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Abstract: Constrained by cost, measuring conditions and excessive calculation, it is difficult to
reconstruct a 3D real-time temperature field. For the purpose of solving these problems, a three-
dimensional temperature distribution reconstruction algorithm based on Tucker decomposition
algorithm is proposed. The Tucker decomposition algorithm is used to reduce the dimension of
the measured data, and the processed core tensor is used for the temperature field reconstruction
of sparse data. Theoretical analysis and simulations show that the proposed method is feasible;
the overall optimization is realized by selecting the appropriate core tensor dimensions; and the
reconstruction error is less than 3%. Results indicate that the proposed method can yield a reliable
reconstruction solution and can be applied to real-time applications.

Keywords: Tucker decomposition; three-dimensional temperature distribution; core tensor; dimen-
sionality reduction

1. Introduction

Accurate reliable measurements of 3D flame temperature distribution are highly desir-
able to achieve an in-depth understanding of combustion and pollutant formation processes
including flame flashback prediction, thermoacoustic instability control and combustion
emission reduction. YU Guan et al. experimentally studied and verified that the periodic
acoustic forcing effect [1] and strategic use of transient forcing, hysteresis and mode switch-
ing can reduce the thermoacoustic amplitude of the self-excited combustion system [2]. On
this basis, the application scope of open-loop control was explored [3]. C. L. Myung et al.
reviewed the particulate emission characteristics of internal combustion engine exhaust [4]
and the spark ignition and diesel engine combustion process [5] and compared the effects of
different vehicle certification modes on particulate emission characteristics of light vehicles
through experiments [6]. C. Heeger et al. explored the mechanism of flame flashback in
annular slots of burners and put forward a new hypothesis of tempering mechanism [7]. A.
Nauert et al. used planar laser diagnostics at high repetition rates to quantitatively study
the flame during flashback [8]. F. Seffrin et al. proposed a layered burner, verified the
numerical simulation model through experiments and analyzed the flow field of the burner.
The experimental apparatus and results are discussed [9]. Due to the thermal and dynamic
nature of the flame, an effective means for the spatial and temporal measurement of the
flame temperature remains a challenge for combustion and measurement researchers.

Significant efforts have been made in past decades to measure the flame temperature
distribution. Various contact and non-contact methods have been proposed and devel-
oped. There are numerous methods for measuring temperature. The contact temperature
measurement methods mainly refer to the thermocouples, widely used in the combustion
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process [10,11]. It is convenient and efficient, but it can only be used for single-point
measurements. It is impossible to install enough equipment for detailed information.
Non-contact measurement methods, such as acoustic measurement [12], laser diagnostic
measurement [13] and radiation imaging methods [14], can be used to reconstruct the
temperature field. These techniques have the advantages of a wide measurement range,
fast dynamic response and little impact on the flame [15,16]. However, these methods
can generally measure the parameters on the line or surface, and many problems remain
that may limit their application; for example, noise, vibration, and ash in the industrial
environment may have a great impact on their accuracy. Furthermore, sensors involved in
these techniques are difficult to install, and the measurement systems are complicated and
expensive. All of these factors increase the difficulty of applying these devices. Numerical
methods, such as computational fluid dynamics (CFD), can also be used to obtain accurate
and detailed temperature information. However, numerical computations always involve a
large amount of data; they are exceptionally time-consuming and not suitable for real-time
applications. Therefore, it is significant to propose and develop an effective method to use
these data.

By extracting eigenvector by learning from experience dataset, principal component
analysis (PCA)— also known as Karhunen–Loève (KL) expansion or proper orthogonal
decomposition (POD)—can analyze and utilize the most essential characteristics of these
data.

As the PCA is convenient and efficient, it is used in many different domains, includ-
ing signal analysis [17], data compression [18], image processing [19], chemical reaction
analysis [20] and control systems [21]. In recent years, it has also been well used in 2D tem-
perature distribution and wind field analysis and reconstruction. Chen et al. [22] combines
measurement and numerical algorithms based on PCA to obtain temperature distribution
in real time by using feature vectors and measurement data. Sun et al. [23] used PCA for
real-time wind field reconstruction for large areas and improving the efficiency of sensor
applications.

In order to develop a 3D temperature field reconstruction method that can be used
in real applications, inspired by the PCA, a three-dimensional temperature distribution
reconstruction algorithm based on Tucker decomposition algorithm is proposed.

Tucker decomposition was first proposed by Tucker in 1963 [24]. Since then, Tucker
decomposition has been applied in many different fields, including data compression [25],
image processing [26], signal analysis [27] and so on. Zhao et al. [28] used it for infrared
small-target detection, and Qin et al. [29] used it in wind velocity distribution reconstruction.
The method has also been used in hyperspectral change detection [30].

In this study, a method based on Tucker decomposition algorithm is proposed for the
rapid and reliable reconstruction of the 3D temperature field using sparse measurements,
and it was verified by simulation data and experimental data, which provides a new
solution for temperature distribution measurement.

