicable.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. DeMaio, P.; Meddin, R. The Bike-Sharing World Map. Available online: https://bikesharingworldmap.com/#/acoruna/

(accessed on 17 February 2021).
2. BIXI Official Site. Available online: https://bixi.com (accessed on 17 February 2021).
3. Velib’ Official Site. Available online: https://www.velib-metropole.fr (accessed on 17 February 2021).
4. Docomo Bike Share Official Site. Available online: https://docomo-cycle.jp/ (accessed on 17 February 2021).
5. Citybike Official Site. Available online: https://www.citybikewien.at/de/ (accessed on 17 February 2021).
6. Citi Bike Official Site. Available online: https://www.citibikenyc.com/ (accessed on 17 February 2021).
7. Capital Bikeshare Official Site. Available online: https://www.capitalbikeshare.com (accessed on 17 February 2021).
8. BULEbikes Official Site. Available online: https://www.bluebikes.com (accessed on 17 February 2021).
9. Bicing Official Site. Available online: https://www.bicing.barcelona (accessed on 17 February 2021).
10. Zhang, Y.; Mi, Z. Environmental benefits of bike sharing: A big data-based analysis, Appl. Energy 2018, 220, 296–301. [CrossRef]
11. Dell’Amico, M.; Hadjicostantinou, E.; Iori, M.; Novellani, S. The bike sharing rebalancing problem: Mathematical formulations

and benchmark instances. Omega 2014, 45, 7–19. [CrossRef]
12. Dell M.; Iori, M.; Novellani, S.; Stützle, T. A destroy and repair algorithm for the bike sharing rebalancing problem. Comput. Oper.

Res. 2016, 71, 149–162.
13. Rainer-Harbach, M.; Papazek, P.; Hu, B.; Raidl, G.R. Balancing bicycle sharing systems: A variable neighborhood search approach.

In Evolutionary Computation in Combinatorial Optimisation–13th European Conference, EvoCOP 2013; Middendorf, M., Blum, C., Eds.;
Lecture Notes in Computer Science; Springer: Berlin/Heidelberg, Germany, 2013; Volume 7832, pp. 121–132.

14. Raidl, G.R.; Hu, B.; Rainer-Harbach, M.; Papazek, P. Balancing bicycle sharing systems: Improving a VNS by efficiently
determining optimal loading operations. In Hybrid Metaheuristics, 8th International Workshop, HM 2013; Blesa, M.J., Blum, C., Festa,
P., Roli, A., Sampels, M., Eds.; Lecture Notes in Computer Science; Springer: Berlin/Heidelberg, Germany, 2013; Volume 7919,
pp. 130–143.

15. Papazek, P.; Raidl, G.R.; Rainer-Harbach, M.; Hu, B. A PILOT/VND/GRASP hybrid for the static balancing of public bicycle
sharing systems. In Computer Aided Systems Theory–EUROCAST 2013; Moreno-Díaz, R., Pichler, F., Quesada-Arencibia, A., Eds.;
Lecuture Notes in Computer Sience; Springer: Berlin/Heidelberg, Germany, 2013; Volume 8111, pp. 372–379.

16. Kloimüllner, C.; Papazek, P.; Hu, B.; Raidl, G.R. Balancing bicycle sharing systems: An approach for the dynamic case. In
Evolutionary Computation in Combinatorial Optimization–EvoCOP 2014; Blum, C., Ochoa, G., Eds.; Lecuture Notes in Computer
Sience; Springer: Berlin/Heidelberg, Germany, 2014; Volume 8600, pp. 73–84.

17. Chiariotti, F.; Pielli, C.; Zanella, A.; Zorzi, M. A dynamic approach to rebalancing bike-sharing systems. Sensors 2018, 18, 512.
[CrossRef] [PubMed]

18. Gurobi Optimizer. Available online: http://www.gurobi.com (accessed on 17 February 2021).
19. Tsushima, H.; Matsuura, T.; Jin’no, K. Local search method for multiple-vehicle bike sharing system routing problem. J. Signal

Process. 2018, 22, 157–160. [CrossRef]
20. Tsushima, H.; Matsuura, T.; Ikeguchi, T. Strategy for Exploring Feasible and Infeasible Solution Spaces to Solve a Multiple-Vehicle

Bike Sharing System Routing Problem. Appl. Sci. 2021, 11, 7749. [CrossRef]
21. Or, I. Traveling salesman-type combinatorial problems and their relation to the logistics of blood banking. Ph.D. Thesis,