2. Fundamental Measurement Principles
2.1. Tucker Decomposition Algorithm Principle

By Tucker decomposition, the N-order high-dimensional tensor can be transformed
into an n-order low-dimensional core tensor and n decomposition factor matrices (N > n).
The Tucker decomposition of N-order tensors χ ∈ {I×J×K can be written as [31]

χ = f
(

U(1), U(2), . . . , U(N)
)
+ ε (1)

where U(n), n = 1, . . . , N is the decomposition factor, and ε is N-order error tensor.
Therefore, the factor matrix can be obtained by the following optimization problems:(

Û(1), . . . , Û(N)
)
= arg min

U(1),...,U(N)
‖χ− f

(
U(1), . . . , U(N)

)
‖

2

2
, (2)
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Considering that the Tucker decomposition of the N-order tensor is a higher-order
singular value decomposition (HOSVD),

min
U(1),...,U(N),G(n)

‖X(n) −U(n)G(n)U
(n)
⊗ ‖

2

2
, (3)

In higher-order SVD, the factor matrix U(n) ∈ {In×Jn satisfies the semi orthogonal
condition U(n)TU(n) = IJ :

U(n)
⊗ U(n)T

⊗ = IJ1,...,Jn−1,Jn+1,...,JN ,, (4)

Then, to solve equation X(n) ≈ U(n)G(n)U
(n)
⊗ , make SVD X(n) = U(n)S(n)V(n)T :

U(n)S(n)V(n)T = U(n)G(n)U
(n)
⊗ , (5)

Then, both sides multiply U(n)T left and U(n)T
⊗ right, respectively, and the following

can be obtained from Equation (5):

G(n) = S(n)V(n)TU(n)T
⊗ , (6)

Therefore, the mathematical model of the n-order tensor χ ∈ {I1×I2×I3×...IN decomposi-
tion process is expressed as follows:

χ = ζ×1 U(1) ×2 U(2) . . .×N U(N), (7)

where ζ—tensor χ Tucker decomposition core tensor, ζ ∈ {J1×J2×J3×...×JN , JN < IN ; ×N—
tensor χ N-mode product and U(N)—tensor χ decomposition factor matrix in the N-module
direction, U(N) ∈ {In×Jn .

2.2. Reconstruction Algorithm Based on Tucker Decomposition

In the reconstruction of three-dimensional temperature distribution, the a priori dataset
is composed of n1 three-dimensional temperature field obtained by simulation calcula-
tion or measurement. In order to facilitate the subsequent calculation and analysis, the
prior dataset is recorded as a fourth-order tensor TR = {T1, T2, T3, . . . , Ti, . . . , Tn1}, Ti ∈
{n2×n3×n4 , TR ∈ {n1×n2×n3×n4 . The prior dataset is decomposed into the form of core tensor
and decomposition factor mode product through Tucker decomposition, as follows:

TR =



T1
T2
...

Ti
...

Tn1


= Ct ×1 Ft(1) ×2 Ft(2) ×3 Ft(3) ×4 Ft(4), (8)

where Ct—the core tensor of prior dataset tensor TR Tucker decomposition,
Ct ∈ {m1×m2×m3×m4 and Ft(i)—decomposition factor matrix in the i-module direction
of tensor TR, Ft(i) ∈ {ni×mi .

C×1 P×2 Q = C×2 Q×1 P (9)

where P—the decomposition factor matrix in the 1-mode direction and Q—the decomposi-
tion factor matrix in the 2-mode direction.
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According to Formula (10), Formula (9) is transformed into the following form:

TR =



T1
T2
...

Ti
...

Tn1


= Ct ×1 Ft(1) ×2 Ft(2) ×3 Ft(3) ×4 Ft(4) ×1



f11
f12
...

f1i
...

f1n1


, (10)

where f1i—the ith factor vector in the decomposition factor matrix in the direction of 1
modulus and f1i ∈ {1×m1 .

It can be seen from Formula (11):

Ti = A×1 f1i, (11)

where A—reconstruction coefficient tensor, A = C ×2 F(2) ×3 F(3) ×4 F(4) and
A ∈ {m1×n2×n3×n4 .

In the process of solving, for the three-dimensional temperature distribution to be
reconstructed under the same combustion environment, the Equation (13) should also be
satisfied:

Tx = A×1 f1x, (12)

where f1x—the three-dimensional temperature distribution to be solved to reconstruct the
1-mode decomposition factor vector.

According to the definition of model product, the Formula (13) is transformed into the
form of vector and matrix multiplication:

tx =
(
f1x ×A1unfold

)T, (13)

where tx—first-order representation of three-dimensional temperature distribution; A1unfold—
the expansion of the coefficient matrix A along the direction of 1 modulus and A1unfold ∈
{(n2×n3×n4)×m1 .

In the temperature measurement process, when the k measuring point positions are de-
termined, the corresponding measurement matrix can be constructed, and the temperature
measurement process can be expressed as a mathematical model:

tM = Mtx, (14)

where tM—a vector of small number of temperature measurements, tM ∈ Rk×1; M—the
measurement matrix, which characterizes the location of the measurement points and
M ∈ Rk×n.

Combining Formula (14) and Formula (15), the relationship between the measured
temperature and the coefficient vector to be solved can be established:

MA1unfoldfT
1x = tM, (15)

In Formula (16), tM is obtained by measurement, M is a known condition after the
position of the measuring point is fixed, and A1unfold can be calculated by Tucker decompo-
sition of the prior data set. Set the objective function of minimizing reconstruction error
based on the measured data:

J
(

fT
1x

)
= arg min‖tM −MAT

1unfoldfT
1x‖

2
, (16)

where J
(

fT
1x

)
—the objective function.



Appl. Sci. 2022, 12, 2749 5 of 24

Through Formula (17), the temperature distribution reconstruction is transformed into
a problem of obtaining the optimal solution of the reconstruction coefficient vector:

BfT
1x = k, (17)

where B =
(

MAT
1unfold

)T(
MAT

1unfold

)
; k =

(
MAT

1unfold

)T
tM.

Solve the Formula (18), and then calculate the Formula (14) to obtain the three-
dimensional reconstructed temperature distribution. The specific process of temperature
field reconstruction by Tucker decomposition is shown in Figure 1 below.

Figure 1. Flow diagram of three-dimensional reconstruction method.

3. Numerical Simulation and Analysis

On the basis of the previous research, in order to reduce the computational cost,
numerical simulation is used to quantitatively demonstrate the feasibility of the proposed
algorithm based on the Tucker decomposition and determines the effectiveness of the
method.

A space of 4 m× 4 m× 4 m is constructed as a 3D temperature field reconstruction area.
Set three different 3D temperature distribution numerical models as the research objects of
the temperature reconstruction in this section, which are used to calculate the prior dataset
and the test dataset. Apply the proposed 3D temperature distribution reconstruction
algorithm to reconstruct the temperature profile under different test conditions. The
effectiveness and feasibility of the reconstruction algorithm are analyzed. Restricted by
the existing calculation conditions, the three-dimensional temperature distribution data is
characterized by selecting 2D temperature field sections at different heights (0.5 m, 1.5 m,
2.5 m and 3.5 m).

3.1. Single-Peak 3D Temperature Distribution Reconstruction

Set the single-peak 3D temperature distribution model as follows:

T1(x, y) = 600 +
a

(x− 2)2 + (y− 1)2 + (z− 2.5)2 + 1
, (18)

where T1(x, y)—temperature at the points (x, y, z) of the single-peak 3D temperature dis-
tribution (K); x—X coordinate(m); y—Y coordinate(m); z—Z coordinate(m) and a—initial
boundary condition.

In the reconstruction area, use Equation (19) to calculate the temperature value. In
order to reduce the amount of calculation, the X-axis and Y-axis directions take 0.1 m as
the step length, and the Z-axis direction takes 1 m as the step length to start sampling
from the origin. To form 3D temperature distribution data, 4 × 40 × 40 temperature
values are collected. Calculate the temperature field under different boundary conditions,
construct a priori dataset with dimensions of 30 × 4 × 40 × 40 and test datasets with
dimensions of 5 × 4 × 40 × 40. Set the prior dataset and the test dataset of the single-peak
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3D temperature distribution model and the boundary conditions as shown in Appendix A
Tables A1 and A2.

According to the 3D temperature distribution reconstruction calculation process,
the prior dataset is decomposed by the Tucker decomposition algorithm to obtain the
reconstruction coefficient matrix. Select 16 coordinate points as temperature measuring
points to reconstruct the 3D temperature profile.

The temperature distribution of test condition 5 calculated is shown in Figure 2.

Figure 2. Calculation results of single-peak temperature field model in a cubic area.

The temperature field result of the test condition 5 obtained by the Tucker algorithm is
as follows.

The boundary condition of test condition 5 is outside the constraint conditions of the
priori dataset. As shown in Figure 3, the proposed algorithm still realizes the effective
reconstruction.

Figure 3. Reconstruction result of single-peak temperature field model in cubic area.
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To analyze the adaptability of the 3D temperature distribution reconstruction algo-
rithm under different working conditions, the temperature profile data of the five test
working conditions are reconstructed, and the reconstruction error is shown in Figure 4
below.

Figure 4. Reconstruction errors of single-peak temperature field model in cubic area.

As shown in Figure 4, the temperature field reconstruction results under five test con-
ditions are analyzed. It can be seen that in the construction of single-peak 3D temperature
distribution, the three-dimensional temperature field reconstruction algorithm based on
the Tucker decomposition can effectively reconstruct the temperature profile data under
different conditions.

3.2. Two-Peak 3D Temperature Distribution Reconstruction

Set two-peak 3D temperature distribution as follows:

T2(x, y) = 200 +
a

(x− 2)2 + (y− 1)2 + (z− 1)2 + 1
+

b

(x− 3)2 + (y− 2)2 + (z− 1.5)2 + 1
, (19)

where T2(x, y)—points (x, y, z) of two-peak 3D temperature distribution model (K); and
a, b—initial boundary conditions.