Department of Industrial Engineering and Management Science, Northwestern University, Evanston, IL, USA, 1976.
22. Taillard, É; Badeau, P.; Gendreau, M.; Guertin, F.; Potvin, J.Y. A tabu search heuristic for the vehicle routing problem with soft

time windows. Transp. Sci. 1997, 31, 170–186. [CrossRef]
23. Glover, F. Tabu search-part I. ORSA J. Comput. 1989, 1, 190–206. [CrossRef]
24. Glover, F. Tabu search-part II. ORSA J. Comput. 1990, 2, 4–32. [CrossRef]
25. Glover, F.; Taillard, E. A user’s guide to tabu search. Ann. Oper. Res. 1993, 41, 3–28. [CrossRef]
26. Hasegawa, M.; Ikeguchi, T.; Aihara, K. Solving large scale traveling salesman problems by chaotic neurodynamics. Neural Netw.

2002, 15, 271–283. [CrossRef]
27. Matsuura, T.; Ikeguchi, T. Chaotic search for traveling salesman problems by using 2-opt and Or-opt algorithms. In Artificial

Neural Networks—ICANN 2008; Lecture Notes in Computer Science; Springer: Berlin/Heidelberg, Germany, 2008; Volume 5164.
28. Motohashi, S.; Matsuura, T.; Ikeguchi, T. Chaotic search method using the Lin-Kernighan algorithm for traveling salesman

problems. In Proceedings of International Symposium on Nonlinear Theory and its Applications 2008, Budapest, Hungary, 7–10
September 2008; pp. 144–147.

29. Motohashi, S.; Matsuura, T.; Ikeguchi, T.; Aihara, K. The Lin-Kernighan algorithm driven by chaotic neurodynamics for large
scale traveling salesman problems. In Artificial Neural Networks–ICANN 2009; Lecture Notes in Computer Science; Springer:
Berlin/Heidelberg, Germany, 2009; Volume 5769.

30. Taillard, É; D.; Helsgaun, K. POPMUSIC for the travelling salesman problem, Eur. J. Oper. Res. 2019, 272, 420–429. [CrossRef]

https://bikesharingworldmap.com/#/acoruna/
https://bixi.com
https://www.velib-metropole.fr
https://docomo-cycle.jp/
https://www.citybikewien.at/de/
https://www.citibikenyc.com/
https://www.capitalbikeshare.com
https://www.bluebikes.com
https://www.bicing.barcelona
http://doi.org/10.1016/j.apenergy.2018.03.101
http://dx.doi.org/10.1016/j.omega.2013.12.001
http://dx.doi.org/10.3390/s18020512
http://www.ncbi.nlm.nih.gov/pubmed/29419771
http://www.gurobi.com
http://dx.doi.org/10.2299/jsp.22.157
http://dx.doi.org/10.3390/app11167749
http://dx.doi.org/10.1287/trsc.31.2.170
http://dx.doi.org/10.1287/ijoc.1.3.190
http://dx.doi.org/10.1287/ijoc.2.1.4
http://dx.doi.org/10.1007/BF02078647
http://dx.doi.org/10.1016/S0893-6080(02)00017-5
http://dx.doi.org/10.1016/j.ejor.2018.06.039

Appl. Sci. 2022, 12, 2675 21 of 21

31. Aritra, A.; Zhang, Y. Free-floating bike sharing: Solving real-life large-scale static rebalancing problems. Transp. Res. Part Emerg.
Technol. 2017, 80, 92–116.

32. Tsushima, H.; Ikeguchi, T. Statistical analysis of usage history of bicycle sharing systems. Nonlinear Theory Its Appl. IEICE 2021,
E13-N, 2.

33. Kabak, M.; Erbaş, M.; Cetinkaya, C.; Özceylan, E. A GIS-based MCDM approach for the evaluation of bike-share stations. J. Clean.
Prod. 2018, 201, 49–60. [CrossRef]

http://dx.doi.org/10.1016/j.jclepro.2018.08.033

	Introduction
	Problem Description
	Multiple-Vehicle Bike Sharing System Routing Problem (mBSSRP)
	Multiple-Vehicle Bike Sharing System Routing Problem with Soft Constraints (mBSSRP-S)

	Heuristic Methods
	Construction Method for Generating an Initial Solution
	Local Search Methods for Improving the Initial Solution
	Method by Using the Tabu Search
	Dynamically Changing Weight of Penalties

	Computational Cost Reduction Method
	Numerical Experiments
	Results of Search Strategy before Obtaining a Feasible Solution
	Results of Search Strategy after Obtaining a Feasible Solution

	Conclusions
	References