Set the prior dataset and test dataset of the two-peak three-dimensional temperature
distribution model and the boundary conditions as shown in Appendix A Tables A3 and A4.

The data acquisition and reconstruction process of the two-peak temperature distribu-
tion model is consistent with the calculation procedure of the single-peak mentioned above.
The calculated temperature distribution of test condition 5 and the reconstruction result of
the temperature field of test condition 5 calculated by the algorithm are shown in Figure 5.
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Figure 5. Two-peak temperature distribution model in cubic area: (a) calculation results of two-peak
temperature distribution model in a cubic area; (b) reconstruction result of two-peak temperature
distribution model in cubic area.

The 3D temperature field reconstruction algorithm is used to reconstruct the tempera-
ture distribution data of the five test conditions. The error is shown in Figure 6.

Figure 6. Reconstruction errors of two-peak temperature distribution model in cubic area.

Analysis of Figures 5 and 6 shows that in the five test conditions of the double-peak
3D temperature distribution model, the proposed algorithm can effectively realize the
temperature distribution reconstruction.

3.3. Three-Peak 3D Temperature Distribution Reconstruction

Set the three-peak 3D temperature distribution as follows:
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T3(x, y) = 270+
a

(x− 0.5)2 + (y− 1)2 + (z− 1)2 + 1
+

b

(x− 3)2 + (y− 2)2 + (z− 1.5)2 + 1
+

b

(x− 2)2 + (y− 2)2 + (z− 2)2 + 1
(20)

where T3(x, y)—points (x, y, z) of three-peak 3D temperature distribution model (K).
Set the model prior dataset and test dataset boundary conditions as shown in Appendix A

Tables A5 and A6.
The calculated temperature distribution of test condition 5 and the reconstruction

result of the temperature field of test condition 5 calculated by the algorithm are shown in
Figure 7 below.

Figure 7. Three-peak temperature distribution model in a cubic area: (a) calculation results of
three-peak temperature distribution model in a cubic area; (b) reconstruction results of three-peak
temperature distribution model in a cubic area.

The Tucker decomposition algorithm is used to reconstruct the temperature distribu-
tion data of the five test conditions. The error is shown in Figure 8.

Figure 8. Reconstruction errors of three-peak temperature distribution model in cubic area.
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An analysis of Figures 7 and 8 shows that in the five test conditions of the three-peak 3D
temperature distribution model, the 3D temperature distribution reconstruction algorithm
proposed in this paper can effectively realize the temperature distribution reconstruction.

Based on the above analysis, this section uses the calculation data of single-peak,
two-peak and three-peak three-dimensional temperature distribution models to verify
the effectiveness and practicability of the proposed algorithm. The reconstruction results
illustrate the feasibility of applying Tucker decomposition algorithm to the 3D temperature
distribution reconstruction.

4. Simulation Experiment

Based on the preliminary demonstration of the effectiveness of the algorithm, in order
to analyze the application effect of the reconstruction algorithm in the combustion, this
paper takes the Flame D in Sandia laboratory as the research object and builds a numerical
simulation model of methane combustion. The practicability of the reconstruction algo-
rithm is analyzed by the simulation calculation data, and the validity of the temperature
distribution reconstruction algorithm proposed in this paper is further demonstrated.

4.1. Methane Burning Duty Flame

The duty flame is a small flame set around the high-speed fuel outlet of the burner to
achieve ignition and stable combustion. At Sandia Laboratories, Flame D is a typical jet
flame obtained by burning at initial conditions with a methane inlet velocity of 49.6 m/s
and a hot air velocity of 11.4 m/s formed by the duty flame [32,33].

Sandia Labs has measured the flame burning area of Flame D through laser-induced
fluorescence, and the measurement data has been made public. The burner outlet structure
used in Flame D is shown in Figure 9.

Figure 9. Diagram of burner outlet structure.

The geometric dimensions of the burner outlet are as follows: the diameter of the fuel
outlet is d = 7.2 mm; the diameter of the wake heat flow outlet is 18.2 mm, which is an
annular structure; the outside of the heat flow outlet is air flow. In order to facilitate the
establishment of the model in the subsequent process, the diameter d of the fuel outlet is
used as the unit length to characterize the size and coordinate position [33].

The fuel consists of methane and air mixed in a volume ratio of 1:3. The accompanying
heat flow is formed by the combustion of mixed gases such as acetylene and hydrogen.
The specific parameter data are shown in Table 1.

4.2. Numerical Simulation Model Settings

Flame D is a typical turbulent jet flame. The Reynolds number of the flame is 22,400,
and the fuel inlet velocity is relatively fast, which belongs to the fully developed fast
turbulent combustion process. The Realizable model is used in the simulation calculation.
According to the actual parameters, the following settings are made: a cylindrical area
with a diameter of 40 d and a height of 80 d is designated as the calculation area, and it is
divided into 1,823,760 grids. The geometry of the Flame D combustion simulation model is
shown in Figure 10.
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Table 1. Parameters of Flame D [32].

Parameter Name Fuel Heat Flow Air

Velocity (m/s) 49.6 11.4 0.9
Pressure (atm) 0.993 0.993 0.993

Temperature (K) 294 1880 291

Component Proportion(%) CH4: 0.1575
air: 0.1575

N2: 0.7342
O2: 0.054

H2O: 0.0942
CO: 0.00407
CO2: 0.1098

Figure 10. Geometry of the simulation model.

In order to ensure that the numerical simulation model can accurately simulate the
Flame D combustion process, the parameters of the model are set based on the actual
operating conditions, and appropriate optimization is carried out on the basis of taking
into account the calculation efficiency and accuracy.

4.3. Numerical Simulation Calculation Results Analysis

Sandia Labs has released a measurement data set of Flame D, taking the cross-sections
formed by +z and +x in the model as the research object. Compare the simulation data
with the measured data to analyze the accuracy of the simulation.

The comparison between the simulation calculation data of the z-axis observation
point and the temperature measurement data of the corresponding position is shown in the
following figure.

It can be seen from Figure 11 that there is a certain deviation between the simulation
results and the measured data. Analyzing the influencing factors, the error between the
calculation result and the measured data mainly comes from the solution process and the
model building process. Since the grid independence analysis has been carried out, the
influence of grid division on the calculation results can be ignored, so the error in the
solution process mainly comes from the discrete process of the governing equations. In the
process of model establishment, the selection of turbulence model, chemical reaction model
and parameter setting, as well as the simplification and assumption in the process of model
building, are the main factors that cause the deviation between the calculated results and
the measured data.
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Figure 11. Temperature comparison in z-axis.

Nevertheless, as shown in Figure 11, the temperature calculated values at different po-
sitions are basically consistent with the general trend of the actual temperature distribution,
that is, the simulation calculation results are close to the actual measured values.

In addition, the z-axis coordinates are taken as 30 d, 45 d, 60 d and 75 d for the radial
observation point temperature data comparison as follows.

Similar to the conclusion in Figure 11, the calculated temperature values at different
radial positions shown in Figure 12 are basically consistent with the overall trend of the
actual temperature distribution. Therefore, the simulation model can better simulate the
temperature distribution of Flame D.

Figure 12. Temperature comparison in different locations: (a) Temperature comparison in z = 30 d;
(b) Temperature comparison in z = 45 d; (c) Temperature comparison in z = 60 d; (d) Temperature
comparison in z = 75 d.
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In summary, although the numerical calculation method has approximations and
assumptions that cannot be avoided in the process of solving and model building, it can
still accurately simulate the basic properties of the simulation object and meet the actual
needs of engineering applications. The methane combustion simulation model established
in this paper can simulate the real temperature distribution of Flame D accurately.

4.4. Prior Data and Test Data Acquisition

As mentioned in the previous section, the established numerical simulation model
can simulate the methane combustion process, and the calculated temperature distribution
data is close to the actual value and can reflect the distribution of the actual combustion
temperature. Therefore, this model can be applied to build prior datasets as well as the test
dataset for the temperature distribution reconstruction. Considering the turbulence inten-
sity and the range of the prior dataset, the boundary conditions for methane combustion
simulation calculation are set as shown in Table A7.

In order to construct the temperature distribution reconstruction calculation samples,
five test cases were set up. The boundary conditions of the test condition are different
from the prior condition, and the boundary condition of the test condition 5 is set outside
the range of the boundary condition of the prior condition to test the robustness of the
temperature distribution reconstruction algorithm. The boundary condition settings of the
test conditions are shown in Table 2.

Table 2. Boundary conditions of combustion test dataset.

Condition Name
Fuel Velocity Heat Flow

(m/s) Velocity
(m/s)

Test Condition 1 32 10.6
Test Condition 2 49 15.3
Test Condition 3 57 17.7
Test Condition 4 68 14.4
Test Condition 5 77 26

4.5. Simulation Data Reconstruction Analysis

The feasibility of the reconstruction algorithm is verified by using the temperature
distribution data calculated from the numerical simulation model.

The temperature of 1600 locations on the three planes of z = 30 d, 45 d and 60 d of
the methane combustion simulation model were selected as the research objects of the
three-dimensional temperature distribution reconstruction. The selected positions include
36 measuring points on the axial 30 d, 45 d, and 60 d published by Sandia Labs so as to
facilitate the experimental data reconstruction and analysis. Based on the simulation calcu-
lation results of the prior and test conditions, a three-dimensional temperature distribution
reconstruction prior dataset with dimensions of 24 × 3 × 40 × 40 and a test dataset with
dimensions of 5 × 3 × 40 × 40 were constructed.

The 3-D temperature distribution reconstruction algorithm is used to reconstruct
the test conditions’ temperature distribution. The measurement data is taken from the
simulation calculation data. Based on the measurement matrix, the temperature of the
corresponding position in the test dataset is extracted as the temperature measurement
data, which is used for the temperature distribution reconstruction.

Taking the test case 5 as an example, the simulation results of the temperature distri-
bution in the three target sections are shown in Figure 13.
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Figure 13. Simulation results of test case 5 (Three-dimensional).

Figure 13 shows the simulation results of the three-dimensional temperature distri-
bution calculated by using the simulation numerical software according to the geometric
parameters of the established model, combustion parameters and boundary conditions of
test condition 5. The white points in the Figure 13 represent the arrangement of temperature
measuring points.

The temperatures of the 12 measuring points shown in Figure 13 are used as temper-
ature measurement data, and the reconstruction calculation is performed using the core
tensor with dimensions of 1 × 2 × 2 × 3.

After reconstruction calculation, it can be seen that the reconstruction error of test case
5 is 4.13%, and the temperature deviation of the reconstruction results is less than 90 K,
which realizes the effective original temperature distribution reconstruction and verifies
the 3-D temperature distribution reconstruction algorithm.

In order to better show the reconstruction results, the 3D temperature distribution re-
construction calculation and analysis process presents the reconstruction effect as a contour
map of the absolute value of the deviation between the reconstructed temperature value
and the calculated temperature value. The absolute value of the temperature deviation
between the reconstruction calculation results and the simulation calculation results is
shown in Figure 14.

In order to analyze the adaptability of the reconstruction algorithm under different
working conditions, the three-dimensional temperature distribution reconstruction algo-
rithm was used to reconstruct the five test conditions’ data, and the reconstruction errors
are shown in Figure 15.

As shown in Figures 14 and 15, the three-dimensional temperature distribution recon-
struction algorithm can effectively reconstruct the five different test conditions’ data, which
further verifies the practicability and effectiveness.
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Figure 14. Temperature deviations of reconstruction results in test case 5 (Three-dimensional).

Figure 15. Reconstruction errors of simulation data (Three-dimensional).

5. Effect of Core Tensor Dimension on Reconstruction Accuracy

On the basis of the validity of the reconstruction algorithm, the influence of the core
tensor dimension on the reconstruction accuracy during the temperature distribution
reconstruction is analyzed to further improve the algorithm accuracy. The temperatures
of 1600 positions were selected on the three planes of z = 30 d, 45 d and 60 d in the
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methane combustion simulation model as the research object of 3D temperature distribution
reconstruction.

The three-dimensional temperature distribution reconstruction algorithm based on
Tucker decomposition uses the key information of the prior dataset carried by the core
tensor to realize the reconstruction. The core tensor of the prior dataset has four dimensions,
so it is necessary to analyze the values of the four dimensions one by one.

The prior dataset of 3D temperature distribution reconstruction is a tensor of
24 × 3 × 40 × 40. The dimension in the 2-modular direction in the prior data is small, so
the calculation amount of optimizing the dimension value in the 2-modular direction is
also small. Therefore, the effect of the core tensor dimension on the reconstruction accuracy
is explored from the 2-modular direction.

Set up the 2-module direction dimension influence analysis experiment, and the
experimental steps are as follows:

(1) In order to avoid too few measurement data points affecting the analysis results,
50 measurement data points were used in the reconstruction. In order to avoid the
influence of the dimension of other modes, the dimension of other modes is fixed
to 10;

(2) Perform Tucker decomposition on the prior dataset to obtain a core tensor with a set
dimension of 10 × n × 10 × 10, n = 1,2,3;

(3) Use the core tensor, decomposition factor matrix and measured temperature to re-
construct the 3D temperature field, and calculate the reconstruction error. Add noise
data with SNR = 40 dB to the measured temperature and compare the reconstruction
results in the presence of measurement error;

(4) Repeat the above steps 1000 times to obtain the average reconstruction error in order to
eliminate the influence of randomness in the temperature measurement so a universal
conclusion can be obtained;

(5) Repeat the above steps until the dimension n has traversed all the values.

Taking the test case 5 as an example, the different 2-mode dimensions reconstruction
results are shown in Table 3.

Table 3. Reconstruction errors with different dimensions (Mode-2).

Dimension Raw Data Reconstruction
Error (%)

Noise-Added Data
Reconstruction Error (%)

1 18.21 20.05
2 4.2 9.33
3 0.18 7.94

As can be seen from Table 3, as the dimensionality in the 2-mode direction increases,
the reconstruction error decreases whether using the original temperature measurement
data or using the noise-added measurement data. Therefore, the 2-modular dimension of
the core tensor is set to be three in the follow-up research work.

When the 2-module dimension is three, the effect of the 1-module dimension on the
reconstruction accuracy is analyzed. The 3-module and 4-module dimension are set to
10, and the value range of the 1-module dimension n is 1 to 10. Other parameters and
calculation steps are consistent with the above analysis and will not be repeated here.

Taking the test case 5 as an example, the reconstruction results of different 1-module
dimensions are shown in the table below:

In Table 4, it can be seen that the reconstruction error using the original temperature
measurement data will gradually decrease with the dimension increase; the reconstruction
error using noise-added measurement data increases with the increase of dimension. From
the perspective of balancing the reconstruction accuracy and noise sensitivity, the 1-module
dimension of the core tensor is set to two in the subsequent reconstruction work. Similarly,
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it is determined that the 3-module dimension is five, and the 4-module dimension is two.
Finally, the optimized core tensor dimension is determined to be 2 × 3 × 5 × 2.

Table 4. Reconstruction errors with different dimension (Mode-1).

Dimension Raw Data Reconstruction
Error (%)

Noise-Added Data
Reconstruction Error (%)

1 2.63 2.63
2 1.48 2.63
3 1.33 3.41
4 0.52 4.11
5 0.53 4.6
6 0.52 5.47
7 0.2 6.61
8 0.2 7.13
9 0.18 7.23
10 0.18 7.98

The optimized core tensor dimension is used to add noise with different signal-to-
noise ratios to Test Condition 5, and the comprehensive performance of the optimization
algorithm under different noise conditions is investigated, as shown in Figure 16.

Figure 16. Sensitivity of optimization algorithm under different noise-added conditions.

The data of five test cases are reconstructed, and the reconstruction effect with
SNR = 40 dB noise-added is analyzed. The results are shown in Figure 17.

It can be seen from Figures 16 and 17 that the optimization effect of the core tensor
dimension is stable in the five test conditions. Compared with the reconstruction error, the
optimization algorithm can reduce the reconstruction error under different test conditions,
and the optimization effect is more obvious with the increase of noise intensity. The
optimized reconstruction algorithm has a high reconstruction accuracy and good anti-noise
performance.
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Figure 17. Optimized effects of core tensor dimension.

6. Conclusions

In this paper, a fast and accurate optimization algorithm based on Tucker decom-
position has been proposed to reconstruct 3D temperature fields with sparse data. The
relevant mathematical derivations from Tucker decomposition have been carried out to
determine a 3D temperature field reconstruction algorithm. The dataset used to generate
the core tensor plays a very important role in this method. When using CFD results to
establish datasets, it is essential to sample large-scale boundary conditions that can cover
most of the working conditions in the flow field. Simulations were performed, and numeri-
cal results demonstrated that the Tucker decomposition algorithm combined with sparse
measurement is capable of reconstructing the 3D temperature field quickly and accurately.
To evaluate the performance of this algorithm, a numerical simulation model of methane
combustion has been established based on the Flame D of Sandia Laboratory. Simulation
experimental results showed that this method can reconstruct temperature distribution
rapidly using limited measurement data with the relative of less than 5.08%, which verifies
the feasibility of this algorithm. It can greatly reduce the computational complexity and
measurement cost. Finally, this paper analyzes the influence of core tensor dimension on
reconstruction accuracy in the process of a temperature distribution reconstruction calcula-
tion. Core tensor can be extracted from a high-dimensional experience dataset. The first
few dimensions carry most of the useful information. With the use of a higher dimension
core vector, too much useless information is introduced to the reconstruction process, and
the reconstruction results are more sensitive to the noise. Thus, it is necessary to obtain a
balance between reconstruction accuracy and noise sensitivity. The results show that the
reconstruction error is less than 2% by optimizing the core tensor dimension.

Furthermore, the present study lays the groundwork for future research into some
interesting fields with several objectives, including the following:

1. In order to show more object field characteristics, this study uses a wide range of
boundary conditions to establish the dataset. This helps to generate the core tensor of
Tucker decomposition, but how to construct dataset more effectively remains to be
solved. Further research can focus on the source of empirical data, effective dataset
sampling and the impact of dataset noise.

2. The proposed method needs little measurement data to yield an acceptable recon-
struction result. The sensor number has some effect on the reconstruction result: the
greater the number of sensors used, the better result. Therefore, it is necessary to
explore the number of appropriate sensors needed to balance the measurement cost
and reconstruction accuracy.
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3. When only a few sensors are used for reconstruction, sensor placement has a great
influence on reconstruction accuracy. Testing the feasibility of finding a sensor place-
ment optimization algorithm that can yield a much better reconstruction result.
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Nomenclature

Indices
χ N-order tensors
ε N-order error tensor
N the decomposition factor
U(n) the factor matrix
ζ tensor χ Tucker decomposition core tensor
×N tensor χ N-mode product
U(N) tensor χ decomposition factor matrix in the N-module direction
TR a fourth-order tensor of the prior data
Ct the core tensor of prior data set tensor TR Tucker decomposition
Ft(i) decomposition factor matrix in the i-module direction of tensor TR
P the decomposition factor matrix in the 1-mode direction
Q the decomposition factor matrix in the 2-mode direction

f1i
the ith factor vector in the decomposition factor matrix in the direction of
1 modulus

A reconstruction coefficient tensor

f1x
the three-dimensional temperature distribution to be solved to reconstruct
the 1-mode decomposition factor vector

tx first-order representation of three-dimensional temperature distribution
A1unfold the expansion of the coefficient matrix A along the direction of 1 modulus
tM a vector of small number of temperature measurements

M
the measurement matrix, which characterizes the location of the
measurement points

tM obtained by measurement
Abbreviations

PCA principal component analysis
POD proper orthogonal decomposition
HOSVD higher-order singular value decomposition
SVD singular value decomposition
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Appendix A

Table A1. Boundary conditions of prior dataset (single-peak model in a cubic area).

Working
Condition Boundary Condition (a) Working

Condition Boundary Condition (a)

Condition 1 600 Condition 16 1350
Condition 2 650 Condition 17 1400
Condition 3 700 Condition 18 1450
Condition 4 750 Condition 19 1500
Condition 5 800 Condition 20 1550
Condition 6 850 Condition 21 1600
Condition 7 900 Condition 22 1650
Condition 8 950 Condition 23 1700
Condition 9 1000 Condition 24 1750
Condition 10 1050 Condition 25 1800
Condition 11 1100 Condition 26 1850
Condition 12 1150 Condition 27 1900
Condition 13 1200 Condition 28 1950
Condition 14 1250 Condition 29 2000
Condition 15 1300 Condition 30 2050

Table A2. Boundary conditions of test dataset (single-peak model in a cubic area).

Working Condition Boundary Condition (a)

Test Condition 1 723
Test Condition 2 1107
Test Condition 3 1426
Test Condition 4 1846
Test Condition 5 2200

Table A3. Boundary conditions of prior dataset (Two-peak model in a cubic area).

Wording Condition Boundary Condition (a) Boundary Condition (b)

Condition 1 800 1000

Condition 2 800 1200

Condition 3 800 1400

Condition 4 800 1600

Condition 5 800 1800

Condition 6 1000 800

Condition 7 1000 1200

Condition 8 1000 1400

Condition 9 1000 1600

Condition 10 1000 1800

Condition 11 1200 800

Condition 12 1200 1000

Condition 13 1200 1400

Condition 14 1200 1600

Condition 15 1200 1800

Condition 16 1400 800

Condition 17 1400 1000
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Table A3. Cont.

Wording Condition Boundary Condition (a) Boundary Condition (b)

Condition 18 1400 1200

Condition 19 1400 1600

Condition 20 1400 1800

Condition 21 1600 800

Condition 22 1600 1000

Condition 23 1600 1200

Condition 24 1600 1400

Condition 25 1600 1800

Condition 26 1800 800

Condition 27 1800 1000

Condition 28 1800 1200

Condition 29 1800 1400

Condition 30 1800 1600

Table A4. Boundary conditions of test dataset (Two-peak model in a cubic area).

Working Condition Boundary Condition (a) Boundary Condition (b)

Test Condition 1 823 1189
Test Condition 2 1407 1147
Test Condition 3 1426 1569
Test Condition 4 1746 1601
Test Condition 5 1983 2356

Table A5. Boundary conditions of prior dataset (Three-peak model in a cubic area).

Working Condition Boundary Condition (a) Boundary Condition (b)

Condition 1 600 800

Condition 2 600 1000

Condition 3 600 1200

Condition 4 600 1400

Condition 5 600 1600

Condition 6 800 600

Condition 7 800 1000

Condition 8 800 1200

Condition 9 800 1400

Condition 10 800 1600

Condition 11 1000 600

Condition 12 1000 800

Condition 13 1000 1200

Condition 14 1000 1400

Condition 15 1000 1600

Condition 16 1200 600
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Table A5. Cont.

Working Condition Boundary Condition (a) Boundary Condition (b)

Condition 17 1200 800

Condition 18 1200 1000

Condition 19 1200 1400

Condition 20 1200 1600

Condition 21 1400 600

Condition 22 1400 800

Condition 23 1400 1000

Condition 24 1400 1200

Condition 25 1400 1600

Condition 26 1600 600

Condition 27 1600 800

Condition 28 1600 1000

Condition 29 1600 1200

Condition 30 1600 1400

Table A6. Boundary conditions of test dataset (Three-peak model in a cubic area).

Working Condition Boundary Condition (a) Boundary Condition (b)

Test Condition 1 621 959
Test Condition 2 1194 645
Test Condition 3 1221 1369
Test Condition 4 1577 1153
Test Condition 5 1627 1773

Table A7. Boundary conditions of combustion prior dataset.

Condition Name Fuel Velocity (m/s) Heat Flow Velocity (m/s)

Condition 1 25 10

Condition 2 25 14

Condition 3 25 18

Condition 4 25 22

Condition 5 35 10

Condition 6 35 14

Condition 7 35 18

Condition 8 35 22

Condition 9 45 10

Condition 10 45 14

Condition 11 45 18

Condition 12 45 22

Condition 13 55 10

Condition 14 55 14

Condition 15 55 18
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Table A7. Cont.

Condition Name Fuel Velocity (m/s) Heat Flow Velocity (m/s)

Condition 16 55 22

Condition 17 65 10

Condition 18 65 14

Condition 19 65 18

Condition 20 65 22

Condition 21 75 10

Condition 22 75 14

Condition 23 75 18

Condition 24 75 22
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